

Thèse de Doctorat

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E F R A N C H E - C O M T É

THÈSE présentée par

VINCENT HUGOT

pour obtenir le

Grade de Docteur de
l’Université de Franche-Comté

Spécialité : Informatique

Tree Automata,
Approximations, and Constraints

for Verification

Tree (Not-Quite) Regular Model-Checking

Soutenue publiquement le 27 Septembre 2013 devant le Jury composé de :

PHILIPPE SCHNOEBELEN Rapporteur Directeur de recherche, CNRS
JEAN-MARC TALBOT Rapporteur Professeur à l’Université d’Aix-Marseille
PIERRE-CYRILLE HÉAM Co-Directeur Professeur à l’Université de Franche-Comté
OLGA KOUCHNARENKO Directeur de thèse Professeur à l’Université de Franche-Comté
FLORENT JACQUEMARD Examinateur Chargé de recherche HDR, INRIA
JEAN-FRANÇOIS RASKIN Examinateur Professeur à l’Université libre de Bruxelles
SOPHIE TISON Examinateur Professeur à l’Université de Lille

N◦ 6 6 6

2

Version of the document: 69268,
dated 2014-08-01 14:58:25+02:00 ,
compiled on August 1, 2014.

Table of Contents

I Motivations and Preliminaries 8

1 Formal Tools for Verification 9
1.1 Model-Checking: Simple, Symbolic & Bounded 10

1.2 Regular Model-Checking . 13

1.3 Tree Automata in Verification . 16

1.4 Outline and Contributions . 19

2 Some Technical Preliminaries 22
2.1 Pervasive Notions and Notations . 23

2.2 Ranked Alphabets, Terms, and Trees 24

2.3 Term Rewriting Systems . 27

2.4 Bottom-Up Tree Automata . 30

2.5 Tree Automata With Global Constraints 35

2.6 Decision Problems and Complexities 37

II Approximating LTL over Rewrite Sequences 40

3 Term Rewriting for Model-Checking 41
3.1 On the Usefulness of Rewriting for Verification 42

3.2 Reachability Analysis for Term Rewriting 44

3.2.1 Preservation of Regularity Through Forward Closure 45

3.2.2 Tree Automata Completion Algorithm 46

3.2.3 Exact Behaviours of Completion 47

3.2.4 One-Step Rewriting, and Completion 47

3.2.5 The Importance of Being Left-Linear 49

3.2.6 One-Step Rewriting, and Constraints 51

4 Approximating LTL on Rewrite Sequences 53
4.1 Preliminaries & Problem Statement 56

4.1.1 Rewrite Words & Maximal Rewrite Words 56

4.1.2 Defining Temporal Semantics on Rewrite Words 57

4.1.3 Rewrite Propositions & Problem Statement 58

4.2 Technical Groundwork: Antecedent Signatures 59

4.2.1 Overview & Intuitions . 59

4.2.2 Choosing a Suitable Fragment of LTL 61

4.2.3 Girdling the Future: Signatures 62

4.3 From Temporal Properties to Rewrite Propositions 73

4.4 Generating an Approximated Procedure 87

4.4.1 Juggling Assumptions and Expressive Power 87

3

4 TABLE OF CONTENTS

4.4.2 Optimisation of Rewrite Propositions 95

4.5 Examples & Discussion of Applicability 97

4.5.1 Examples: Three Derivations 97

4.5.2 Coverage of Temporal Specification Patterns 101

4.5.3 Encodings: Java Byte-Code, Needham–Schroeder & CCS . . . 102

4.6 Conclusions & Perspectives . 104

III Decision Problems for Tree Automata with Global Constraints 106

5 A Brief History of Constraints 107
5.1 Tree Automata With Positional Constraints 107

5.1.1 The Original Proposal . 108

5.1.2 A Stable Superclass With Propositional Constraints 109

5.1.3 Constraints Between Brothers 109

5.1.4 Reduction Automata . 110

5.1.5 Reduction Automata Between Brothers 111

5.2 Tree Automata With Global Constraints 111

5.2.1 Generalisation to Propositional Constraints and More 112

5.2.2 Rigid Tree Automata . 113

5.3 Synthetic Taxonomy of Automata With Constraints 114

5.4 Notations: Modification of an Automaton 115

6 Bounding the Number of Constraints 117
6.1 The Emptiness & Finiteness Problems 118

6.2 The Membership Problem . 121

6.3 A Strict Hierarchy . 126

6.4 Summary and Conclusions . 128

7 SAT Encodings for TAGED Membership 129
7.1 Propositional Encoding . 130

7.2 Complexity and Optimisations . 135

7.3 Implementation and Experiments . 136

7.3.1 Experimental Results . 137

7.3.2 The Tool: Inputs and Outputs 138

7.4 Conclusions . 139

IV Decision Problems for Tree-Walking Automata 142

8 Tree Automata for XML 143
8.1 Tree-Walking Automata . 144

8.2 Abstracting Away Unranked Trees . 148

8.2.1 Unranked Trees and Their Automata 148

8.2.2 Document Type Definitions (DTD) 151

8.2.3 Binarisation of Trees and Automata 152

8.3 Queries, Path Expressions, and Their Automata 155

8.3.1 Logic-based Queries . 156

8.3.2 (Core) XPath: a Navigational Language 157

8.3.3 Caterpillar Expressions . 160

TABLE OF CONTENTS 5

8.4 The Families of Tree-Walking Automata 162

8.4.1 Basic Tree-Walking Automata 163

8.4.2 Nested Tree-Walking Automata 164

9 Loops and Overloops: Effects on Complexity 165
9.1 Introduction . 166

9.2 Loops, Overloops and the Membership Problem 167

9.2.1 Defining, Classifying and Computing Loops 167

9.2.2 A Direct Application of Loops to Membership Testing 170

9.2.3 From Loops to Overloops . 172

9.3 Transforming TWA into equivalent BUTA 174

9.3.1 Two Variants: Loops and Overloops 175

9.3.2 Overloops: Deterministic Size Upper-Bound 177

9.4 A Polynomial Over-Approximation for Emptiness 179

9.5 Experimental Results . 181

9.5.1 Evaluating the Approximation’s Effectiveness 181

9.5.2 Overloops Yield Smaller BUTA 182

9.5.3 Demonstration Software . 183

9.6 Conclusions . 184

V Summary and Perspectives 186

10 Summary and Future Works 187
10.1 Summary of Contributions . 187

10.2 Future Works & Perspectives . 188

11 Appendix 191
11.1 More Relatives of Automata With Constraints 191

11.1.1 Directed Acyclic Ordered Graph Automata 191

11.1.2 Tree Automata With One Memory 193

11.2 More Relatives of Tree-Walking Automata 196

11.2.1 Tree-Walking Pebble Automata 196

11.2.2 Tree-Walking Invisible Pebble Automata 197

11.2.3 Tree-Walking Marbles Automata 198

11.2.4 Tree-Walking Set-Pebble Automata 199

11.2.5 Alternating Tree-Walking Automata 199

12 [FR] Résumé en français 200
12.1 Approximation de LTL sur réécriture 202

12.2 Problèmes de décisions pour automates à contraintes 206

12.3 Problèmes de décision pour les automates cheminants 208

List of Figures

1.1 Tree representation of “Star Trek” XML document. 18

2.1 Reading dependencies between chapters. 23

2.2 Automata, their closure properties and decision complexities. 38

2.3 Decision problems: inputs and outputs. 39

3.1 Executions of a rewrite system satisfying �(X⇒ •Y). 42

3.2 Forward-closure regularity-preserving classes of TRS. 46

4.1 LTL semantics on maximal rewrite words. 58

4.2 Building signatures on A-LTL. 73

4.3 Partially supported patterns from [Dwyer, Avrunin & Corbett, 1999]. 101

5.1 A taxonomy of automata, with or without constraints. 116

6.1 Reduction of intersection-emptiness: the language. 120

6.2 Housings: affecting a similarity classes to each group. 123

7.1 CNF solving time, laboratory example. 137

7.2 CNF solving time, L=, for accepted and rejected terms. 138

7.3 Input syntax of the membership tool: automaton and term. 139

7.4 Example LATEX output of the tool – cf. Fig. 7.3[p139]. 140

9.1 Uniform random TWA: emptiness tests. 182

9.2 Uniform random TWA: size results. 183

11.1 TA1M: capabilities of transitions in the literature. 194

12.1 [3.1[p42]] Exécutions d’un système de réécriture satisfaisant �(X⇒ •Y).203

6

LIST OF FIGURES 7

— Part I —

Motivations and Preliminaries

8

Chapter 1
Formal Tools for Verification

Contents
1.1 Model-Checking: Simple, Symbolic & Bounded 10

1.2 Regular Model-Checking . 13

1.3 Tree Automata in Verification . 16

1.4 Outline and Contributions . 19

—Where we are reminded that bugs are bad, and that formal methods are good.

A
riane 5’s 1996 maiden flight “501” enjoys the dubious distinction of being

remembered as one of the most expensive fireworks displays in the history
of mankind. Yet its most striking feature lies not in the spectacular

character of the failure, but in how it came to pass. The cause was
not a structural flaw of the rocket, but a software bug. The ruinous error lay
in a single line of Ada code in the inertial navigation system, a fairly simple
conversion from 64-bit to 16-bit that should have checked for overflows but did
not. Misled by erroneous navigation data, the rocket veered hopelessly off course,
and self-destructed. There may be imponderables in rocket design, but that was
not one of them. The range check had actually been deliberately deactivated for
this conversion, as a performance optimisation made under the belief that there
was an ample margin of error. This may have been true for Ariane 4, from which
the navigation system was copied directly, but the greater acceleration of Ariane 5

turned out to be beyond the scope of the 16-bit variable.

Not all individual software bugs cost a few hundred million to one billion dollars –
as did flight 501 – but they are pervasive and the costs accrue over time. However,
there is no intrinsic difference between (mostly) harmless, everyday bugs and
catastrophic ones, as a quick look at some of the most publicised incidents shows.
Similar to the Ariane 5 incident is the loss of the Mariner I space probe in 1962:
an error in some rarely-used part of the navigation software of the Atlas-Agena
rocket resulted in the unrecoverable failure of its guidance system. The Phobos
I probe on the other hand was launched successfully in 1988, but a malformed
command sent from earth forced the unexpected execution of a test routine that
was supposed to be dead code. The year 1999 saw the loss of two probes to software
errors: the Mars Climate Orbiter likely disintegrated in Mars’s atmosphere because
the ground-control computer was using imperial units while the probe itself used
metric units; the Mars Polar Lander nearly made it to the ground, but invalid
touchdown detection logic prompted it to cut thrusters 40 meters above the ground.

The Cost of Software Bugs

A study conducted by the
NIST in 2002 concluded
that software bugs cost
the US economy about
$59 billion each year, or
about 0.6% of the GDP. A
2013 Cambridge University
study estimated a global
annual cost of $312 bil-
lion. . . for the constant de-
bugging activity alone.

After a decade of loyal services, the Mars Global Surveyor was lost in 2006 because
of an error causing data to be written in the wrong memory address.

9

10 Part I. Chapter 1. Formal Tools for Verification

In the medical domain, the Therac-25 radiation therapy machine is infamous for
having killed three patients and balefully irradiated at least three others between
1985 and 1987. Its predecessor, the Therac-20, used a mechanical safety interlock
that prevented the high-powered electron beam from being used directly. The
Therac-25 used a software interlock instead, which a race condition could disable
if the machine’s operator was fast enough. Another race condition, this time in
the alarm routines of a XA/21 energy management system, escalated what was a
minor power failure into the USA & Canada Northeast blackout of 2003, depriving
55 million people of electricity for up to two days. In 1991, a MIM-104 Patriot
anti-ballistic battery correctly detected an incoming Al-Hussein missile, but after
100 hours in operation, cumulative rounding errors had caused its internal software
clock to drift by one third of a second; using this erroneous time to predict the
missile’s trajectory yielded an error of about 600 meters. Unopposed, the missile
hit its mark, killing 28 soldiers.

Range checks, race conditions, access to dead code, dimensional clashes, clock
synchronisation problems. . . Despite their dramatic consequences, those are all
perfectly mundane bugs of the same kinds that plague desktop computers on a
daily basis, from word processors to card games. But when software controls
rockets, missiles, or any sort of critical equipment, bugs are more than mere
annoyances. Increasingly, sophisticated software replaces simpler mechanical
systems and specialised circuits. Embedded systems are everywhere, from pocket
watches to microwave ovens to phones to cars to planes to rockets. But regardless

Total Recall

In 2010, Toyota recalled
133 000 Prius hybrids and
14 500 Lexus hybrids. In
2004–05, Mercedes recalled
almost two million SL500

and E-Class vehicles. Both
cases were warranted by
faults in the braking soft-
ware.

of what it is that the software controls, preventing, handling and fixing bugs is not
rocket science, but computer science.

There are many approaches dedicated to the end-goal of reliable software; this
thesis only concerns itself with the field of verification (or formal methods), whoseverification

formal methods aims can be broadly defined as proving that a given piece of software or hardware
is correct with respect to a given specification. The rise of embedded systems
not only makes such methods more necessary than ever, but also contributes to
create a “target-rich” environment for the field. The high cost of formal methods
is indeed offset by the much higher cost of bugs in embedded systems: even if a
bug is caught in time and causes no damage, recalling and fixing entire lines of
products is prohibitively expensive. Furthermore, embedded systems are often
smaller and more specialised than modern desktop software, which makes them
easier to specify and to check. Thus the current technological advances provide a
strong impetus for software verification.

That field is quite vast, however; this chapter provides a very succinct and mostly
informal overview of the techniques and traditions within which our work is
inscribed.

1.1 Model-Checking: Simple, Symbolic & Bounded

One of the first approaches to program verification is Hoare logic, introduced inHoare logic

[Hoare, 1969] and further refined by many other researchers, notably Floyd and
Dijkstra. The basic idea is to enclose a program code C between two assertions p

1.1. Model-Checking: Simple, Symbolic & Bounded 11

and q expressed in standard mathematical logic, the first being called precondition
and the second postcondition. The resulting triplet is often written {p } C {q } and
interpreted as the statement “if p holds before the execution of C, then q holds
after its execution”. For instance, it holds that {> } x := y { x = y }. A set of axioms
and rules of composition make it possible to cover entire programming languages,
provided that their semantics are clearly defined. Thus the proof of correctness of
a program becomes a mathematical theorem.

A related development is the use of temporal logics in software verification, proposed temporal logics

in [Pnueli, 1977]. Temporal logics were originally developed within and for the
philosophy of human language, but they turned out to be well-suited to the task of
specifying concurrent as well as sequential programs. Properties such as mutual
exclusion, absence of deadlocks and absence of starvation are most conveniently
expressed under those formalisms.

Nevertheless, whatever the kind of logic in use, in the absence of automatic theorem
provers every proof of correctness had to be hand-crafted. This of course required
of lot of time, and often a lot of mathematical ingenuity as well. Despite this,
human error remained frequent, especially given the intrinsically repetitive and
tedious character of many program proofs. Rightly sceptical about the scalability
of manual proofs, Clarke & Emerson combined temporal logic with the state-
exploration approach proposed – but heretofore largely ignored – by Gregor
Bochmann and others. The result was the seminal paper [Clarke & Emerson, 1981]
which, along with the similar but independently researched [Queille & Sifakis,
1982], is considered the foundation of model-checking as it is now understood. It model-checking

is often the case that, when the time is ripe for a good idea, it is discovered
independently and simultaneously by several people; this undoubtedly happened
for model-checking. Although published in 1982, the work of Queille & Sifakis first
appeared as a technical report version in 1981, and is similar in many respects to
that of Clarke & Emerson. In all cases, the problem solved by model-checking is
the following:

Clarke, Emerson and Sif-
akis continued to refine
model-checking over the
years, and jointly received
the Turing award in 2007 for
their overall contributions
to that domain.

Kripke structure

Ó Definition 1.1: Model-Checking Problem

Let M be a finite Kripke structure – i.e. a finite state-transition graph. Let ϕ be
a formula of temporal logic (i.e. the specification). Find all states s of M where
ϕ holds true, i.e. such that M,s |= ϕ.

Oftentimes, the real question is more simply to determine whether M,s0 |= ϕ,
where s0 is singled out as an initial state of the system. Note that the name
“model-checking” refers to determining whether M is a model – in the logical
sense – of ϕ, and not to the dictionary meaning of “model” as an abstraction of the
system under study. [Clarke & Emerson, 1981] presented a fixpoint characterisation
of and model-checking algorithm for a new variety of branching-time temporal
logic called Computation Tree Logic (CTL), first defined and linked to µ-calculus in Computation Tree Logic

CTL[Emerson & Clarke, 1980]. The model-checking algorithm recursively broke down
the formula ϕ into its sub-formulæ, and incrementally labelled each state of the
system according to which subformulæ they satisfied or violated. For instance,
¬ψ1 and ψ1 ∧ψ2 being subformulæ of ϕ, if at pass k a state s was labelled by ψ1

12 Part I. Chapter 1. Formal Tools for Verification

and ψ2, then at pass k+ 1, the state s could and should additionally be labelled by
ψ1 ∧ψ2 and ¬(¬ψ1).

This method, while limited to finite systems, presented great advantages over
manual proofs, the most obvious being that it was entirely mechanical and required
no user input whatsoever – besides the system M and its specification ϕ, obviously.
As a non-negligible bonus, the method could be extended to allow the generation
of counterexamples and witnesses, a functionality first implemented in 1984 by
Michael C. Browne – then a student of Clarke – in his MCB verifier, and a staple of
all model-checkers since then.

It is notable that, in this approach, the system and the specification are handled
very differently. In another viewpoint, often called automata-theoretic model-checkingautomata-theoretic model-checking

and spearheaded in [Aggarwal, Kurshan & Sabnani, 1983], both the system and the
specification are represented by automata; this idea was applied to Linear TemporalLinear Temporal Logic

Logic (LTL) [Pnueli, 1977] in [Vardi & Wolper, 1986]. In this framework, the model-LTL

checking problem becomes formulated in terms of language containment, and the
verification algorithm is reduced to automata-theoretic constructions. First, the
model M is transformed into a Büchi automaton, that is to say a kind of finite-stateBüchi automaton

automaton (FSA) with an acceptance condition adapted so that they work on ω-FSA
ω-word words (infinite words), and thus accept an ω-language. In this step, the labels of

ω-language
the states of M become the new transition labels, and thus a word of this new
automaton BM corresponds to an execution of the system, which is either valid
or invalid wrt. the LTL formula ϕ. Second, ϕ itself is converted into a Büchi
automaton Bϕ, which accepts precisely the set of executions satisfying ϕ. Then the
question of whether the system M is a model of the property ϕ becomes equivalent
to the language containment L(BM) ⊆ L(Bϕ). This is the method used by the
Spin verifier.

In practice one actually
prefers to solve the equiv-
alent problem L(BM) ∩
L(B¬ϕ) = ∅. This is a
technical detail, however.

The greatest limitation of model-checking up to that point was what is known as
the state explosion problem. The number of global states of a system can be gigantic,
especially in the case of concurrent systems involving a great many different pro-
cesses. The original EMC model-checker, which implemented an improved version
of the CTL verification algorithm mentioned above, was used successfully to check
real-world systems with up to 105 states, and further improvements pushed the
limits to 108 states. This is a rather small number, many orders of magnitude below
what can be expected of a highly concurrent system: in general the number of
global states grows exponentially with that of simultaneously executing compo-
nents. In late 1987, McMillan, then a graduate student of Clarke, set out to solve
the problem by replacing the explicit representation of the state-transition graph by
a symbolic one, giving rise to symbolic model-checking [Burch, Clarke, McMillan, Dillsymbolic model-checking

& Hwang, 1992]. To illustrate the gains of symbolic representations, consider for
instance the explicit { 1, 2, 3, . . . , 999, 1000 } (but without the ellipsis), as opposed to
the symbolic {n | n > 1 ∧ n 6 1000 }. More precisely, in symbolic model-checking,
sets of states and transitions – and therefore the Kripke structure – are represented
by propositional formulæ, or equivalently, boolean functions. This opens up a
number of possibilities, the first of which is the use of ordered binary decision dia-ordered binary decision diagrams

grams (OBDD) to represent the formulæ, and therefore, the system. OBDD oftenOBDD

provide extremely compact representations which capture some of the underly-
ing regularities of the system. The use of OBDD enables the application of CTL

1.2. Regular Model-Checking 13

model-checking to systems with up to 1020 states. In 2008, further refinements of
the technique had pushed that number to 10120.

To put this number of
10120 states in perspective,
the estimated number of
atoms in the entire observ-
able universe is about 1080.
Non-trivial concurrent sys-
tems still routinely exceed
such numbers of configu-
rations, however. Put an-
other way, it is less than the
number of configurations of
a system with 50 octets of
memory.

Another successful symbolic technique is bounded model-checking [Biere, Cimatti,

bounded model-checking

Clarke & Zhu, 1999], which takes advantage of the impressive advances in efficiency
of boolean satisfiability problem solvers (SAT solvers) to find counter-examples of fixed

boolean satisfiability problem

SAT solvers

length for LTL safety properties. There are many other related techniques, the
discussion – or even enumeration – of which falls outside the scope of this short
introduction. The interested reader is invited to consult [Clarke, 2008] for a more
complete high-level historical survey of the field from 1980 to 2008.

1.2 Regular Model-Checking

The key assumption underlying model-checking as seen in the previous section
is the finiteness of the state space. This assumption is challenged in many cir-
cumstances, especially by parametrisation. Consider some communication protocol
involving an arbitrary number of simultaneously connected clients; that number is
a parameter of the system. In the absence of an upper bound on that parameter, the
set of possible configurations is infinite, and therefore correctness of the system
cannot be checked by the techniques seen in the last section.

The solution lies again in symbolic representations of sets of states, the difference
with the notion of symbolic model-checking presented in the previous section being
that this time, the sets are infinite. In regular model-checking (RMC) [Kesten, Maler, regular model-checking

RMCMarcus, Pnueli & Shahar, 1997] states are represented by finite words over finite
alphabets, sets of states are regular word languages, represented by finite-state
automata, and the actions of the system are captured by a finite-state transducer
(FST). Among other techniques, this kind of representation lends itself well to a FST

form of verification called reachability analysis, which focuses on safety properties of reachability analysis

the form “no bad state is ever reached”, for some definition of “bad”. A significant
portion of this thesis is inscribed in a closely related context; therefore, to prepare
for further discussions, this section presents and semi-formally justifies the key
intuitions under the challenges facing this family of verification methods.

The general idea of reachability analysis with regular model-checking is to start
with: an initial language S0, that is to say the set of possible initial states of the
system, represented by a finite-state automaton; a set B of so-called “bad states”,
also given as an automaton; and a finite-state transducer T representing the system,
that is to say a relation encoding the transitions from one state to another. Then an
execution of the system looks like this:

S0
T−→ S1

T−→ S2
T−→ S3

T−→ · · · T−→ Sn
T−→ · · · ,

where Sk = T(Sk−1) = Tk(S0) is the regular set of states in which the system
may be after exactly k > 1 transitions by T. Therefore, the question of whether
the system can ever reach a bad state is expressed as “∃k : Sk ∩ B , ∅”?, or
equivalently, “

⋃∞
k=0 Sk ∩B , ∅”?, or also, using the standard notation for transitive

and reflexive closure, “T∗(S0)∩B , ∅”?. It is clear that a purely iterative algorithm,
computing and storing reached states transition after transition, and hoping to get

14 Part I. Chapter 1. Formal Tools for Verification

to a fixed point such that Sn+1 ⊆
⋃n
k=0 Sk, has absolutely no guarantee of ever

terminating. To take the simplest possible example, consider S0 = {ε} and the
following transducer:

T =

a : a

ε : a .

We have {ε}
T−→ {a}

T−→ {aa}
T−→ {aaa}

T−→ · · ·, and thus the state space is infinite,
making even this trivial system unsuitable for the methods of the previous section.
Fortunately, having symbolic representations does afford advantages: in a number
of cases – such as this one – one can mechanically build the transducer T∗, and then
use it to build the automaton accepting T∗(S0) =

⋃∞
k=0 Sk. In the case of our very

trivial example, T∗(S0) =
{
ak
∣∣ k > 0}, and the automaton is of course a .

From that point, answering the original question is two easy computations away:
an FSA intersection and emptiness test.

A crucial point of regular model-checking, however, is that it is not always possible
to compute T∗: it is well-known that FST are closed by finite composition, so
that Tk – and therefore

⋃k
n=0 Sn – can be built for arbitrary k, but are not closed

by transitive and reflexive closure. To be convinced that T∗ may not exist, let us
consider a new transducer, a slight extension of the previous one:

T2 =

a : a

ε : a ε : b

b : b

.

The transitions yield {ε}
T2−→ {ab}

T2−→ {aabb}
T2−→ {aaabbb}

T2−→ · · ·, thus T∗2({ε}) ={
akbk

∣∣ k > 0}. This is the archetype of non-regular languages, so T∗2 cannot be a
FST. The resulting language is still context-free in that example, however even that
property is easily disposed of with another transducer

T3 =

a : a

ε : a ε : b

b : b

ε : c

c : c

,

yielding T∗3({ε}) =
{
akbkck

∣∣ k > 0}, the archetypal non-context-free language.
While it is still context-sensitive, one could very well go even further down the
Chomsky hierarchy, all the way to recursively enumerable languages, for instance
by encoding the transitions of a Turing machine with a transducer. Those examples
should however suffice to convey the notion that the general reachability analysis
problem for infinite-state systems, even in the restricted context of linear languages
and transitions – as defined above, is computationally difficult. It is actually
undecidable [Apt & Kozen, 1986].

The literature follows three main approaches to deal with this fact. The first
approach focuses on identifying special classes of systems (i.e. of transducers) that
do preserve regularity through transitive and reflexive closure. Using such classes,
reachability analysis goes smoothly; however the difficulty lies in expressing the
system to verify in terms of such classes, which is of course not always possible.
Indeed, the example of T2 and T3 shows that one does not need to look very far to
find systems that fall squarely outside of those classes.

1.2. Regular Model-Checking 15

The second approach focuses on checking a greater but bounded number of steps
by using accelerations. The gist of it is to break up the relation defined by T into accelerations

smaller, disjoint chunks Tk such that T =
⊎n
k=1 Tk, the chunks being individually

more digestible than the whole in the sense that for as many k as possible, T∗k is
computable or, failing that, Tnk is pre-computed for some large n. Then, by carefully
choosing this partitioning and the order in which to use the Tk, one may “skip
steps” in the iterative algorithm described above, thus going much farther with the
same computational resources and proportionally increasing the odds of detecting
non-compliant traces, or even of reaching a fixpoint.

Approximated Procedures

A positive approximated proce-
dure is an algorithm – it al-
ways terminates – that an-
swers “yes” or, if it fails
to determine the answer,
“maybe”. A negative approx-
imated procedure would an-
swer “no” or “maybe”.

The third approach, which is the one considered later in this thesis, is the use
of over-approximations in order to obtain a positive approximated procedure. The positive approximated procedure

approximated procedures

negative approximated procedure
idea is that, while the exact computation of T∗(S0) may not be possible – because
this set is not regular, and may even not be computable at all – it is possible to
compute a regular set T(∗)(S0) such that T∗(S0) ⊆ T(∗)(S0). Then if it holds that
T(∗)(S0)∩B = ∅, it follows that T∗(S0)∩B = ∅, and therefore the system is safe. On
the other hand, if there exists a “bad” state b ∈ T(∗)(S0) ∩B, then b may genuinely
be reachable, in which case the system is not safe (bbad ∈ T

∗(S0) on the figure), or
it may simply be an artefact of the over-approximation (bspurious ∈ T

(∗)(S0) \T
∗(S0)

on the figure), signifying nothing.

T∗(S0) T(∗)(S0)bbadbspurious

B

So, when the over-approximation intersects with the set B of bad states, there is
no direct way to determine whether those are spurious or real counter-examples
to the safety of the system. One technique to deal with that is to refine the
abstraction underlying the over-approximation technique and try again. Thus
the usefulness of the approximated procedure is directly dependent upon the
quality of the approximation: the coarser the approximation, the less useful the
method. Every set of real numbers can trivially be over-approximated by R –
and very efficiently at that – but that is hardly helpful. On the other hand, the
finer the approximation, the less likely it is to perform well. Finding suitable
approximations is most often an empirical matter, informed by the exact question
which needs to be answered, the nub of which suggests an abstraction keeping
just the required information and discarding the rest. Considerable research work
has gone into finding good approximations for the transitive and reflexive closure,
and this method has been used successfully to check a large variety of infinite state
systems. See [Abdulla, Jonsson, Nilsson & Saksena, 2004] for a survey of regular
model-checking approaches.

There are many variants of those techniques: the choice of regular sets and finite-
state transducers is absolutely not etched in stone. All that is required is that the
class of languages involved support necessary properties of closure and decidability,
as discussed on [Fisman & Pnueli, 2001], where context-free languages are used
on the last step. As always, choosing appropriate representations is an exercise in
compromise, where algorithmic complexity and decidability considerations must be

16 Part I. Chapter 1. Formal Tools for Verification

balanced against the expressive power required to encode the desired systems and
properties. A widespread variant of regular-model-checking is its generalisation
from regular word languages to regular tree languages [Kesten et al., 1997; Abdulla,
Jonsson, Mahata & d’Orso, 2002], referred to as tree regular model-checking (TRMC).tree regular model-checking

TRMC Most of this thesis is placed within the context of TRMC, thus the notion of tree is
central to what follows.

Before saying more about trees in the next section, let us mention that there are other
techniques dedicated to the study and verification of infinite-state systems. For
instance, well-structured transition systems (WSTS) are transitions systems equippedwell-structured transition systems

WSTS with some well-quasi-ordering over the – infinite – set of states. This ordering
is generally an abstraction of the structure of some particular class of transition
systems such as Petri nets, lossy systems, process algebras, string rewriting systems
and more, which are naturally well-structured. Furthermore, any transition system
can be well-structured [Finkel & Schnoebelen, 2001, Thm. 11.1]. If certain proper-
ties are satisfied, many useful problems become decidable, such as termination,
boundedness, eventuality, coverability, simulation of and by a finite automaton,
etcetera [Finkel & Goubault-Larrecq, 2012, Sec. 3.1].

1.3 Tree Automata in Verification

Terms, trees, tree languages and tree automata will be formally introduced in
the next chapter. This section only provides a first intuition about what they are
and why they are useful. We shall also briefly steer the discussion away from
model-checking by pointing out other kinds of formal verification that may be
carried out using a formal notion of trees. Let us proceed by example: below are
three different representations of the same tree t:

t = f(a1, g(a2, a3)) = f

g

a3a2

a1

= f
g

a3

a2

a1
.

The first representation is what is usually called a term; we equate terms and
trees in this thesis, although a distinction exists, which will be made clearer in
the next chapter. The second is the usual, top-down representation of trees in
computer science; children are ordered left-to-right. The third is a slightly less
usual horizontal representation, where the children are ordered top-to-bottom.
Trees generalise the words recognised by finite-state automata: for instance the
word abc can be represented as the tree a(b(c(⊥))), using ⊥ as an arbitrary leaf.
As trees generalise words, so do tree languages generalise word languages, and
finite tree automata, finite-state word automata.

The jump from words to trees affords extended expressive power, in that they allow
simple representations of hierarchical structures. In the context of model-checking,
this is most useful to encode systems which may be intrinsically simple, but which
operate on a non-linear topology. Consider for instance a simple token-passing

1.3. Tree Automata in Verification 17

protocol between processes, serving as something of a running example in this and
the next chapter. Processes are organised according to a natural tree-like topology,
with each process communicating directly with its parent and children, and only
with them. The aim of our little protocol is to pass the token (of which there is and
must always be exactly one) from whichever process holds it at the moment, to
the most ancient process. Below is an example execution, with • representing the
process with the token, and ◦ any process without the token:

◦

◦

◦

◦◦

◦

◦◦

•

→ ◦

◦

◦

◦◦

◦

◦•

◦

→ ◦

◦

◦

◦◦

•

◦◦

◦

→ •

◦

◦

◦◦

◦

◦◦

◦

.

It should be clear that such a protocol is extremely simple, yet regular model-
checking, as defined on word languages, is incapable of expressing operations such
as these. Going beyond regular word languages might solve the problem, but at an
unreasonable cost: on top of representing the system, one would need to encode its
topology in its states, with all the problems that supplementary complexity entails.
Using trees instead of words is much more convenient, and, as we shall see, tree
automata have all the nice closure properties required, while keeping generally
manageable decision complexities. The very common occurrence of hierarchical
structures in verification makes those techniques essential. Indeed, as best we
could find in the literature, TRMC is not a generalisation that was thought of and
developed after RMC, but instead it seems that they both originate from the same
paper [Kesten et al., 1997], highlighting the natural need for tree-based methods.

The applications of tree automata to verification extend beyond the context of
TRMC, though. An increasingly popular domain making extensive use of tree
formalisms is that of so-called (semi-)structured documents, web databases etcetera,
of which XML is one of the best and richest exemplars. Let us consider the
following XML document:

<crew>

<team name="Command">

<member> Kirk </member> <member> Spock </member>

<starship> NCC-1701[-A] </starship>

</team>

<team name="Science">

<member> Spock </member> <member> McCoy </member>

<starship> NCC-1701[-A] </starship>

</team>

<team name="Command">

<member> Picard </member> <member> Riker </member>

<starship> NCC-1701-D </starship>

</team>

</crew>

At its core, the entire structure of any XML document is that of a tree. Each node
has a “tag”, or “label”, and is classically referred to in XML parlance as an element.
A node can have any number of children, the order of which is significant. Finally,

18 Part I. Chapter 1. Formal Tools for Verification

crew

team

starship NCC-1701-D

member Riker

member Picard

name Command

team

starship NCC-1701[-A]

member McCoy

member Spock

name Science

team

starship NCC-1701[-A]

member Spock

member Kirk

name Command

Figure 1.1: Tree representation of “Star Trek” XML document.

the leaves of the tree must be text strings. Figure 1.1 gives the tree representation
of the example document. The alert reader will notice that we cheat a little by
representing attributes simply as other elements; attribute processing is actually a
little tricky because they are in reality unordered and non-duplicable. This thesis
is not at all concerned with the details of XML processing, however, and minutiæ
such as attributes and namespaces will be abstracted in the discussion. These little
omissions notwithstanding, the very few constraints given above suffice a priori to
describe XML documents. But the main selling point of XML is that, on the basis
of this very simple structure, more precise constraints – called schemas – can beschema

defined and enforced as needed. A schema defines which elements are expected,
in what order, how many children they may have, and so forth. In that respect, a
schema defines a data format, and XML itself is less of a data format and more of a
meta-data format, or a format of data formats. For added recursive fun, schemas
themselves may be written in XML.

Taking a step back, what a schema defines is essentially a means of either accepting
or rejecting trees. In other words, a schema defines a tree acceptor, and herein
lies an important connexion between XML and tree automata theory: sufficiently
expressive schemas can be encoded into finite tree automata. Thus, asking whether
a given document belongs to some document format is equivalent to asking
whether it satisfies some schema, which is in turn equivalent to testing whether
the document’s tree is a member of the language accepted by some tree automaton.
With this correspondence in mind, a vast number of common questions and
manipulations on structured documents are immediately expressed in terms of tree
languages, and thereby in terms of closure constructions and decision problems on
tree automata. By way of example, let S0, S1, . . . be schemas, represented as tree
languages; then a database aggregator receiving data from sources conforming to
either S1 or S2 will check the data against the schema S3 = S1 ∪ S2. Suppose now
that the aggregator needs to consider only data that satisfies certain constraints,
given by another schema S0: then it actually needs to check conformance to S0∩S3.

1.4. Outline and Contributions 19

One may then ask whether S0 is actually a reasonable requirement, in the sense
of it being compatible with the format of the input data: this amounts to the non-
emptiness test S0 ∩ S3 , ∅. If the intersection is empty, it means that no possible
input data may conform to the aggregator’s schema; which is probably a sign that
it should be amended. Should the aggregator finally decide to amend the old S0
schema into the new and improved S ′0, checking whether this new format is liable
to invalidate old data corresponds to the containment check S0 ⊆ S ′0. The list of
applications goes on. While some of those problems look easy enough that one may
cynically wonder why have a theory at all, others are quite difficult. For instance,
complexity theory reveals containment checks, and consequently tests of safe
evolution of a schema, type-checking etc, to be intrinsically expensive. Designing
systems capable of answering those questions for real, highly voluminous data
therefore requires careful abstract analysis. To conclude this short introduction,

Containment for finite
tree automata is Exp-
Time-complete. Decision
problems are discussed in
the next chapter.

XML processing is one of those fields where theory and practice are very closely
and visibly coupled. A reader interested in a very extensive survey of tree-automata
theoretic foundations for XML processing is invited to consult [Hosoya, 2010].

1.4 Outline and Contributions

This thesis revolves around the use of tree automata – in their various incarnations
– not only for the verification of systems, but also for that of queries and other
aspects of semi-structured documents or databases. The primary focus of our
research is the verification of infinite-state systems. More precisely, the end-goal
is to develop a fully functional verification chain based on a specific method of
tree model-checking, at the confluence of tree regular model-checking, reachability
analysis and rewriting logic.

The idea under this method was originally presented with hand-crafted proofs on
examples in [Courbis, Héam & Kouchnarenko, 2009]. It combines aspects of tree
regular model-checking and reachability analysis with the verification of properties
expressed in temporal logic. Our goal is to generalise this process to a fragment of
LTL, and to accomplish this we use and study tree automata with global equality
constraints, a powerfully expressive model of tree automata originally developed
in the context of logics for XML queries.

A secondary goal for this thesis is the improvement of algorithmic methods for
tree-walking automata, a computational model with strong connections to semi-
structured documents and, in particular, their navigational languages.

Part II forms the core of our contributions, as it deals with the model-checking
method itself. It provides a positive answer to the question of whether the idea of
[Courbis et al., 2009] can be generalised and extended into an automatic verification
framework for a fragment of linear temporal logic. This is done by means of
two distinct translation steps, for which we provide sets of automatic translation
rules. The temporal specification is first converted into an intermediate form – a
formula of propositional logic whose atoms are comparisons of rewrite languages,
which we call a rewrite proposition – disregarding all properties of the system. Then,
the intermediate form is turned into a (possibly) approximated procedure – the

20 Part I. Chapter 1. Formal Tools for Verification

general problem is undecidable in general – based on tree automata with global
equality constraints; in this step, the specific properties of the system are taken into
account, and affect the quality of the resulting approximated procedure. As a
means of solving the rather difficult problem of the mechanical translation of a
temporal specification into an equivalent rewrite proposition, we introduce the
notion of signatures, which provide a linear model of some temporal formulæ. The
part ends with a discussion of the fragment of linear temporal logic covered by
our methods, in terms of the popularity – according to surveys – of the classes of
properties which the automatic method may be able to handle. We also scour the
literature for systems of interest modelled as term-rewriting systems, and examine
their properties with respect to the second step. Some of the material in this part
has been published in [Héam, Hugot & Kouchnarenko, 2012a], and most of the
remainder is currently in submission [Héam, Hugot & Kouchnarenko, 2013].

The order of the authors
in our publications is alpha-
betical.

The use of tree automata with global equality constraints (TAGE), superior in
expressive power to the standard models of bottom-up tree automata, improves the
precision of the approximations generated by the verification framework. However,
this enhanced expressive power comes at the cost of high algorithmic complexities
for many important decision problems. Furthermore, this is a relatively new class
of automata and, although they have rich theoretical connections and multiple
applications to XML and model-checking, there have been, to the best of our
knowledge, no studies beyond our own geared towards achieving efficient decision
procedures for them.

Part III focuses on TAGE and their decision problems; the aim is to obtain efficient
algorithms for some common and useful decision problems, such as membership
and emptiness tests, as well as to improve our general understanding of what it is
that makes those problems complex. We provide a SAT encoding for membership
testing (a NP-complete problem) and study the effect of bounds on the number of
constraints, showing membership to be polynomial for any bound, and emptiness
and finiteness to be at full complexity with as few as two constraints. The study on
bounds has been published in [Héam, Hugot & Kouchnarenko, 2012c], and the SAT
encoding in [Héam, Hugot & Kouchnarenko, 2010b]. In the same domain, we have
also worked on providing heuristics and random generation schemes for emptiness
testing (ExpTime-complete); while this work does not appear as part of this thesis,
some of it is available as a research report [Héam, Hugot & Kouchnarenko, 2010a].

Part IV is linked to another kind of verification using tree automata, in relation
to semi-structured documents. The focus in this part is a study of tree-walking
automata (TWA), especially with respect to their conversion into bottom-up tree
automata. Introducing the notion of tree overloops enables us to considerably reduce
the size of the generated automata in the deterministic case, roughly from 2x

2
to

2x logx. Furthermore, we present efficient algorithms for deciding membership,
and a polynomial positive approximated procedure – generalisable to a class of
increasingly precise such procedures – for emptiness testing, the decision of which
is ExpTime-complete. This scheme is tested against uniformly random generated
TWA, and turns out to be surprisingly accurate. This work has appeared in
conference proceedings [Héam, Hugot & Kouchnarenko, 2011] and in an extended
journal version [Héam, Hugot & Kouchnarenko, 2012b].

1.4. Outline and Contributions 21

The next chapter introduces the technical notions and notations necessary for all
parts of the thesis.

Chapter 2
Some Technical Preliminaries

Contents
2.1 Pervasive Notions and Notations 23

2.2 Ranked Alphabets, Terms, and Trees 24

2.3 Term Rewriting Systems . 27

2.4 Bottom-Up Tree Automata . 30

2.5 Tree Automata With Global Constraints 35

2.6 Decision Problems and Complexities 37

—Where we are buried under definitions and examples.

W
hereas the last chapter was geared towards a general and historical
view of the field, this one provides a dryer formal exposition of the

relevant technical concepts. Its contents are general prerequisites for
all parts of this thesis – though each part puts emphasis on a different

domain – and as such, should not be skipped. This being said, a reader already
well-versed in the subject matters might be content merely to skim over it, in
which case the index and marginal annotations should prove sufficient to find
specific definitions, keeping in mind that less than usual mathematical symbols and
notations do appear at the beginning of the index. In addition to what follows, the
opening chapter of each part contains further preliminaries and historical as well
as state-of-the art surveys relevant only to that part, making the present chapter
necessary, yet not sufficient. The dependencies are summarised in Figure 2.1, where
the styles of the nodes correspond to

Contribution Original Survey Technical Preliminaries

.

A large proportion of the material presented here about trees and bottom-up tree
automata is greatly inspired by [Comon, Dauchet, Gilleron, Löding, Jacquemard,
Lugiez, Tison & Tommasi, 2008], and the reader is encouraged to refer to this book
for a much deeper presentation of those topics. The remainder is either common
scientific folklore or indebted to specific papers, in which case they are generally
cited towards the end of the sections that make use of them. Other references
include [Dershowitz & Jouannaud, 1990; Kirchner & Kirchner, 1996; Baader &
Nipkow, 1998] for term-rewriting systems.

For convenient reference, below is a small table of usual notational choices; theynotational choices

are used quite uniformly throughout the document, though Part II recycles some
notations.

22

2.1. Pervasive Notions and Notations 23

10 Summary
& Perspectives

1 Formal Tools
for Verification

3 TRS for
Model-Checking

2 Technical
Preliminaries

5 Brief History
of Constraints

4 Approx. LTL
on rewrite Seqs.

7 SAT Encoding
for Membership

6 Bounding
Constraints

9 (Over-)Loops
Complexity

8 Tree Automata
for XML

Figure 2.1: Reading dependencies between chapters.

A, B, C automata of all kinds a, b, c constant symbols
t, u, v trees, subtrees f, g k-ary symbols, k > 1
p, q automata states σ symbols, substitutions
w, v words ρ run of an automaton
α, β nodes, positions, ε empty word
σ, ρ signatures (Part II) λ empty word (Part II)

2.1 Pervasive Notions and Notations

Sets, & Intervals. Inclusion is written ⊂ if it is strict, and ⊆ otherwise. The set
N of the natural integers is extended in the usual way into N = N ∪ {+∞}, with
+∞ > x for all x ∈ N. For any k ∈ N, we let Nk = [k,+∞) ∩ N and Nk = Nk ∪ {+∞}.
For n,m ∈ Z, the integer interval [n,m] ∩ Z is written Jn,mK, with the convention Ji, jK: integer interval

that Jn,+∞K = [n,+∞) ∩ Z. The powerset of S is written ℘(S). The disjoint union
of two sets X and Y is written X]Y, and is the same object as X∪Y, with the added X] Y: disjoint set union

underlying assertion that X ∩ Y = ∅, or that X and Y can trivially and safely be
chosen disjoint.

Relations & Functions. Let R ⊆ S2 be a binary relation on a set S; we denote by R+,
R∗ and R≡ its transitive, reflexive-transitive, and equivalence closure (symmetric- R≡: equivalence closure

reflexive-transitive), respectively, and we may write xRy for (x, y) ∈ R. Unless
explicitly stated otherwise – e.g. page 169 – reflexive closures are taken on the
domain dom(R) = { x | ∃y : xRy or yRx }, even if R has been introduced as a relation domain of a relation

on the larger set S. A partial function f : D→ C from a domain D to a codomain C partial function

is a relation f ∈ ℘(D× C) with the functional property: ∀x ∈ D;a, b ∈ C; [(x, a) ∈

f ∧ (x, b) ∈ f]⇒ a = b. The set of partial functions from D to C is written D9 C.
A total function f is a functional relation such that ∀x ∈ D, ∃a ∈ C : (x, a) ∈ f. The total function

set of total functions is written D→ C or CD. The domain of a function f : D→ C domain of a function

is defined differently from that of the underlying relation, as the largest subset
X ⊆ D such that the restriction f|X is total.

24 Part I. Chapter 2. Some Technical Preliminaries

Function Application, Substitutions. Function application is most often denoted
by f(x), meaning the application of f on x. Occasionally, and in particular when
there is a need to distinguish function application from the construction of terms,
this is simply written f x, with a thin typographical space. The image of a subsetf(x), fx: function application

S ⊆ dom f is written directly as the application of f on S, unless there is a risk
of confusion. The postfix application notation common for substitutions in the
literature – about term rewriting in particular – is not used in this document,
with one exception: in relatively informal contexts, substitution is written in the
commonplace notation ϕ[v/X], meaning “v replaces X in the expression ϕ”. In{X 7→ v }ϕ, ϕ[v/X]:

substitution the usual notation of section 2.3[p27], this would become {X 7→ v }ϕ. We let, for all
x ∈ R, |x|0 =

1
2(x+ |x|).|x|0: positive or zero

Quotient Sets. Let (∼) ⊆ S2 be an equivalence relation over a set S; that is to say,
∼ is reflexive, symmetric and transitive. Given an element x ∈ S, the equivalence
class of x with respect to ∼ is the set [x]∼ = {y ∈ S | x ∼ y }. The quotient set of S with[x]∼: equiv. class of x wrt. ∼

respect to ∼ is the set S/∼ = { [x]∼ | x ∈ S } of all ∼-classes.S/∼: quotient set of S by ∼

Words, Kleene Closure. Let A be an alphabet, in other words, a set of symbols,
or letters. Then the Kleene Closure over this alphabet is the set of finite words overKleene Closure

A. The empty word is written ε (most of the time), or λ (in Part II[p41], which hasλ, ε: empty word

specific notational needs). The concatenation of two words v,w ∈ A is traditionally
represented either implicitly by the juxtaposition vw, or explicitly as v.w. For the
most part we shall favour the latter convention for arbitrary words, and the first for
letters. The length of a word w is written #w.#w: length of wordw

2.2 Ranked Alphabets, Terms, and Trees

The previous chapter touched briefly upon the notions of term and tree. In this
section we shall define both notions properly, see that they can be considered equiv-
alent in the context which interests us, and then promptly forget the distinction
between the two: they will be conflated in the rest of the document. Just as words
are defined over a given alphabet, so are terms defined over a ranked alphabet. Let Aranked alphabet

Varieties of Trees

What we refer to simply
as trees should more pre-
cisely be called finite ordered
ranked trees. Trees in general
may be infinite, unranked,
or both. The alphabet need
not be finite either. This
being said, most of those
possibilities are outside the
scope of this thesis. The
same applies to terms. Un-
ranked trees are presented
section 8.2.1[p148].

be a finite alphabet, i.e. , a finite set of symbols, and arity : A→ N the arity function;

arity function

intuitively, this function associates to a functional symbol σ ∈ A the number of
arguments which it may take. The couple (A, arity) then forms a ranked alphabet.
By abuse of notation the arity function will most often be kept implicit, and A

will stand for the ranked alphabet. The arities will then be given together with
the symbols using the shorthand σ/k for a symbol σ of arity k, and σ1, . . . , σn/k
for a list of symbols σ1/k, . . . , σn/k. The set of all symbols of A whose arity is k
is written Ak = {σ ∈ A | arity(σ) = k }. A symbol of arity k is said to be k-ary, or
nullary, unary, binary, and ternary in the cases where k = 0, 1, 2, and 3, respectively.
Alternatively, one may speak of adicity instead of arity, and the symbols are then
called k-adic, or medadic, monadic, dyadic, and triadic, for k = 0 . . . 3. Nullary
symbols are also referred to as constant symbols, or constants, and it is convenient to
assume of any ranked alphabet A that it contains at least a constant, that is to say,
A0 , ∅.

The set of terms over the ranked alphabet A is written T(A), or simply T whenterm

2.2. Ranked Alphabets, Terms, and Trees 25

specifying the alphabet explicitly is not useful, and defined inductively as the
smallest set such that

(1) A0 ⊆ T(A) and

(2) if k > 1, σ ∈ Ak and t1, . . . , tk ∈ T(A), then f(t1, . . . , tk) ∈ T(A).

In the context of terms, we sometimes find it convenient to write a constant a as a(),
seeing it as having an empty list of children. This has the advantage, besides pure
consistency of expression, to fuse base and inductive cases into one. For instance,
the inductive definition given above can now be expressed in one statement:

∀k, σ ∈ Ak ∧ t1, . . . , tk ∈ T(A) =⇒ σ(t1, . . . , tk) ∈ T(A) .

Defining trees requires a bit more work. A tree t over a ranked alphabet A is a tree

mapping from a finite non-empty set S ⊆ N∗ into A. Each element α ∈ S is called a
node, and S itself is called the tree structure, or set of positions. There are structural set of positions

constraints over S in order for the mapping to qualify as a tree. As a first requisite,
it must be prefix-closed, which is to say that for any word w ∈ S, all prefixes of w are prefix-closed

also in S. Specifically, whenever S contains a position α = k1k2 . . . kn−1kn, then
it must also contain β = k1k2 . . . kn−1. By analogy with family trees, β is said to
be the father, or parent, of α. Additionally, S must be closed with respect to little
brothers, which means that it must also contain the positions β.k, for all 0 6 k 6 kn.
While this is the most classical definition, in practice it is often more convenient
to index nodes from 1 instead of 0, in which case this definition is altered in the
obvious way for S ⊆ N∗1; this is the convention we shall take in most of this thesis.
As a last condition, arities must be observed, which means that for any position
α, writing a = arity(t(α)), it must hold that α.a ∈ S but α.(a + 1) < S. In clearer
words, combining the last two conditions, the number of children of a node α is
equal to the arity of the symbol at position α.

It is then easy to see that, as announced, terms can be viewed as trees and vice-versa.
Indeed, let us define the set of positions P(t) of any term t ∈ T(A); the definition is P(t): positions of a term

inductive on the structure of terms, as follows:

(1) P(a) = {ε} if a ∈ A0, and

(2) P
(
f(t1, . . . , tn)

)
= {ε} ∪ {k.αk | k ∈ J1, nK, αk ∈ P(tk) }, in general.

Note that “f(t1, . . . , tn)”
entails f ∈ An, and that,
with the a = a() conven-
tion, (2) implies (1).

Then, if t is a term, a corresponding tree γ(t) can be built as a mapping from P(t)

to A simply by generalising the above construction so as to yield both the position
and the corresponding symbol:

γ
(
σ(t1, . . . , tn)

)
=
{
(ε 7→ σ)

}
∪
{
(k.αk 7→ σk)

∣∣ k ∈ J1, nK, (αk 7→ σk) ∈ γ(tk)
}

,

and the construction can easily be inverted. This justifies the convention taken
throughout this document to speak interchangeably of terms and trees, taking
whichever viewpoint is the most convenient at the moment. For instance, if t is a
term, the symbol at position α is written simply t(α) instead of γ(t)(α); in fact, we
can forget the notation γ, for it will never have to be written explicitly again. Let
us note then that P(t) and the domain dom(t) become two different notations for
the same object, although in the context of terms and trees the former notation will
systematically be preferred. Let us not forget, as was mentioned in the last chapter,

26 Part I. Chapter 2. Some Technical Preliminaries

that trees are often represented graphically; representing the positions as well as
the symbols, we have for instance, for t = f(f(a, a), g(a, b)),

t = (ε 7→ f)

(2 7→ g)
(22 7→ b)

(21 7→ a)

(1 7→ f)
(12 7→ a)

(11 7→ a)

.

The existence of this tree implies that a ∈ A0 and f, g ∈ A2; arities being fixed,
it is not stricto sensu possible to have, say, f(f(a, a)), because then f would be
both unary and binary. Such an expression should be interpreted as f(f ′(a, a)),
with a/0, f/1 and f ′/2. To illustrate the functional view of trees, we have on this

Note: the trees in the pre-
vious chapters, such as the
one below, were given by
abuse of notation: there is a
version of • and ◦ for each
arity with which they are
used. ◦

◦

◦

◦◦

◦

◦•

◦

example t(ε) = t(1) = f and t(22) = b, and the positions are dom(t) = P(t) =

{ ε, 1, 11, 12, 2, 21, 22 }.

There remains to introduce a bit of vocabulary, and some common operations on
trees. The empty position ε, which appears in the structure of all trees by definition,
is called the root of the tree; nodes that have children are called internal nodes, androot

node that do not are called leaves. The terminology of computer-science being
botanically backwards, “up” and “top” refer to the root, while “down” and “bottom”
refer to the leaves. Given a tree t, the parent function parent(·) : P(t) \ {ε} → P(t)parent(·): parent function

maps any child node α.k to its father α. The height of a tree is written |t| and
defined as |t| = 1 + maxα∈P(t) #α, while its size is denoted by ‖t‖ and defined by|t|: height of tree t

‖t‖ = |P(t)|. Positions are equipped with a partial order E, such that α E β if and‖t‖: size of tree t

only if β is a prefix of α. When this is the case, we say that α is under β, and β isα E β: α under β

an ancestor of α. Two positions α and β are incomparable, written α f β, if neitherα fβ: incomparable positions

α E β nor β E α. One can extract a subterm (or subtree) from a given term: letting
t ∈ T(A) and α ∈ P(t), the subterm of t at position α is denoted by t|α, and definedt|α: subtree of t under α

as follows:

(1) P(t|α) = {β | α.β ∈ P(t) }

(2) for any β ∈ P(t|α), t|α(β) = t(α.β).

By extension of the ordering of positions, terms are submitted to a partial order,
also denoted by E, such that u E t if and only if u is a subterm of t, that is to say iff
there exists α ∈ P(t) such that u = t|α. This order is compatible with the ordering
on positions, in the sense that for all α,β ∈ P(t), we have α E β ⇒ t|α E t|β.
The induced strict orders are additionally defined in the usual way, i.e. x C y iff
x E y and x , y, regardless of whether x and y are both terms or both positions. Itα C β: α strictly under β

must be kept in mind that, taking the functional point of view on trees, a subtree is
not simply a functional restriction of the original tree mapping. To illustrate this,
let us go back to the example above; we have

t|2 = (ε 7→ g)

(2 7→ b)(1 7→ a)

and t|2 , (1 7→ g)

(12 7→ b)(11 7→ a)

.

The second object, although represented as a tree, is not actually a tree according
to our definitions.

2.3. Term Rewriting Systems 27

2.3 Term Rewriting Systems

Once data is arranged into trees, it is natural to rearrange it according to certain sets
of properties, expressed as (bidirectional) equations or (unidirectional) rules. This is
the gist of any of the day-to-day algebraic manipulations on arithmetic and logical
formulæ. Consider for instance the associative, commutative, and annihilation
properties of logical conjunction:

∀x, y, z; x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∧ y = y ∧ x, ⊥ ∧ x = ⊥ .

It is immediate that all formulæ of propositional logic can be represented as terms,
as can any mathematical or logical expression: it suffices for an operator to be
translated into a symbol of corresponding arity. Discounting variables for now,
expressions of propositional logic with the traditional operators are therefore terms
over the alphabet A = {∧,∨/2,¬/1,>,⊥/0 }. Under that light, the properties above
become transformations on trees, or equivalently, relations on trees. Expressed in
those terms, the annihilation property ⊥ ∧ x = ⊥ may be seen as the symmetric
relation R ⊆ T(A)2, such that

∧
>

⊥
R ⊥, ∧

⊥

⊥
R ⊥, ∧

∧
>

>

⊥

R ⊥, . . .

In particular, two successive applications of this relation enable us to write state-
ments such as

∧

∨

¬

⊥

⊥

∧

¬

⊥

⊥

R ∧

∨

¬

⊥

⊥

⊥

R ⊥ ,

which accounts for the lazy evaluation of a specific formula. This section introduces
term rewriting systems (TRS), that provide a uniform framework in which such rela- term rewriting systems

TRStions are expressed and studied, and constitute a general, Turing-complete model
of computation. The starting point is the combination of the notions of equations
on terms (such as the annihilation property), and of algebraic manipulation. While
an equation is bidirectional (by symmetry of equality), any isolated step of a com-
putation actually manipulates symbols using only one direction of the equality. In
both steps of the example above, annihilation is used in the direction “⊥ ∧ x→ ⊥”,
which, once encoded as trees, reads “∧(⊥, x)→ ⊥”. This is called a rewrite rule, and
there remains to assign a precise meaning to the notation. It is clear that x plays
the role of a free variable standing for any possible subterm, as in the second step
of the example, where x stands for ∨(⊥,¬(⊥)). If such a variable appears more
than once, as in the commutative rule ∧(x, y)→ ∧(y, x), then it should stand for
identical subterms wherever it appears. Furthermore, the first step of the example
illustrates the fact that such rules do not only operate on the entire tree, but on
any suitable subtree as well: indeed, it is the subtree at position 1 that is changed
in that step, the rest of the tree – the context – remaining untouched. Replacing a

28 Part I. Chapter 2. Some Technical Preliminaries

subterm by another is a common operation, with its own notation: let t and u be
terms and β ∈ P(t) some position, the result of the replacement by u of the subterm
of t at position β is the tree t[u]β defined byt[u]α: subtree replacement

(1) t[u]ε = u,

(2) f(u1, . . . , un)[u]k.α = f(u1, . . . , uk−1, uk[u]α, uk+1, . . . , un) .

There remains to clarify the role of variables in rules such as ∧(⊥, x) → ⊥. Note
that, according to the definition of terms seen in the previous section, ∧(⊥, x) is not
a term of T(A), since x < A. The set T(A) as defined is more precisely known as the
set of ground terms over A, to indicate that it does not use any variables, althoughground terms

we rarely need to make that distinction explicit in this thesis. Variables are simply
special constant symbols from a set X, chosen disjoint from A, and terms with
variables are thus ground terms of T(A] X). Despite being otherwise ordinary
nullary symbols, variables do hold a special status in several important operations
on trees which we have yet to define; in order to make that status clear, terms over
the alphabet A with variables from X will be written T(A,X). Furthermore, it is
convenient to consider the set of variables X to be countably infinite so as never to
“run out”. The set of variables appearing in a term t ∈ T(A,X) is written V(t), and
defined asV(t): variables of a term

V(x) = {x} if x ∈ X and V(f(t1, . . . , tn)) =
n⋃
k=1

V(tk) if f ∈ An .

A term t is linear if each variable of V(t) occurs only once in t. The prime purposelinear term

of a variable is of course to be replaced by a term, an operation called substitution.substitution

Strictly speaking, a substitution σ is a mapping from X to T(A,X) such that all
but finitely many variables are invariant; in other words, Card({ x ∈ X | σx , x }) ∈

N. This set { x ∈ X | σx , x } of variables affected by the substitution σ is called
its domain domσ. As a shorthand, a substitution σ can be written as the set
{ x 7→ σx | x , σ(x) }. When the co-domain of σ is the set of ground terms T(A),
it is called a ground substitution. Substitutions are transparently extended to
endomorphisms on T(A,X), as follows:

σ f(t1, . . . , tn) = f(σ t1, . . . , σ tn), ∀f ∈ An, t1, . . . , tn ∈ T(A,X) .

The set of substitutions on T(A,X) is written S(A,X), and that of ground substitu-
tions on T(A) is written S(A). With this, we can at last define rewrite rules formally:
a rewrite rule is a couple (l, r) ∈ T(A,X)2 such that V(l) ⊇ V(r) and l < X, which isrewrite rule

traditionally written l→ r. Following this notation, we call l the left-hand side ofThe l < X condition can
be lifted, but it is of-
ten taken in some contexts,
such as completion algo-
rithms; cf. 3.2.2[p46].

the rule, and r the right-hand side. If l is linear, then the rule is called left-linear,
and if r is linear, it is called right-linear. A rule that is both left- and right-linear

linearity of rules

is called linear. A rewrite system R is a set of rewrite rules, and determines a
corresponding rewrite relation →R, written → when there is no ambiguity as to
which rewrite system is involved. The rewrite relation is a binary relation betweenrewrite relation

ground terms, and should not be confused with the “→” of rewrite rules, although
it shares its notation with them; it is determined as follows:

t→R s ⇐⇒ ∃α ∈ P(t), (l→ r) ∈ R, σ ∈ S(A) : t|α = σ l and s = t[σ r]α .

In clear, a term t is rewritten into a term s by R if there is some subterm of t
that matches the left-hand side of some rule in R, and the result s is obtained by

2.3. Term Rewriting Systems 29

replacing that subterm within t by the right-hand side of the rule. The variables
are replaced by the corresponding subterms in the match of the left-hand side. To
summarise this with an arguably pithier, more memorable formula,

∀t ∈ T(A), (l→ r) ∈ R, σ ∈ S(A), α ∈ P(t) : t[σ l]α →R t[σ r]α .

When a term t ∈ T(A) cannot be rewritten, that is, when there does not exist any
s ∈ T(A) such that t→R s, it is called irreducible, or in normal form with respect to normal form

R. The set of terms obtained through one step of rewriting of the ground language
` ⊆ T(A) by R, is written

R(`) = { s ∈ T(A) | ∃t ∈ ` : t→R s } ,

and a symmetric notation exists in the reverse direction:

R−1(`) = { t ∈ T(A) | ∃s ∈ ` : t→R s } .

The sets of R-descendants R∗(`) and R-ancestors R−1∗(`) (resp. R+(`) and R−1+(`))
are defined in the same way, using the reflexive and transitive closure→∗R (resp. the
transitive closure →+

R) instead of →R. A TRS R is called terminating, strongly terminating rewrite system

normalising, or noetherian, if there is no infinite sequence

t1 →R t2 →R · · · →R tn →R · · · .

A TRS R satisfies the Church-Rosser property if the following diagram holds: Church-Rosser property

u v

t

∗

∗ ∗
≡ ∀u, v; u→≡R v⇒ ∃t : u→∗R t ∧ v→∗R t .

This is known to be equivalent to the confluence property: confluence property

s

u v

t

∗ ∗

∗ ∗

≡ ∀s, u, v; s→∗R u ∧ s→∗R v⇒ ∃t : u→∗R t ∧ v→∗R t . (2.1)

Less general modes of rewriting can be defined as restricted TRS; for instance
semi-Thue systems, or word rewriting systems, can be defined as rewrite systems on word rewriting systems

a unary alphabet A (i.e. A = A1) such that all rules l → r satisfy l, r ∈ T(A1, {x}).
This corresponds of course to the unary encoding of words into terms glimpsed
in the previous chapter – to be seen again in the next section – and yields rules of
the form a1(· · ·an(x) · · ·)→ b1(· · ·bm(x) · · ·), which are written more simply as
a1 . . . an → b1 . . . bm.

In this thesis, and most especially in Part II, TRS are used to encode the transitions
of systems of interest, in preference to other commonly-used formalisms such as
tree transducers. Recall for instance the simple token-passing protocol evoked at

30 Part I. Chapter 2. Some Technical Preliminaries

the end of the previous chapter; on binary trees, its transitions are expressed by the
following rewrite system on the alphabet { •, ◦/2, •, ◦/0 }:

◦(•, ◦)→ •(◦, ◦), ◦(•(x, y), ◦(x ′, y ′))→ •(◦(x, y), ◦(x ′, y ′)),
◦(◦, •)→ •(◦, ◦), ◦(◦(x, y), •(x ′, y ′))→ •(◦(x, y), ◦(x ′, y ′)),

◦(•(x, y), ◦)→ •(◦(x, y), ◦), ◦(•, ◦(x, y))→ •(◦, ◦(x, y)),
◦(◦(x, y), •)→ •(◦(x, y), ◦), ◦(◦, •(x, y))→ •(◦, ◦(x, y)) .

The domain of term rewriting is extremely rich and fundamental; it shares a
significant part of its vocabulary, results and history with λ-calculus. The reader
interested in surveys of rewriting theory is invited to consult the books [Dershowitz
& Jouannaud, 1990; Kirchner & Kirchner, 1996; Baader & Nipkow, 1998].

2.4 Bottom-Up Tree Automata

As was mentioned in the previous chapter, trees generalise words; we gave the
example of the word abc, and suggested a(b(c(⊥))) as a possible tree encoding of
it. In the newly acquired vocabulary of the previous section, it is now understood
as a tree over the ranked alphabet {a, b, c/1,⊥/0 }. There are endless varieties of
other possible encodings, of course, from the asymmetric a(b(c)) to the classic
LISP-style list encoding. To recapitulate,

a

b

c

⊥

, a

b

c

and cons

cons

cons

nilc

b

a

,

respectively over {a, b, c/1,⊥/0 }, {a, b/1, c/0 } and {a, b, c/0, cons/2, nil/0 }, are all
perfectly valid tree encodings of the word abc. For the purposes of this discussion,
let us choose the first style, and consider the word language L =

{
abka

∣∣ k ∈ N} =
{aa, aba, abba, abbba, . . . }. This is a regular language, accepted by the finite-state
automaton

A1 = q0 q1 q2
a

b

a ,

defined over the alphabet A = {a, b, c }. The execution of A1 over a word w can be
represented as a sequence of words over A]Q, where Q = {q0, q1, q2 } is the set of
states of A1. To do so, let us translate every transition (p, σ, q) of A1 into a rewrite
rule pσ→ q. Then it suffices to start with q0w, and rewrite until a normal form
is reached. With each transition, the first character of the word is “consumed” to
change the state, until nothing is left but the state one ends up in. For instance, for
the word abba, this yields

q0abba→ q1bba→ q1ba→ q1a→ q2 .

2.4. Bottom-Up Tree Automata 31

A word is accepted if and only if it can be rewritten into a final state, which is
clearly the case for abba. Now, we want to use the same principle to recognise the
tree encoding of a word: the idea is to consume the (linear) tree to switch from
state to state, thanks to rewrite rules. One could attempt to do so either from the
root to the leaves (i.e. top-down) or from the leaves to the root (i.e. bottom-up).
Either way works equally well, but the latter will prove slightly more convenient
for us, and so it is what we shall use. The downside is that it requires the word to
be encoded from the bottom up as well; quite fortuitously, the language L happens
to be palindromic, which frees us from having to worry about such details in
these examples. The adaptation from left-to-right word consumption to bottom-up
tree consumption is then straightforward: a transition (p, σ, q) of the automaton
becomes the ground rewrite rule σ(p)→ q, and the rule ⊥→ q0 must be added to
prepare the initial state. This yields

a(b(b(a(⊥))))→ a(b(b(a(q0))))→ a(b(b(q1)))→ a(b(q1))→ a(q1)→ q2 ,

or, in vertical tree representation:

a

b

b

a

⊥

→ a

b

b

a

q0

→ a

b

b

q1

→ a

b

q1

→ a

q1

→ q2 .

At this point, there are two kinds of rules in play: nullary rules, of the form σ→ q,
and unary rules, of the form σ(p) → q. It seems natural to wonder what one
could gain from extending such a system in the obvious way by supporting rules
of the form σ(q1, . . . , qn) → q, acting on symbols of arbitrary arity. As it turns
out, that query instantaneously leads to the definition of the most common variety
of tree automata, which we are now going to state formally and which will be
used throughout this document: non-deterministic bottom-up tree automata (BUTA), bottom-up tree automata

BUTAalso called more generally (non-deterministic) finite tree automata (NFTA, FTA).
Whenever we laconically write “tree automata” (TA) or even simply “automata” in
the context of trees, this is what is meant.

The rewriting action of the
system ∆ is naturally writ-
ten →∆, but can also be
written →A if ∆ has not
been named explicitly but
A has. Or, using the nota-
tions from section 5.4[p115],
→A :∆ is also an option.

Ó Definition 2.1: Bottom-Up Tree Automaton

A bottom-up tree automaton A is a tuple 〈A, Q, F, ∆〉, where

A is a finite ranked alphabet,
Q is a finite set of states,
F is the set of final states,
∆ is the set of transition rules.

States are fresh nullary symbols, and final states are taken from a subset of
states; in short, Q ∩ A = ∅ and F ⊆ Q. The transitions of ∆ form a ground
rewrite system on T(A]Q), where each rule is normalised, that is to say of the
form

σ(q1, . . . , qn)→ q, with σ ∈ An, q1, . . . , qn, q ∈ Q .

32 Part I. Chapter 2. Some Technical Preliminaries

The set T(A]Q) is called the set of configurations of the automaton, and captures
the successive degrees of rewriting through which the input term passes under the
action of the rewrite rules of ∆. One notices that, unlike finite-state automata, BUTA
have no initial states. Recalling the abba example just above, the first rewriting
operation introduced the initial state q0 of the original FSA into the tree. This is
how BUTA behave in general: the leaves are rewritten first, and then the other rules
can spring in action; rules of the form a/0 → qi replace initial states in a sense, and
are sometimes called initial rules. The end-goal of a tree automaton is to rewrite
the input term into a final state qf ∈ F, if that is at all possible, which prompts the
following definition for the accepted language L(A) of a tree automaton A:L(A): accepted language

L(A) = { t ∈ T(A) | ∃qf ∈ F : t→∗∆ qf } .

Occasionally, there will be a need to focus on terms that rewrite into (or evaluate
into, are accepted into, are recognised into,. . .) some specific state q. In those cases,
we shall speak of the q-language Lq(A) of A, and so we haveLq(A): q-accepted language

Lq(A) = { t ∈ T(A) | t→∗∆ q } and L(A) =
⋃
qf∈F

Lqf(A) .

To illustrate that, let us take the very classical example of an automaton A accepting
the tree representation of true variable-free propositional formulæ. We take the al-
phabet A = {∧,∨/2,¬/1,>,⊥/0 }, states Q = {q0, q1 }, F = {q1}, and the transitions

∆ =

{
>→ q1, ⊥→ q0, ¬(qb)→ q¬b

∧(qb, qb ′)→ qb∧b ′ , ∨(qb, qb ′)→ qb∨b ′

∣∣∣∣∣ b, b ′ ∈ { 0, 1 }
}

. (2.2)

This expression uses an obvious short-hand, using 0 for false and 1 for true: for
instance the rule ∨(qb, qb ′)→ qb∨b ′ actually expands to ∨(q0, q0)→ q0 as q0∨q0
yields 0, ∨(q0, q1)→ q1 as q0 ∨ q1 yields 1, and so forth. Thus there are actually
twelve rules in ∆. Considering now the term

t = ∧

∨

¬

⊥

⊥

¬

∧

>⊥

,

we have the following possible reduction:

∧

∨

¬

⊥

⊥

¬

∧

>⊥

→∗∆ ∧

∨

¬

q0

q0

¬

∧

q1q0

→∗∆ ∧

∨

q1q0

¬

q0

→∗∆ ∧

q1q1

→∆ q1 .

Thus t →∗∆ q1 ∈ F: it is accepted by A. Note that the first three transformations
actually result from the application of several transition rules at once; it would
otherwise have been somewhat tedious to represent each and every configuration.
Indeed, there are in total nine rewriting steps, or ten configurations (that is, elements
of T(A ∪Q)), counting the initial configuration with the pristine term t. Note that

2.4. Bottom-Up Tree Automata 33

those steps could be performed in many different orders although that does not
matter for our purposes – for instance, the left subtree could have been entirely
reduced to q1 before touching the right subtree, with the same result. Here is a
breakdown of the rules which were used at each accelerated step:

(1) ⊥→ q0,>→ q1 ∈ ∆

(2) ∧(q0, q1)→ q0,¬(q0)→ q1 ∈ ∆

(3) ¬(q0)→ q1,∨(q0, q1)→ q1 ∈ ∆

(4) ∧(q1, q1)→ q1 ∈ ∆

An inconvenient feature of reductions of the kind presented above is that there is
no history of the intermediate steps, or record of which subtrees were accepted in
which states; such knowledge often proves quite useful. Thus it is customary not
to reason directly in terms of rewriting, but in terms of such a history, which is
called a run. This generalises runs for finite-state automata, which are simply the run (BUTA)

words q0q1 . . . qn of the sequences of states through which the automaton passes.
Going back to our earlier example on words, the run of the FSA A1 on w = abba
was the word ρ = q0q1q1q1q2. In the case of words, #ρ = #w + 1 because of the
initial state, but in the case of BUTA there are no initial states, and so a run will be
a tree of the exact same shape as the input term. The requirement is of course that
this tree has to be decorated in accordance to the transition rules. Thus, formally, a
run of a tree automaton A on a term t ∈ T(A) is a tree ρ : P(t)→ Q such that for
all nodes α ∈ P(t), or equivalently α ∈ P(ρ),

t(α)(ρ(α.1), . . . , ρ(α.n))→ ρ(α) ∈ ∆ . (2.3)

A run ρ is a q-run if ρ(ε) = q, and it is called accepting (or successful) if it is a qf-run, accepting run

for some qf ∈ F. This is an equivalent characterisation of the language accepted by
a tree automaton, and in fact the one which is most commonly used: a term t is
accepted by A if and only if there exists an accepting run of A on t. The nine-step
reduction t→∗∆ q1 of the example above is succinctly summarised in the following
accepting run:

ρ = q1

q1

q1

q0

q0

q1

q0

q1q0

or, decorated: ε ∧ q1

2 ∨ q1

22 ¬ q1

221 ⊥ q0

21 ⊥ q0

1 ¬ q1

11 ∧ q0

112 > q1111 ⊥ q0

.

The second version shows the shared structure of t and ρ, as well as t(α) and ρ(α)
together at each position α.

Extending the terminology for word languages, a tree language accepted by some
BUTA is said to be a regular tree language; in other words, L is a regular tree regular tree language

language if and only if there exists a BUTA A such that L(A) = L. There is
another widely-used strain of tree automata accepting the same class of languages:
as was hinted before, they are non-deterministic top-down finite tree automata. A top-down finite tree automata

few technicalities notwithstanding, moving from the definition of bottom-up to
that of top-down automata is pretty much a matter of rebranding final states

34 Part I. Chapter 2. Some Technical Preliminaries

into initial states, and changing the direction of the arrows. A quick word about

There are a few technical-
ities to get the definition
of top-down automata.
Destroying the tree from
the top down is problem-
atic, so one uses unary
states and rules of the form
q(f(u1, . . . ,un)) →
f(q1(u1), . . . ,qn(un)).
Better yet is to forgo the
rewriting aspect and define
acceptance directly in terms
of runs.

determinism is warranted at this point: the flavour of BUTA which was defined
earlier is non-deterministic. There is indeed nothing prohibiting two transitions
a→ p and a→ q, or in general any number of rules with identical left-hand sides,
from cohabiting in the same automaton. A BUTA, no two transitions of which
have the same left-hand side, is said to be deterministic. In the case of BUTA,
determinism does not affect expressive power; however, the top-down variant does
not share that property, the deterministic version being strictly weaker. Section
2.6[p37] focuses on such questions of expressive power, closure properties, etcetera.
Top-down automata are not used at all in this thesis, but they are found as often
as BUTA in the literature. One can think of them both as two equivalent models,
bottom-up automata corresponding intuitively to the evaluation of a term, and
top-down automata to the generation of terms.

We would be remiss to close a section on regular tree languages without pausing
to mention the strong ties of automata to logics. An automaton is an acceptor: is
accepts or rejects inputs, be they words or trees, according to whether they meet the
requirements encoded into the automaton. A formula of some logic equipped with
relevant predicates can fulfil the same function. To exemplify this, let us work on
words on some alphabet A, and consider the binary predicate S such that S(α,β)
holds if the position β is the immediate successor of α – to extend this to trees,
one would need to have a predicate for “first son”, one for “second son”, and so
on. To test which symbol is at what position, we consider every symbol of σ ∈ A
as a unary predicate, such that σ(α) holds if the symbol at position α is σ. Using
first-order logic over the domain of positions and those predicates, one can then
write specifications ϕ such as this:

ϕ = ∀α, a(α) =⇒ ∃β : S(α,β) ∧ b(β) .

The formula ϕ is satisfied by exactly the set of words such that every occurrence
of a is immediately followed by an occurrence of b. Let us compare this with the
word automaton A:

A =

A \ {a}
a

b

.

A accepts exactly the set of words which are models of ϕ. In that respect, it
makes sense to speak of the language accepted, or described, by a formula, and
to write statements such as L(ϕ) = L(A). This raises the interesting question
of the respective expressive powers of classes of logic formulæ and classes of
automata. There is an entire field, called descriptive complexity theory, dedicated
to identifying the relationships between logics, formal machines, and decision
problems. Of singular interest is the well-known 1960 theorem of Büchi, showing
that regular word languages are exactly described by weak monadic second-order
logic with one successor (WS1S), with the predicates defined above. ExtendingWS1S

this to trees, we let k be the maximal arity of symbols in a ranked alphabet A, and
define k successor relations as hinted above. The resulting logic is called weak
monadic second-order logic with k successors (WSkS); its expressive power coversWSkS

exactly the regular tree languages, as shown by Thatcher and Wright in 1968, and

2.5. Tree Automata With Global Constraints 35

by Doner in 1970. The reader eager to learn much more about this subject is advised
to consult the third chapter of [Comon et al., 2008] and its bibliographic notes. The
thirteenth chapter of [Hosoya, 2010] also provides a short introduction to logic on
trees, with a slant towards XML logic-based queries.

As Part III focuses specifically on TAGE and their decision problems, its introduc-
tory chapter extends the present section.

2.5 Tree Automata With Global Constraints

There is an aspect which is lacking in both the branching varieties of tree automata
seen in the previous section, and the tree-walking automata of Part IV of this thesis:
neither can test whether two subterms are the same. For instance, the languages

L= = { f(u, u) | f ∈ A2, u ∈ T(A) } and (2.4)

L, = { f(u, v) | f ∈ A2; u, v ∈ T(A); u , v } (2.5)

are both non-regular, meaning that there is no bottom-up tree automaton capable
of recognising them. Yet that kind of tests is quite worthwhile; for instance Part II
illustrates the connexions of equality testing to rewriting and how this helps in tree
model-checking, and Part III presents more examples in cryptography and XML
processing, as well as an overview of the 30-year long history of tree automata

The non-regularity of L= is
easily proven with a pump-
ing argument, similarly to
anbn in the word case. In-
tuitively, both brothers at
positions 1 and 2 are eval-
uated independently, and
the automaton, having no
memory, can store only a fi-
nite amount of information
about each of them.

extended with such tests.

This section presents a relatively recent class, introduced in Emmanuel Filiot’s
PhD thesis [Filiot, 2008] and in the papers [Filiot, Talbot & Tison, 2008, 2010],
called tree automata with global equality and disequality constraints (TAGED), which tree automata with global equality

and disequality constraints

TAGED
will sometimes be rendered as TA=,.

TA=,
Ó Definition 2.2: TAGED

A tree automaton with global equality and disequality constraints A is a tuple
〈A, Q, F, ∆,u,6〉, where

〈A, Q, F, ∆〉 is a bottom-up tree automaton,
u ⊆ Q2 is the equality relation, or constraints,
6 ⊆ Q2 is the disequality relation, or constraints.

TAGED function almost exactly in the same way as BUTA – indeed they are BUTA –
in that they have the same basic notion of runs. The difference is that TAGED are
more restrictive: in order for a run ρ of the underlying BUTA ta(A) = 〈A, Q, F, ∆〉 to ta(A): underlying automaton

be a run of A as well, it needs to be compatible with the constraints. A run ρ is
compatible with the equality constraints of u if, whenever two positions α and β compatibility with u,6

are evaluated into states p and q such that puq, then the subterms under those
positions are equal. Equality is of course meant extensionally, that is to say, u = v
if P(u) = P(v) and ∀α ∈ P(u), u(α) = v(α). Thus, compatibility with the equality
constraints is expressed as

∀α,β ∈ P(t) : ρ(α)u ρ(β) =⇒ t|α = t|β . (2.6)

36 Part I. Chapter 2. Some Technical Preliminaries

In the same way, ρ is compatible with the disequality (or difference) constraints if

∀α,β ∈ P(t) : ρ(α)6 ρ(β) =⇒ t|α , t|β . (2.7)

If 6 is not assumed to be irreflexive, this last definition can be extended into

∀α,β ∈ P(t) : α , β ∧ ρ(α)6 ρ(β) =⇒ t|α , t|β . (2.8)

Furthermore, a run ρ of the TAGED A is accepting for A if it is accepting for ta(A),
which is to say, if ρ(ε) ∈ F. If 6 is empty, A is said to be positive, or a tree automaton
with global equality constraints (TAGE, TA=). If u is empty, then it is said to beTAGE

TA= negative, or a tree automaton with global disequality constraints (TAGD, TA,). In
TAGD

TA, this thesis, we are exclusively interested in equality constraints, and thus focus on
the positive sub-class.

TAGED are closed by union and intersection, and we take notations for the corre-
sponding constructions. Letting A and B be two TAGED, A]B is another TAGED
such that L(A]B) = L(A) ∪ L(B), which we call the disjoint union of A and B.
The construction simply consists in renaming states so that the sets of states of AA]B: disjoint automata union

and B are made disjoint, and trivially merging the automata – constraints included.
Likewise, A×B is the TAGED such that L(A×B) = L(A)∩L(B), obtained through
the usual product construction, with additional provisions for the constraints.A×B: product automaton

It is clear that TAGED are at least as expressive as BUTA, as those classes coincide
exactly when u and 6 are both empty. They are in fact strictly more expressive,
since they can recognise languages which BUTA cannot, such as the aforementioned
L= and L,. As a first example, consider the following TAGE A, with A = {a/0, f/2 },
Q = {q, q̂, qf }, F = {qf }, q̂u q̂, q̂6qf, and

∆ = { f(q̂, q̂)→ qf, f(q, q)→ q, f(q, q)→ q̂, a→ q, a→ q̂ } .

Below are two terms u, v ∈ T(A), and corresponding runs of the underlying BUTA.
For clarity, the terms and their runs are superimposed:

u, ρu = f qf

f q̂

a qa q

f q̂

a qa q

and v, ρv = f qf

a q̂f q̂

a qa q

.

Both those runs are accepting for the underlying BUTA, since qf is a final state, and
both of these sport two occurrences of q̂, at positions 1 and 2. In the first case we
have u|1 = u|2 = f(a, a), and therefore ρu is compatible with the equality constraint
q̂u q̂, and u is accepted by the TAGE A. Contrast this with the second term, whose
run has the same two instances of q̂, but one is over v|1 = f(a, a) while the other
is over v|2 = a. Obviously v|1 , v|2, which violates the equality constraint q̂u q̂,
and v is rejected by A. Thus it is clear that A accepts terms if and only if their left
subtree is equal to their right, that is to say, L(A) = L=. The example suffices to
show the expressive power of TAGE to be strictly greater than that of BUTA.

The ur-example of the expressive power of TAGED is given by the extension of
the BUTA accepting true boolean expressions, seen earlier, to full propositional
logic; the equality constraints provide everything needed to encode propositional

2.6. Decision Problems and Complexities 37

variables. The propositional formulæ are again represented as trees, with a little
technicality when it comes to variables, taken from a set X. A variable x is
represented by the tree x(>,⊥), the idea being to evaluate each such tree in such a
way that the corresponding state vx, constrained by vx u vx, appears on either > or
⊥, thereby imposing a valuation over the formula. For instance, the propositional
formula (x ∧ y) ∨ ¬x is represented by the tree

∨

¬

x

>⊥

∧

y

>⊥

x

>⊥

. (2.9)

The alphabet is the same as before, with the addition of the free variables of
the formula, taken as binary symbols: A = {∧,∨/2,¬/1,>,⊥/0 }] X. The states
are unchanged as well, with the addition of one fresh state per variable: Q =
{q0, q1 }] { vx | x ∈ X } and F = {q1}. All the existing transitions of (2.2)[p32] are
kept, and the following are added for each x ∈ X:

>→ vx, ⊥→ vx, x(q0, vx)→ q1, x(vx, q1)→ q0 .

Lastly, as said above, we add the constraint vx u vx. The resulting automaton accepts
the representation of a propositional formula ϕ if and only if ϕ is satisfiable.

As we shall see in the next section – and again in much more detail in part III –
such expressive power comes at the cost of a considerable increase in algorithmic
complexity for most decision problems, up to and including the loss of decidability
for some. Taking advantage of automata with constraints in practical contexts
therefore requires fine-tuned algorithms and heuristics, and resorting to semi-
algorithms or approximated procedures is sometimes inevitable.

2.6 Decision Problems and Complexities

Throughout this thesis, we keep referring to various kinds of automata, their
decision problems, and the algorithmic complexity or decidability of the latter.
This section purports to serve as a convenient reference sheet on those matters, to
refresh memories and make it easier to compare the merits and pitfalls of different
formalisms.

The nub of the matter is summarised in Figure 2.2, where for each kind of automata
of particular interest to this thesis, and for each boolean closure property, for the
determinisation property, and for each decision problem in Figure 2.3, we have
written down the corresponding result or complexity class, as we could find them
in the literature. In order to fit what amounts to over one hundred complexity
results in such a small space, the figure employs systematic abbreviations for the
complexity classes involved, which are decrypted below. Complexity classes Γ
appear in the columns corresponding to decision problems, and are defined by the
grammar

Uniform Membership

Note that the fifth column
of Fig. 2.2 deals with uni-
form membership, in the
sense of Fig. 2.3. In general,
in this thesis, we say sim-
ply “membership” to mean
“uniform membership”, ex-
cept where the difference
matters, in which case the
context will make it clear.

38 Part I. Chapter 2. Some Technical Preliminaries

∪-
clo

se
d?

∩-
clo

se
d?

¬
-cl

ose
d?

dete
rm

in
isa

ble?

t
∈
L
(A
) ?

L
(A
) =
∅

?

|L
(A
)|
=
1

?

|L
(A
)|
∈
N

?

L
(A
) =

T(
A
) ?

L
(A
) ⊆

L
(B
) ?

L
(A
) =

L
(B
) ?

L
(
⋂ i

A i
) =
∅

?

NFA P1 P2 X X P2 P1 P P1 Ps Ps Ps Ps

DFA P1 P2 P1 C P1 P1 P1 P1 P2 P2 P2 Ps

BUTA P1 P2 X X P2 P1 P P2 X X X X

DBUTA P1 P2 P1 C P1 P1 P P2 P2 P2 P2 X

TAGED P1 P2 − − P! R R E E E R

TAGE P1 P2 − − P! X X E E E 2X

RTA P1 P2 − − P! P1 P3 E E E 2X

TAGD P1 P2 − − P! X!
TWA P1 P1 − − P X X X

DTWA + P1 + C P1 X

Figure 2.2: Automata, their closure properties and decision complexities.

Γ := γ deterministic time complexity γ
γ! non-deterministic time complexity γ
γs space complexity γ
Γ Γ -complete
R recursive, decidable, nothing more specific known
E co-recursively enumerable, co–semi-decidable, but undecidable

unknown – at least to us, and at the time of writing;

and, n denoting the size of the input and p some polynomial function:

γ := C constant O(1)

Pk polynomial of degree at most k O(nk)

P polynomial, unspecified degree O(nO(1))

X exponential O(2p(n))

2X doubly exponential O(22
p(n)

).

For instance, P designates the class PTime, P! means non-deterministic polynomial
time, that is to say the class NP, P! is therefore the class of NP-complete problems,
Ps is PSpace-complete, P2 means “solvable in quadratic time”, X! is NExpTime, 2X
is 2-ExpTime, and so forth. In the context of closure and determinisation properties
– that is to say, the first four columns of the figure – a symbol γ ′ appears, with the
following possibilities:

γ ′ := γ closed, construction of size γ, done in time γ
+ closed, time and size unspecified
− not closed.

There remains to specify the size of the inputs, which are automata and terms. The
size of a tree has already been defined, in section 2.2, as how many nodes it has.
The size of a TAGED is defined roughly, following [Comon et al., 2008], as the‖A‖: size of an automaton A

number of symbols required to encode it:

‖〈A, Q, F, ∆,u,6〉‖ = |Q|+ 2 ·
(
|u|+ |6|

)
+
∑

σ(p1,...,pn)→q∈∆

(n+ 2) .

2.6. Decision Problems and Complexities 39

Membership: in: t out: t ∈ L(A) ?
Uniform Membership: in: A, t out: t ∈ L(A) ?

Emptiness: in: A out: L(A) = ∅ ?
Singleton Set Property: in: A out: |L(A)| = 1 ?

Finiteness: in: A out: |L(A)| ∈ N ?
Universality: in: A out: L(A) = T(A) ?

Containment: in: A,B out: L(A) ⊆ L(B) ?
Equivalence: in: A,B out: L(A) = L(B) ?

Intersection Emptiness: in: A1, . . . ,An out: L(
⋂
iAi) = ∅ ?

Figure 2.3: Decision problems: inputs and outputs.

Note that the alphabet is not included in the size. Furthermore, this definition also
applies to TAGE, TAGD, RTA (cf. Sec. 5.2.2), and even BUTA, by seeing them as
TAGED 〈A, Q, F, ∆,∅,∅〉; by extension, it carries over to FSA. In the case of TWA
(Sec. 8.1[p144]), we have simply

‖〈A, Q, I, F, ∆〉‖ = |Q|+ 5 · |∆| .

Here end the preliminaries. As summarised in section 1.4[p19], each of the next
parts of the thesis deals with a main domain of our contributions, and opens with
a survey of that domain.

— Part II —

Approximating
Linear Temporal Logic

Safety Properties
over Rewrite-Rules Sequences

40

Chapter 3
Term Rewriting for Model-Checking

Contents
3.1 On the Usefulness of Rewriting for Verification 42

3.2 Reachability Analysis for Term Rewriting 44

3.2.1 Preservation of Regularity Through Forward Closure . . . 45

3.2.2 Tree Automata Completion Algorithm 46

3.2.3 Exact Behaviours of Completion 47

3.2.4 One-Step Rewriting, and Completion 47

3.2.5 The Importance of Being Left-Linear 49

3.2.6 One-Step Rewriting, and Constraints 51

—Where there is no epigraph.

M
odel-checking techniques are in no way limited to finite state spaces
– a fact that section 1.2[p13] has already touched upon. The method
which we develop in the next chapter relies on rewriting as its central
paradigm, with close ties to tree regular model-checking, reachability

analysis, and rewriting logic. The present introductory chapter summarises the
problem at hand, offers some elements of context about related work in those fields,
and stresses some results and concepts of notable bearing on what follows.

The goal is to check temporal properties of a system – be it a program, a circuit,
or a cash machine – whose states are represented by trees and whose behaviour
is encoded into a term rewriting system R. The properties do not deal with the
evolutions of the state of the system, but with the succession of its actions. It is
assumed in this context that the rewrite rules of R correspond to pertinent events of
the system. Those sequences of rewrite rules that capture executions of the system,
which are defined formally and called maximal rewrite words in the next chapter,
therefore provide the basis upon which the temporal semantics are constructed.

Consider for instance an initial language Π ⊆ T(A), a rewrite system R and the
LTL property �(X⇒ •Y), where X, Y ⊆ R; that is to say, X and Y are sets of rewrite

• versus ◦

In �(X ⇒ •Y), • is the
“next” operator of temporal
logic. In that case, it is ac-
tually a strong next operator,
as opposed to the weak next,
which is written ◦. This is
explained in detail in sec-
tion 4.1.2[p57], but it is of no
importance for the moment.

rules, or actions, of the system under consideration. This property signifies that
whenever an accessible term is transformed by some rewrite rule in X, the resulting
tree can in turn be rewritten by some rule in Y, and not by any rule not in Y. This
is illustrated by Figure 3.1. More concretely, if R models a cash machine, and

Figure 3.1 is borrowed, with
slight modifications, from
[Courbis et al., 2009].

X = { ask_PIN } and Y = { auth1, auth2, cancel }, then this property can be read as
“whenever the user enters his or her PIN, then something happens immediately
after, and that can only be either the authentication of the user – through either
of the two available methods – or the cancellation of the transaction; this excludes
other possible but undesirable actions, such as sending the PIN over the network.”

41

42 Part II. Chapter 3. Term Rewriting for Model-Checking

t0 ∈ Π

ti

tj

. . .

tn

ui

uj

. . .

un

vi

vj

. . .

vn

|

|

|

|

R∗

R∗

R∗

R∗

ri ∈ X

rj ∈ X

rk ∈ X

rn ∈ X

r ′i ∈ Y

r ′j ∈ Y

r ′k ∈ Y

r ′n ∈ Y

Figure 3.1: Executions of a rewrite system satisfying �(X⇒ •Y).

Note that ask_PIN etcetera are, in this context, rewrite rules on trees representing
the state of the machine.

As we shall see in the next chapter, the method which we study in order to answer
such verification problems relies on the computation of automata corresponding to
the tree languages reached after certain numbers of rewriting steps. In that respect,
it is closely related to, and in a way generalises, the methodology of reachability
analysis over term rewriting systems. Where reachability analysis boils down to an
equation of the form R∗(Π)∩B = ∅, the verification of temporal properties requires
the decision – or at least approximation – of larger language equations – called
rewrite propositions in the next chapter – such as, for the example of �(X⇒ •Y),

[R \ Y](X(R∗(Π))) = ∅ ∧ X(R∗(Π)) ⊆ Y−1(T) . (3.1)

A large part of our work consists in mechanically generating such equations on
the basis of the temporal property under consideration, extending previous work
in [Courbis et al., 2009]. However, for the purposes of this introduction, let us
keep the question of the provenance of (3.1) in temporary stasis, and focus instead
on how and to what extent the existing techniques of reachability analysis can be
brought to bear on such equations, once they are obtained.

3.1 On the Usefulness of Rewriting for Verification

Before we begin, it is worth saying a few general words concerning the pertinence
of choosing term rewriting systems as the central formalism in which to model
the system to verify. It is clear that TRS are very expressive: they are indeed
a Turing-complete model of computation, borne of the traditions of λ-calculus.
Beyond the raw expressive power, they often allow simple, readable, clean and
compact models of complex systems and programs. For instance [Jones, 1987;
Jones & Andersen, 2007] show how even bare TRS can easily encode higher-order
functions and other bells and whistles of modern functional languages of the ML

3.1. On the Usefulness of Rewriting for Verification 43

family; see also the corresponding examples of [Genet, 2009, Eg. 53, 54], which
illustrate how terse and straightforward the TRS encodings are, even with regards
to the very expressive original ML-style syntax.

Term rewriting systems have been used intensively in automated deduction for
about four decades, and can model parallel as well as sequential systems: rewriting
can naturally be interpreted as transformations occurring in parallel [Meseguer,
1992]. Used to encode high-level specifications of cryptographic protocols, they
have been put to work [Genet & Klay, 2000; Armando, Basin, Boichut, Chevalier,
Compagna, Cuéllar, Drielsma, Héam, Kouchnarenko, Mantovani, Mödersheim,
von Oheimb, Rusinowitch, Santiago, Turuani, Viganò & Vigneron, 2005], with
considerable success, on proving their security, insecurity, or the necessity of
specific countermeasures. Indeed, the techniques allow both to produce proofs of
correctness and to exhibit examples of attacks, be they new non-trivial attacks on
well-known, classical protocols of the literature [Chevalier & Vigneron, 2002], or
semi-expected attacks against freshly developed industrial protocols with relaxed
countermeasures [Heen, Genet, Geller & Prigent, 2008], thereby establishing the
critical status of the countermeasures in question.

At the other end of the spectrum of abstraction, TRS have been used to provide
models for much lower-level semantics, for instance in the case of Java Bytecode
programs [Boichut, Genet, Jensen & Roux, 2007; Barré, Hubert, Roux & Genet,
2009], for which safety and security properties are then proven through reachability
analysis – as in most of the works above. Back at higher levels of abstraction, let
us also mention similar verifications to the calculus of communicating systems
[Courbis, 2011], and more generally the rich ecosystem surrounding TRS as a
central formal model amenable to both execution and verification through classical
model-checking, abstract interpretation, static analysis, interactive proofs etcetera
[Eker, Meseguer & Sridharanarayanan, 2003; Feuillade, Genet & Tong, 2004; Genet,
1998; Takai, 2004; Clavel, Palomino & Riesco, 2006].

Another thriving approach using TRS as the central tool is rewriting logic [Meseguer, rewriting logic

1992; Martí-Oliet & Meseguer, 1996, 2002], intended as a unifying logical framework
in which other logics can be implemented, and a natural model of concurrent
systems. In recent years, new results in that field have deeply extended the
spectrum of its applications to verification [Escobar & Meseguer, 2007; Serbanuta,
Rosu & Meseguer, 2009; Boronat, Heckel & Meseguer, 2009; Ölveczky, 2010],
especially in relation with temporal logic for rewriting [Meseguer, 2008; Eker et al.,
2003; Bae & Meseguer, 2010].

To further extend the versatility of the rewrite-based techniques, reachability analy-
sis can be guided by temporal properties, expressed for instance in LTL, as seen in
works such as [Boyer & Genet, 2009]’s Regular LTL, where the rewrite relation is
abstracted into a finite Kripke structure susceptible to standard model-checking
approaches, and [Courbis et al., 2009], which our work generalises. Yet while both
endeavours yield, in fine, a positive approximated procedure over LTL, there is a
major difference of viewpoint between the two: [Boyer & Genet, 2009] expresses
properties on the states, while we and [Courbis et al., 2009] focus on properties of
actions, following more closely the philosophy presented in [Meseguer, 1992].

44 Part II. Chapter 3. Term Rewriting for Model-Checking

Furthermore, unlike [Bae & Meseguer, 2010], where LTL model-checking is per-
formed over finite structures, the approach exposed in the next chapter handles
temporal formulæ over infinite state systems. In this sense, it is close to [Escobar &
Meseguer, 2007]. However, in spite of its simplicity for practical applications, our
approach does not permit – in its current state, at least – to consider equational
theories.

3.2 Reachability Analysis for Term Rewriting

We have already touched upon the general gist of reachability analysis in section
1.2[p13], though the discourse took place in the context of transducers. We are
now placed in the more general context of term rewriting systems; after all, a tree
transducer can be seen as a special kind of rewriting system, where the rewriting is
done bottom-up, or top-down. The general reachability problem is whether a term treachability problem

can be rewritten into another term u – or whether u is reachable from t – by means
of a rewrite system R, which is written t→∗R u. It is plain to see that this problem
is decidable if R is noetherian. To drive that point home, consider the rewrite
tree rooted in t: any rewriting step creates finitely many branches – there are
finitely many rewrite rules applying on a finite tree – and no path may be infinite.
Therefore the rewrite tree is finite, and can be explored in finite time; contrariwise,
a non-terminating TRS would produce a tree with at least some infinite paths.

Of course, on top of being very inefficient for any non-trivial noetherian TRS
– “finite” does not imply “tractable” – this approach breaks down if there is an
infinite number of initial terms t for which such a check must be made, as is often
the case. For instance, in program verification, good behaviour must be enforced
for all possible inputs, of which there are typically infinitely many: our initial
language Π is not and should not be required to be finite. Thus even in the – fairly
restrictive – case where R is noetherian, an exhaustive check of the rewrite tree is
either impossible or impractical. Fortunately, there are several other ways in which
the problem may be approached, and sometimes decided even if Π is infinite and
R non-terminating; three of those were mentioned in section 1.2, namely (1) the
characterisation of classes for which the set of reachable terms R∗(Π) is regular, and
therefore can be represented exactly by an automaton, (2) acceleration techniques,
and (3) approximations and approximated procedures – over-approximations and
positive procedures, mainly.

While our interest lies in this last approach, our approximated methods do involve
languages of the form R∗(Π), as can be seen to appear in (3.1), and thus the quality
of exact methods becomes tributary to that of our own. An important negative
result in that respect, which was shown in [Gilleron & Tison, 1995], is that it
is not decidable, given a regular language Π and a rewrite system R, whether
R∗(Π) is regular. This remains undecidable even in the case of noetherian and
confluent (2.1)[p29] linear rewrite systems. On the other hand, the literature is rife
with constructive, positive results concerning the preservation of regularity under
forward closure, that is to say, “under which conditions on the rewrite system R is
R∗(Π) still regular?”

3.2. Reachability Analysis for Term Rewriting 45

3.2.1 Preservation of Regularity Through Forward Closure

A survey of such results appears in the research report [Feuillade et al., 2004], and
a more recent one can be found in the habilitation thesis [Genet, 2009, Sec. 2.1.1],
which is our main source for the next paragraphs. Let us just mention the best-
known classes of forward-closure regularity-preserving TRS:

Preservation and Alphabet

Interestingly, [Gyenizse &
Vágvölgyi, 1998] points out
that preservation of regu-
larity through forward clo-
sure depends on both R

and the underlying alpha-
bet A. Indeed, the paper ex-
hibits a TRS R and alpha-
bet A such that R preserves
regularity for languages of
℘(T(A)), but not for those
of ℘(T(A ′)), where A ′ =

A] { f/1 }. See also [Otto,
1998]. We always consider
preservation with the alpha-
bet A fixed in this thesis.

(1) ground rewrite systems, that is to say TRS making no use of variables. The

ground rewrite systems

preservation of regularity was first shown in [Brainerd, 1969], where such
TRS were simply called regular systems, and proven again in a more general
context in [Dauchet & Tison, 1990].

(2) right-linear and monadic systems, where monadic means that the left-hand
sides of the rules are not variables, and the right-hand sides are either some
variable x ∈ X or of the form σ(x1, . . . , xn), with σ ∈ An; x1, . . . , xn ∈ X
[Salomaa, 1988].

(3) linear and semi-monadic systems, where semi-monadic means that right-
hand sides of the rules are of the form σ(u1, . . . , un), where ∀k ∈ J1, nK, uk ∈
X ∪ T(A) [Coquidé, Dauchet, Gilleron & Vágvölgyi, 1991].

(4) linear decreasing systems, where decreasing means that for each rule l→ r,
the variables common to left- and right-hand sides occur only at depth one in
the right-hand side; that is to say, ∀l→ r ∈ R, α ∈ P(r); r(α) ∈ V(l) ∩ V(r)⇒
#α = 1 [Jacquemard, 1996].

(5) right-linear decreasing systems, defined as (4), but for which only right-
linearity is required [Nagaya & Toyama, 1999, 2002]. Note that this class is
more general than all the other enumerated so far.

(n) Many other such classes, some even more general, have been isolated in the
late 90s and early 2000s, although in many cases, they are not characterised
by simple syntactic restrictions, as are the classes above. Let us mention,
without definition, the classes of systems that are:

a. linear generalised semi-monadic [Gyenizse & Vágvölgyi, 1998],
b. constructor-based [Réty, 1999],
c. linear finite-path overlapping [Takai, Kaji & Seki, 2000],
d. right-linear finite-path overlapping [Takai et al., 2000],
e. linear I/O separated layered transducing [Seki et al., 2002],
f. well-oriented [Bouajjani & Touili, 2002],
g. linear generalised finite-path overlapping [Takai, 2004].

It should be noted that the constructor-based class distinguishes itself from
the others by imposing restrictions on the language Π – which none of the
other classes do – in order to weaken the necessary restrictions on the system
R. Of course, this results in it being incomparable to everything else. Also
of note is that linear I/O separated layered transducing rewrite systems
correspond exactly to linear bottom-up tree transducers.

Figure 3.2 shows the relationship between all those classes; the most expressive
classes are at the top, and the least expressive at the bottom of the graph; the
styles of the nodes reflect how they integrate with the tree automata completion
algorithms which we sketch below – the legend is given by (3.2)[p47]. It is worth

46 Part II. Chapter 3. Term Rewriting for Model-Checking

right-linear
monadic

linear generalised
semi-monadic

linear
decreasing

linear finite-path
overlapping constructor-based

well-oriented

right-linear
finite-path overlapping

linear
semi-monadic

linear I/O separated
layered transducing

right-linear
decreasing

linear generalised
finite-path overlapping

ground / regular

Figure 3.2: Forward-closure regularity-preserving classes of TRS.

noting that those forward-closure regularity-preserving classes contain no shortage
of non-terminating, non-confluent rewrite systems. Take for instance the trivial
ground rewrite system

{a→ f(a), a→ g(a) } ,

which is neither terminating nor confluent, and yet is regularity-preserving by
dint of being ground. This emphasises the point that decidability of reachability,
and termination and confluence, are orthogonal issues. This is fortunate, as the
programs and protocols which we mean to verify have no a priori reason to be
terminating.

3.2.2 Tree Automata Completion Algorithm

Unfortunately, those classes are still fairly restrictive, and so strict over-approxi-
mations remain occasionally unavoidable. The method through which such ap-
proximations are computed is inspired by the classical Knuth & Bendix completion
algorithm [Knuth & Bendix, 1970]. It is referred to as tree automata completion,tree automata completion

and was first introduced in [Genet, 1998]; it has been progressively refined over
the last decade, for instance by removing left-linearity preconditions for sound
over-approximations [Boichut, Héam & Kouchnarenko, 2008], and extending to
equational completion [Genet & Rusu, 2010]. It is also implemented in tools such as
Timbuk, as documented in [Feuillade et al., 2004; Genet, 2009]. The general idea of
the completion algorithm is, starting with a BUTA A0 such that L(A) = Π, to com-
pute successively A1, . . . ,Ak+1, where Ri(Π) ⊆ L(Ai) ⊆ L(Ai+1), for all i ∈ J1, kK.
The process stops when a fixpoint is reached, that is to say when L(Ak) = L(Ak+1),

What we present here as-
sumes left-linearity; in prac-
tice, this condition can be
relaxed, or even done away
with [Boichut et al., 2008].

or in practice when Ak = Ak+1; then R(∗)(Π) = L(Ak) ⊇ R∗(Π). Each Ai+1 is
obtained from Ai through a completion step, which rests on the joining of criticalcompletion step

pairs between the rewriting systems R and Ai :∆. In this context, a critical pair is aSee section 5.4[p115] for the
notation Ai :∆, in case it is
not immediately obvious.

critical pair

couple (σ l, σ r), where σ : X→ A0 :Q is a substitution and l→ r ∈ R is a rewrite
rule, such that there is a state q with σ l→∗Ai q and σ r 6→∗Ai q. For Ai to support

3.2. Reachability Analysis for Term Rewriting 47

the rewriting of σ l into σ r, the critical pair must be joined in Ai+1, following the
diagram

σ l σ r

q

∗Ai

R

Ai+1

∗
.

This would be most simply accomplished by adding the “transition” σ r → q

to Ai :∆ to get Ai+1 :∆. However, that is complicated by the fact that σ r may
not be of the usual form f(p1, . . . , pn), and thus the new transition needs to be
normalised beforehand. This is accomplished by introducing an equivalent set of
BUTA transitions, inductively defined to accept the subterms of σ r into fresh states
p1, . . . , pn. To guarantee the termination of the completion algorithm, appropriate
abstractions may be introduced at that point, which consist in merging states in the
normalised transitions, thereby causing the normalised version of the transition to
accept a superset of the terms recognised by the original.

3.2.3 Exact Behaviours of Completion

The completion algorithms have some very interesting features: one of these is that,
under certain assumptions on the abstraction function, if the completion terminates,
then the result is exactly R∗(Π) = L(Ak). This provides a new – and often more
simple – way to prove that R∗(Π) is regular: it suffices to prove termination of the
completion, under those assumptions [Genet, 2009, Sec. 3.3.1]. The node styles in
Fig. 3.2[p46] reflect how the aforementioned regularity-preserving classes behave in
that respect:

Proof Inherits Unknown Not Suitable . (3.2)

The four styles correspond respectively to: (1) classes for which a direct proof is
provided in [Genet, 2009], (2) classes which inherit a proof from a more general
one, (3) classes whose status is unknown, and (4) classes which are not amenable
to this methodology. Besides the proofs, one directly obtains an exact result
through the completion algorithm for the classes (1), provided that one does not
use approximations. Furthermore, there exists an exact normalisation strategy to
compute the approximation on the fly, such that the classes (1) yield an exact result
without any human input. The exact normalisation strategy can also yield exact
results for TRS that fall outside the known classes (1). Thus the same algorithm
can yield exact results when possible, and over-approximations in the other cases.
This even carries over to the case of equational completion.

3.2.4 One-Step Rewriting, and Completion

Given the nature of the type of properties we are interested in, and as can be
seen on the example formula (3.1)[p42], our interest is not solely focused on the
set of descendants R∗(Π), but also on expressions of the form R(Π), that is to say,
one-step application of a rewrite system. Unfortunately, and quite surprisingly,
this subject has not been studied extensively in the literature. Actually, we could

48 Part II. Chapter 3. Term Rewriting for Model-Checking

not find any specific paper focusing specifically on the issue, and the scant, brief
mentions we could find are usually negative results, e.g. [Genet, 2009, Eg. 116]
shows that doing one completion step does not actually work for that purpose. We
discuss this example below.

What is clear is that, in general, regularity is not preserved through one-step rewrit-
ing. By way of a counter-example, consider non-linear rewrite rules, especially
non–right-linear ones such as g(x)→ f(x, x). With the reminder that the language
of ground terms of f(x, x) is denoted by L= (2.4)[p35], it is immediate that{

g(x)→ f(x, x)
}
(T(A)) = L= ,

and while T(A) is trivially regular, L= is, as we have already seen, known to be
non-regular [Comon et al., 2008]. On the other hand, if the TRS is linear, it is
intuitively apparent that regularity will be preserved through one-step rewriting;
however even linearity is not sufficient to make one step of completion yield the
expected result. Consider Genet’s example 116, of the very simple linear TRS
R = { f(x)→ g(x) } and of the BUTA A such that

F = {q} and ∆ = {a→ q, f(q)→ q } ,

trivially recognising the regular language {a, f(a), f(f(a)), . . . } which we abbre-
viate using the intuitively clear regular expression f∗(a). We have R(f∗(a)) =

f∗(g(f∗(a))), which is regular, and R∗(f∗(a)) = { f, g }∗(a), which is also regular –
this is not surprising, as R happens to be right-linear and monadic. Let us apply
one step of the completion algorithm on A, yielding A ′: we have only one transition,
one substitution { x 7→ q }, and thus one critical pair, thus joined in A ′:

f(q) g(q)

q

A

R

A ′

.

We obtain A ′ :∆ = {a→ q, f(q)→ q, g(q)→ q }, and then it is plain that our target
has been largely overshot, as L(A ′) = R∗(f∗(a)) ⊃ R(f∗(a)). This being said, it
can certainly be envisaged to modify the completion algorithm slightly in order to
achieve our objectives; although this does not seem to have actually been done, the
notion that it can be done fairly easily appears to be part of the folklore.

One-Step Completion. In order to accommodate one-step rewriting, we suggest
to alter the joining operation along the lines of the following diagram:

σ l σ r

q q ′

∗Ai

R

Ai+1∗ ,

where q ′ is a fresh state. On top of that, for each pair (q, q ′), Ai+1 should also

The introduction of a new
state is similar to [Genet
& Rusu, 2010], for instance,
although it serves another
purpose here.

receive a copy of the transitions with q in the left-hand side, using the new state q ′

in its stead: that is to say we add the rules{
q 7→ q ′

}
{ f(p1, . . . , pn)→ p ∈ Ai :∆ | ∃i : pi = q } .

3.2. Reachability Analysis for Term Rewriting 49

Furthermore, if q was final, it is replaced in that role by q ′: we have Ai+1 :F =

{q 7→ q ′ } (Ai :F). Let us try Genet’s counter-example again, with this new algo-
rithm; we obtain the transitions

A ′ :∆ =
{
a→ q, f(q)→ q, g(q)→ q ′, f(q ′)→ q ′

}
,

and this time L(A ′) = f∗(g(f∗(a))) = R(f∗(a)). The idea is to proceed as before
with the q-rules until the subterm where the rewriting applies is reached in q, then
to apply the rewriting, reaching q ′, after which the construction goes on as before,
with q ′ instead of q. But because of the asymmetry of rules such as f(q) → q ′,
going from q to q ′, the rewriting can only be applied at most once in any term,
and it has to be applied at least once, given that q ′ is the new final state. This can
be iterated: a second step of completion would then yield the critical pairs

f(q) g(q)

q q ′2

A ′

R

A ′′ and

f(q ′) g(q ′)

q ′ q ′′

A ′

R

A ′′ .

The first pair generates a dead duplicate of the rules of the first step; since q ′2 is
not co-accessible, it can be ignored safely. The second critical pair yields the new
rules g(q ′)→ q ′′ and f(q ′′)→ q ′′, thence the recognised language

L
(
A ′′
)
= f∗(g(

Lq
′
(A ′′)

f∗(g(f∗(a)

Lq(A ′′)

))))

Lq
′′(A ′′)

.

One needs to take more precautions to deal with less trivial transitions; consider
for instance h(q, q)→ q, instead of f(q)→ q, and any rewrite rule whose left-hand
side can match h(q, q). Then the method outlined above would yield an additional
rule h(q ′, q ′) → q ′, which would allow two separate applications of the rewrite
rule. To prevent that, one has to generate instead h(q ′, q)→ q ′ and h(q, q ′)→ q.

This kind of technique should suffice for exact computations, at least in the linear
case. Of course, the above is only a sketch, more work is required to fully adapt
the construction. The point of this exercise is that there is no reason to believe that
one-step rewriting completion is fundamentally harder to achieve than forward-
closure completion, nor that the techniques that contribute to the latter have no
bearing on the former. Hence the dearth of literature on one-step rewriting should
not dissuade us from building a model-checking framework which relies on the
computation of the languages involved in such equations as (3.1)[p42], which do
involve single-step rewriting.

3.2.5 The Importance of Being Left-Linear

Linear systems should be covered by our adaptation of the completion, and yield
exact results, as there is no need to resort to approximations to ensure termination
– in that respect things are simpler for one-step than for forward-closure.

What about right-linear systems which are not also left-linear? The reason that left-
linearity is a requirement for completion – whether one-step or not – is illustrated

50 Part II. Chapter 3. Term Rewriting for Model-Checking

by a transition f(p, q) → q ′ and a rewrite rule f(x, x) → g(x); there is simply no
suitable substitution if p , q, and so the abstraction of subterms by states which
underpins the completion breaks down. The usual solutions are discussed in [Genet,
2009, Sec. 4.4.1]; in a nutshell, the two main approaches are (1) the computation of
intersections [Boichut, Héam & Kouchnarenko, 2006; Boichut, Courbis, Héam &
Kouchnarenko, 2009], and (2) determinisation.

Indeed, rewriting occurs on terms of the form f(u, u), with u ∈ Lp(A) ∩ Lq(A).
New rules can be computed and added, culminating in a fresh state q̂ such that
Lq̂(A) = Lp(A) ∩ Lq(A). Then f(p, q) → q ′ can be replaced with f(q̂, q̂) → q ′

for the purpose of determining substitutions and joining critical pairs, yielding
the new rule g(q̂) → q ′. This can be very expensive; since the joining rests on
the computation of a product of automata of size O(‖A‖) each, the application of
a non–left-linear rule results in a polynomial blowup, of degree bounded by the
highest arity.

Another way to solve – or actually to remove – the problem is to determinise A;
then for any two states p , q, Lp(A) ∩ Lq(A) = ∅, which obviates the need to
deal with such configurations at all. This is also very expensive, because of the
unavoidable exponential blowup associated with determinisation in the worst case
[Comon et al., 2008]. Furthermore, the explosion compounds itself when several
consecutive steps are needed: consider A with F = {p, q }, ∆ = {a→ p, b→ q } and
R = {a→ b }. For one-step or forward-closure completion, we have the critical pair

a b

p p ′

A

R

A ′ or
a b

p

A

R

A ′

,

yielding for one-step A ′ :∆ = {a→ p, b→ q, b→ p ′ } and A ′ :F = {p ′, q }, and
A ′ :∆ = {a→ p, b→ q, b→ p } for forward closure; but even though A is determin-
istic, in both cases A ′ no longer is. Thus iteration of the determinisation method
leads to a blowup of the order of a tower of exponentials. A compromise is to
maintain a weaker, local form of determinism, concerning only the specific states
involved instead of the whole automata. Genet experimented with this method in
the Timbuk tool, but found that the benefit was probably not worth the overhead
incurred.

A particular case of non–left-linearity is that of rewrite rules of the form f(x, x, y)→
g(y), or more generally l→ r such that V(l) = { x1, . . . , xn, y1, . . . , ym } and V(r) ⊆

{y1, . . . , ym }, whose left-linearity is broken only by x1, . . . , xn. In that case, it
suffices to compute the intersection once to check that the rule can apply, i.e. the
intersection is non-empty, and then those transitions can be discarded; σ r → q

is then added as normal. It so happens that this case occurs fairly often; Genet
mentions the general knowledge deduction rule of an intruder, in the context of a
cryptographic protocol, and the XOR rule:

decrypt(encrypt(k,m), k)→ m, x� x→ 0 . (3.3)

Both satisfy this pattern, and can therefore be employed efficiently. Of course, if
all else fails, one can always resort to over-approximations, which can soundly be
provided for any TRS in the case of forward-closure [Boichut et al., 2008], and this
method could certainly be adapted for one-step rewriting.

3.2. Reachability Analysis for Term Rewriting 51

3.2.6 One-Step Rewriting, and Constraints

However, the exact computation of one-step rewriting is always possible, provided
that one is willing to go beyond regular languages, and employ a more powerful
class of automata. Indeed, the classes of automata with constraints were introduced
specifically to deal with the non-linearity problems evoked above – see Chapter
5[p107] for a survey of such classes.

Specifically, we shall focus in this thesis on tree automata with global equality
constraints, which were already defined in section 2.5[p35]. Indeed, they sport
a number of properties which make them suitable for our needs, as shown in
[Courbis et al., 2009, Prp. 5, 7 & 6]. Namely, for any rewrite system R and regular
tree language Π, and TAGE-definable language Π=,

(1) R−1(T) is recognised by an RTA – a TA if R is left-linear,

(2) R(Π) is recognised by a TAGE, and

(3) whether R(Π=) = ∅ is testable in ExpTime.

Note that (1)⇒ (3):
R(Π=) = ∅⇔
Π= ∩R−1(T) = ∅.

Thus we can compute one step of rewriting exactly, even if the rewrite system
satisfies none of the required linearity conditions, and if the ultimate purpose is an
emptiness test – as it often is – this is brought to two exact steps: X(Y(Π)) = ∅ is
decidable in exponential time, whatever the properties of X, Y ⊆ R. Further steps
can be dealt with under the restrictions outlined above.

We shall come back to those considerations at the end of the next chapter; mean-
while, most of the discussion focusses on obtaining the language equations which
translate the desired temporal properties.

52 Part II. Chapter 3. Term Rewriting for Model-Checking

Chapter 4
Approximating LTL on Rewrite Sequences

Contents
4.1 Preliminaries & Problem Statement 56

4.1.1 Rewrite Words & Maximal Rewrite Words 56

4.1.2 Defining Temporal Semantics on Rewrite Words 57

4.1.3 Rewrite Propositions & Problem Statement 58

4.2 Technical Groundwork: Antecedent Signatures 59

4.2.1 Overview & Intuitions . 59

4.2.2 Choosing a Suitable Fragment of LTL 61

4.2.3 Girdling the Future: Signatures 62

4.3 From Temporal Properties to Rewrite Propositions 73

4.4 Generating an Approximated Procedure 87

4.4.1 Juggling Assumptions and Expressive Power 87

4.4.2 Optimisation of Rewrite Propositions 95

4.5 Examples & Discussion of Applicability 97

4.5.1 Examples: Three Derivations 97

4.5.2 Coverage of Temporal Specification Patterns 101

4.5.3 Encodings: Java Byte-Code, Needham–Schroeder & CCS . 102

4.6 Conclusions & Perspectives . 104

—Where things are translated into other things and something else is checked.

F
rom a temporal property to a rewrite proposition, and therefrom to a
positive approximated procedure. Such is the progression that undergirds
the model-checking framework which has been sketched at the beginning of
the last chapter (3[p41]), and that we flesh out in this one. Schematically, one

starts with three inputs: the term rewriting system R, the initial tree language Π,
which we assume to be regular, and the temporal property ϕ that must be checked.
In the first step, correctness of the system with respect to the specification ϕ is
translated into a rewrite proposition π which is, in the second step, translated into
a positive approximated procedure δ based upon tree automata with and without
constraints – or potentially several such procedures δ1, . . . , δn, as there may be
different, incomparable ways of performing the required approximations.

Rewrite Proposition

This is what we call the
“language equations” such
as (3.1)[p42], because they
are not really equations, but
formulæ of propositional
logic whose atoms are
comparisons between lan-
guages obtained through
rewriting. A precise
definition appears in the
next section.

R Π ϕ

To Rew. Prop. To Pos. Approx. R,Π |= ϕ ?π δ1, . . . , δn

.

This approach, inspired by [Genet & Klay, 2000]’s method for the analysis of
cryptographic protocols, was first proposed in [Courbis et al., 2009], where both

53

54 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

translation steps were performed and proven manually on three specific formulæ
of linear temporal logic, chosen for their relevance to model-checking, in particular
with respect to the security of Java MIDLets and in the context of the French ANR
RAVAJ project. Our objective is to generalise that work to a fragment of LTL; that
is to say, both steps of the translation must be mechanised in order to obtain a
working, automatic verification framework. The main result of [Courbis et al., 2009]
is the following trio of translations into rewrite propositions:

ANR RAVAJ Project

http://www.irisa.fr/

celtique/genet/RAVAJ

R, Π |= �(X⇒ •Y)
⇔ [R \ Y](X(R∗(Π))) = ∅ ∧ X(R∗(Π)) ⊆ Y−1(T) , (4.1)

R, Π |= ¬Y ∧ �(•Y ⇒ X)

⇔ Y(Π) = ∅ ∧ Y([R \ X](R∗(Π))) = ∅ , (4.2)

R, Π |= �(X⇒ ◦ �¬Y)
⇔ Y(R∗(X(R∗(Π)))) = ∅ . (4.3)

The paper also provides the general form of three corresponding positive approxi-
mated procedures; for instance, (4.1) is shown to be positively approximated by
the conjunction of the procedures

IsEmpty(OneStep(R \ Y, Approx(A,R)), X)

and

Subset(OneStep(X, Approx(A,R)), Backward(Y)) ,

where L(A) = Π, Approx(A,R) is the completion algorithm, yielding another tree
automaton B such that L(B) ⊇ R∗(L(A)), OneStep and Backward perform exact
one-step rewriting and backwards rewriting, yielding TAGE, as seen in section
3.2.6[p51], IsEmpty(A,X) is the emptiness test for X(L(A)), where A is a TAGE,
SubSet is any containment test for TA, which suffices here because of the additional
precondition that Y must be left-linear. Note that, syntax notwithstanding, this
is almost a straightforward reformulation of the original rewrite proposition –
although there are a few subtleties, which we leave aside for the moment.

Contrast this to the first step (4.1), of translation into a rewrite proposition. Looking
at the three examples, the general shape of the temporal formulæ is obviously not
preserved by this transformation. Nor should one expect it to be; it is not the syntax
of the temporal formula that is being translated, but the semantics of the fact that
the system abides by the temporal property expressed by said formula. Therefore,
in order to effect or even discuss such a translation, we need to start by clearly
defining the semantics of our brand of LTL. If we were working on infinite words,
there would be no question about that – there is just one generally agreed-upon
way to define LTL semantics on infinite words, – but this is not the case: the system
R is not required to be terminating; indeed this is a valuable characteristic, as
we may well endeavour to check reactive systems, which are required to have
non-terminating behaviours. Hence the need to accommodate both terminating
and non-terminating executions in the semantics. There are several ways to go
about that; the next section presents out choice in this matter.

Let us come back to the second step, translation from rewrite proposition to pos-
itive approximated procedures. The reason why [Courbis et al., 2009] proposes

http://www.irisa.fr/celtique/genet/RAVAJ
http://www.irisa.fr/celtique/genet/RAVAJ

55

a linearity condition is to make the inclusion test X(R(∗)(Π)) ⊆ Y−1(T) decid-
able. With a left-linear Y, Y−1(T) is regular, and the test can be rephrased as

As in section 1.2[p13],
R(∗)(Π) represents a regu-
lar over-approximation of
R∗(Π); we shall eventually
use this notation in prefer-
ence to the pseudo-code of
the current discussion.

X(R(∗)(Π)) ∩ (T \ Y−1(T)) = ∅. Concretely, the TA Backward(Y) is complemented,
and its product with the TAGE OneStep(X, Approx(A,R)) representing the over-
approximation X(R(∗)(Π)) of X(R∗(Π)) is computed, and tested for emptiness. If
Y is not left-linear, then Backward(Y) is a TAGE, and containment becomes un-
decidable – note that TAGE cannot be complemented; thus one then needs an
extra layer of approximation. A third way to go about that would be to compute a
regular under-approximation of Y−1(T). There are also different ways in which the
left-hand side expression can be handled: instead of computing an exact TAGE, one
could over-approximate the rewriting by X in X(R(∗)(Π)), so as to get a standard
tree automaton – although doing so is useless in this particular case.

This goes to show that, even under the simplifying assumption that there is
only one way to perform an over- or under-approximation, there are still several
valid positive approximated procedures for all but the most trivial expressions.
Some of those are blatantly worse than others – for instance, any procedure
performing the double approximation of X(R(∗)(Π)) will necessarily be coarser
than a procedure performing a single approximation but otherwise identical. The
double approximation does not improve decidability at all, as the right-hand side
is the limiting factor here. Later in this chapter, we shall dismiss such dominated
procedures, however let us state here that in practice, it may drastically improve
tractability by diminishing the number of constraints in the product automaton;
see Chapter 6[p117] on that subject.

Organisation of the chapter.

� Section 4.1 presents the notions and notations in use throughout this chap-
ter, including the choice of temporal semantics, the definition of rewrite
propositions, and precise statements of the problems at hand.

� Section 4.2[p59] presents an intuition of both the manner in which and the
extent to which the translation into a rewrite proposition may be effected.
This intuition provides the building blocks of our framework, which need to
be formalised. The first such block, developed in section 4.2.3, is the notion
of signatures, which we use to “flatten” a certain fragment of LTL formulæ
upon the time-line; they are an integral part of our method, as they enable us
to keep track of the languages reached at different points in time, and of the
existence or non-existence of certain transitions.

� Section 4.3[p73] relies on signatures to provide a set of translation rules that
perform the translation into rewrite propositions for a fragment of LTL. The
process yields a derivation tree that shows correctness of the translation. This
takes care of the first step.

� Section 4.4[p87] focuses on the second part, namely the generation of positive
approximated procedures. This is addressed by means of procedure genera-
tion rules producing all possible theorems. Although the discussion remains
more abstract than an implementation would be, those rules form the general
skeleton that an implementation should flesh out. In light of this, possibilities
for optimising the generated rewrite propositions are discussed in section
4.4.2[p95].

56 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

� Section 4.5[p97] shows full derivations of both steps on the three usual example
formulæ, and examines whether and how well the developed methods apply
to common temporal properties and existing TRS models in various domains.
In particular, we use surveys of popular temporal patterns and existing TRS
encodings as touchstones of the potential usefulness of our methods.

4.1 Preliminaries & Problem Statement

In order to offer a precise definition of the semantics of our temporal logic, we first
need to establish the kind of words upon which it is based. As mentioned before,
there is a need to accommodate both terminating and non-terminating behaviours;
furthermore, it is not an aspect that needs to be hidden or abstracted away. We
want to be able to express properties regarding the presence or absence of a next
transition succinctly and naturally. For this reason, we work directly on words
which may be infinite or finite, including the empty word, as the system may well
do nothing at all.

4.1.1 Rewrite Words & Maximal Rewrite Words

Let A be a ranked alphabet, R a finite rewrite system, and Π ⊆ T any set of terms.
A finite or infinite word on R is an element of

A is the only alphabet in
this entire chapter, and so
it is kept implicit; for in-
stance we write the set of
terms T instead of T(A),
etcetera. The same applies
to constructs depending on
R, as it is also unequivocal
throughout the chapter.

W: words on R, finite or infinite

W =
⋃
n∈N

(
J1, nK→ R

)
.

The length #w ∈ N of a word w is defined as Card(domw). Note that the empty#w: length of (in)finite word

function – of graph ∅× R = ∅ – is a word, which we call the empty word, denoted
by λ. Let w ∈ W be a word of domain J1, nK, for n ∈ N, and let m ∈ N1; then the
m-suffix of w is the word denoted by wm, such thatwm: suffix of w, of rankm

Suffix Cheat Sheet

w1+m(k) =w(k+m) ,

=w1+k(m) ,

w#w =w(#w) ,

wk+#w = λ, ∀k > 0 ,

#w1+m = |#w−m|0 ,

(wi)1+m =wi+m .

wm =

∣∣∣∣∣J1, n−m+ 1K −→ R

k 7−→ w(k+m− 1)
.

Note that w1 = w, for any word w. The intuitive meaning that we attach to a
word w is a sequence of rewrite rules of R, called in succession – in other words, it
represents a “run” of the TRS R. Of course, there is nothing in the above definition
of words that guarantees that such a sequence is in any way feasible, and such a
notion only makes sense with respect to initial terms to be rewritten. Thus we now
define the maximal rewrite words of R, originating in Π:LΠM: maximal rewrite words of R,

originating in Π

LΠM =

{
w ∈W

∣∣∣∣∣ ∃u0 ∈ Π : ∃u1, . . . , u#w ∈ T : ∀k ∈ domw,

uk−1
w(k)−−−→ uk ∧ #w ∈ N⇒ R({u#w}) = ∅

}
.

Note the potential presence of the empty word in that set. Informally, a word
w is in LΠM if and only if the rewrite rules w(1), . . . , w(n), . . . can be activated in
succession, starting from a term u0 ∈ Π, and the word w is “maximal” in the sense
that it cannot be extended. That is to say, w ends only when no further rewrite rule
can be activated. Thus LΠM captures the behaviours (or runs) of R, starting from Π;

4.1. Preliminaries & Problem Statement 57

this notion is equivalent the full paths of the rewrite graph described in [Courbis
et al., 2009], and corresponds to the usual maximal trace semantics [Cousot, 2002],
with a focus on transitions instead of states.

4.1.2 Defining Temporal Semantics on Rewrite Words

Choice of LTL & Syntax. Before starting to think about translating temporal
logic formulæ on rewrite words, we need to define precisely the kind of temporal
formulæ under consideration, and their semantics. Given that prior work in
[Courbis et al., 2009] was done on LTL, and that our aim is to generalise this
work, LTL – with subsets of R as atomic propositions – seems a reasonable choice.
In practice we shall use a slight variant with generalised weak and strong next
operators; the reasons for this choice will be discussed when the semantics are
examined. A formula ϕ ∈ LTL is generated by the following grammar: LTL on finite and infinite words

ϕ := X | ¬ϕ | ϕ ∧ϕ | •mϕ | ◦mϕ | ϕUϕ X ∈ ℘(R)

> | ⊥ | ϕ ∨ϕ | ϕ⇒ ϕ | ^ϕ | �ϕ m ∈ N .

Note that the operators which appear on the first line are functionally complete;
the remaining operators are defined syntactically as: > = R ∨ ¬R, ⊥ = ¬>,
ϕ ∨ψ = ¬(¬ϕ ∧ ¬ψ), ϕ⇒ ψ = ¬ϕ ∨ψ, ^ϕ = >Uϕ and �ϕ = ¬^¬ϕ.

Choice of Semantics. In the literature, the semantics of LTL are defined and
well-understood for ω-words; however the words of LΠM may be finite – even
empty – or infinite, which corresponds to the fact that, depending on its input, a
rewrite system may either not terminate, terminate after some rewrite operations,
or terminate immediately. Therefore we need semantics capable of accommodating
both ω-words and finite words, including the edge-case of the empty word. In
contrast to the classical case of ω-words, there are several ways to define (two-
valued) semantics for LTL on finite, maximal words. One such way found in the
literature is Finite-LTL [F-LTL, Manna & Pnueli, 1995], which complements the Finite-LTL

long-standing use of a strong next operator introduced in [Kamp, 1968] by coining •m: strong next operator

◦
m: weak next operatora weak next variant. Figure 4.1[p58] presents our choice of semantics for this chapter,

which is essentially F-LTL with generalised next operators and the added twist
that words may be infinite or empty. Note that •1 and ◦1 correspond exactly to the
classical strong and weak next operators, and that for m > 1, •m (resp. ◦m) can
trivially be obtained by repeating •1 (resp. ◦1) m times. So the only non-trivial
difference here is the existence of •0 and ◦0; this will prove quite convenient when
we deal with the translation of �, using the following lemma.

Ñ Lemma 4.1: Weak-Next & Always

Let ϕ ∈ LTL, w ∈ W, k ∈ N and i ∈ N1; it holds that (1) (w, i) |= �ϕ iff
(w, i) |=

∧∞
m=0 ◦

mϕ and (2) (w, i) |= �ϕ iff (w, i) |=
∧k−1
m=0(◦

mϕ) ∧ ◦k �ϕ.

Short Proof. (1) (w, i) |=
∧∞
m=0 ◦

mϕ ⇐⇒
∧∞
m=0(w, i) |= ◦mϕ ⇐⇒ ∀j ∈

domw, j > i ⇒ (w, j) |= ϕ ⇐⇒ (w, i) |= �ϕ. (2) (w, i) |=
∧∞
m=0 ◦

mϕ ⇐⇒
(w, i) |=

∧k−1
m=0(◦

mϕ) ∧
∧∞
m=k(◦

mϕ)(w, i + k) |= �ϕ ⇐⇒ (w, i) |=
∧k−1
m=0

(◦mϕ) ∧ ◦k �ϕ.

58 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

(w, i) |= X iff i ∈ domw and w(i) ∈ X
(w, i) |= ¬ϕ iff (w, i) |=/ ϕ

(w, i) |= (ϕ ∧ψ) iff (w, i) |= ϕ and (w, i) |= ψ

(w, i) |= •mϕ iff i+m ∈ domw and (w, i+m) |= ϕ

(w, i) |= ◦mϕ iff i+m < domw or (w, i+m) |= ϕ

(w, i) |= ϕUψ iff ∃j ∈ domw : j > i ∧

{
(w, j) |= ψ ∧

∀k ∈ Ji, j− 1K, (w, k) |= ϕ
(w, i) |= > (w, i) |=/ ⊥

(w, i) |= ¬X iff i < domw or w(i) < X
(w, i) |= (ϕ ∨ψ) iff (w, i) |= ϕ or (w, i) |= ψ
(w, i) |= (ϕ⇒ ψ) iff (w, i) |= ϕ⇒ (w, i) |= ψ

(w, i) |= ^ϕ iff ∃j ∈ domw : j > i ∧ (w, j) |= ϕ

(w, i) |= �ϕ iff ∀j ∈ domw, j > i⇒ (w, j) |= ϕ

For any w ∈W, i ∈ N1, m ∈ N and X ∈ ℘(R).

Figure 4.1: LTL semantics on maximal rewrite words.

Before moving on, let us stress that the choice of semantics, or even the choice of
LTL for that matter, should by no means be considered as etched in stone; it is very
much a variable of the general problem. However it will henceforth be considered
as data for the purposes of this chapter.

TRS & LTL. Let ϕ be an LTL formula. It is said that a word w satisfies/is a model
of ϕ (denoted by w |= ϕ) iff (w, 1) |= ϕ. Alternatively, we have (w, i) |= ϕ iff
wi |= ϕ. We say that the rewrite system R, with initial language Π, satisfies/is aR,Π |= ϕ: satisfaction of the

specification ϕ model of ϕ (denoted by R, Π |= ϕ) iff ∀w ∈ LΠM, w |= ϕ.

4.1.3 Rewrite Propositions & Problem Statement

A rewrite proposition on R, from Π is a formula of propositional logic whose atoms arerewrite proposition

language or rewrite systems comparisons. More specifically, a rewrite proposition
π is generated by the following grammar:

π := γ | γ ∧ γ | γ ∨ γ γ := ` = ∅ | ` ⊆ ` X ∈ ℘(R) .

` := Π | T | X(`) | X−1(`) | X∗(`)

Since the comparisons γ have obvious truth values, the interpretation of rewrite
propositions is trivial; thus we shall not introduce any notation for it, and auto-
matically confuse π with its truth value in the remainder of this chapter. Note
that while other operators for propositional logic could be added, conjunction and
disjunction will be enough for our purposes.

Problem Statements. The overarching goal is a systematic method to decide or
approximate whether R, Π |= ϕ, given a rewrite system R, a temporal formula ϕ in
LTL – or some fragment of LTL– and an initial language Π ⊆ T. This goal is broken
down into two distinct sub-problems:

(1) Finding an algorithmic method for building, from ϕ, a rewrite proposition π
such that R, Π |= ϕ if and only if π holds. We call such a method, as well as
its result, an exact translation of ϕ, and say that π translates ϕ.exact translation

4.2. Technical Groundwork: Antecedent Signatures 59

(2) Finding an algorithm for generating, from π, a positive approximated proce-
dure δ, that answers positively only if π holds, or a full decision procedure,
whenever possible.

By solving both sub-problems, one has δ =⇒ π and π ⇐⇒ R, Π |= ϕ, and
therefore δ =⇒ R, Π |= ϕ, which achieves the overall goal.

One notices that the full equivalence is not needed in π ⇔ R, Π |= ϕ; if π is only
a sufficient (resp. necessary) condition, then it is an under-approximated (resp. over-
approximated) translation. Of course, only under-approximated translations hold under-approximated translation

over-approximated translationany practical interest for our purposes. Although approximated translations are
briefly discussed in a few places for the sake of completeness, regarding the first
problem, we are interested only in exact translations. The reason for this are
twofold: where exact translation is not achievable, we have not come across any
interesting ways in which fine approximations may be introduced at this stage; and
secondly, having several successive layers of approximations is likely a recipe for
very coarse approximated procedure at the end of the day. Thus it seems advisable
to handle approximations in the second step exclusively, and to keep the translation
into rewrite propositions exact.

4.2 Technical Groundwork: Antecedent Signatures

The first problem is tackled by two complementary tools: signatures, which are
developed in this section, and translation rules, which rely heavily on signatures
and are the object of Sec. 4.3[p73]. The beginning of the present section also serves
as an intuitive introduction to the first problem, and as an a priori discussion of
the scope of the translation.

4.2.1 Overview & Intuitions

The Base Cases. Counterintuitively, ϕ = ¬X is actually a simpler case than ϕ = X
as far as the translation is concerned, so it will be considered first.

Case 1: Negative Literal. Suppose R, Π |= ¬X. Recalling the semantics in
Fig. 4.1[p58], this means that no term of Π can be rewritten by a rule in X. They may
or may not be rewritable by rules not in X, though. Consider now

π1 ≡ X(Π) = ∅ ; (π1)

it is easy to become convinced that this is an exact translation.

Case 2: Positive Literal. Let ϕ = X. A first intuition would be that this is
roughly the same case as before, but with the complement of X wrt. R. So we write
π2 ≡ [R \ X](Π) = ∅. This, however, is not strong enough. It translates the fact that
only rules of X can rewrite Π. But again, while X may in fact rewrite Π, there is
nothing in π2 to enforce that. Looking at the semantics, all possible words of LΠM
must have at least one move (i.e. 1 ∈ domw); this condition must be translated. It
is equivalent to saying that all terms of Π are rewritable, which is expressed by
Π ⊆ R−1(T). More specifically, since we already impose that they are not rewritable

60 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

by R \ X, we can even write directly that they are rewritable by X, i.e. Π ⊆ X−1(T).
Putting those two conditions together, we obtain

π ′2 ≡ [R \ X](Π) = ∅ ∧ Π ⊆ X−1(T) , (π ′2)

and this is an exact translation.

Of Strength & Weakness. Let us reflect on the previous cases for a minute; the
immediate intuition is that X is stronger than ¬X, in the sense that whenever we see
X, we must write an additional clause – enforcing rewritability – compared to ¬X.
This actually depends on the context, as the next example will show.

Case 3: Always Negative. Let ϕ = �¬X. This means that neither the terms of Π
nor their successors can be rewritten by X; in other words π3 ≡ X(R∗(Π)) = ∅. The
translation is almost the same as for ¬X, the only difference being the use of R∗(Π)
(Π and successors) instead of just Π as in π1. More formally,

π3 ≡ X(R
∗(Π)) = ∅ ≡ π1[R

∗(Π)/Π] . (π3)

Case 4: Always Positive. Seeing this, one is tempted to infer that the same rela-
tionship that exists between the translations of ¬X and �¬X exists as well between
those of X and �X. In the case ϕ = �X, this would yield π4 ≡ π ′2[R

∗(Π)/Π] ≡

[R \ X](R∗(Π)) = ∅ ∧ R∗(Π) ⊆ X−1(T). But clearly this translation is much too
strong as its second part implies that every term of Π can be rewritten by X, and
so can all of the successors; consequently, LΠM must form an ω-language. Yet we
have for instance λ |= �X —note incidentally that λ |= �ψ holds vacuously for any
ψ. In general, under the semantics for �, words of any length, infinite, finite or
nought, may satisfy �X. Thus the correct translation was simply

π ′4 ≡ [R \ X](R∗(Π)) = ∅ . (π ′4)

So, unlike Cases 1 and 2, X is not in any sense stronger than ¬X when behind a
�. This is an important point which we shall need to keep track of during the
translation; that necessary bookkeeping will be done by means of the signatures
introduced in Sec. 4.2.3[p62].

Conjunction, Disjunction & Negation. Case 5: And & Or. It is pretty clear that
if π5 translates ϕ and π ′5 translates ψ, then π5 ∧ π ′5 translates ϕ ∧ ψ. This holds
thanks to the implicit universal quantifier, as we have (R, Π |= ϕ∧ψ) ⇐⇒ (R, Π |=

ϕ) ∧ (R, Π |= ψ). Contrariwise, the same does not hold for the disjunction, and
we have no general solution (a) to handle it. Given that one of the implications
still holds, namely (R, Π |= ϕ ∨ ψ) ⇐= (R, Π |= ϕ) ∨ (R, Π |= ψ), a crude
under-approximation can still be given if all else fails:

π5 ∨ π
′
5 =⇒ R, Π |= ϕ ∨ψ . (π ′′5)

Case 6: Negation. Although we have seen in Case 1 that a negative literal can
easily be translated, negation cannot be handled in all generality by our method.
Note that, because of the universal quantification, R, Π |=/ ϕ , R, Π |= ¬ϕ; thus the
fact that π6 translates ϕ does not a priori imply that ¬π6 translates ¬ϕ. This is why
we shall assume in practice that input formulæ are provided in a sanitised form,

(a) There are however special cases where disjunction can be translated exactly; see rules (∨⇒
∧

)[p75]

and (∨¬⇒).

4.2. Technical Groundwork: Antecedent Signatures 61

where negations only appear on literals. The presence of both weak and strong
next operators facilitates this, as ¬ ◦m ϕ⇔ •m¬ϕ. Note that this is not exactly the
same as requiring a Negative Normal Form (NNF), as implications remain allowed
as well as disjunctions, and strictly speaking there is no convergence towards a
normal form. More details are given in Sec. 4.2.2[p61].

Handling Material Implication. Case 7: Implication. We have just seen in Cases
5 and 6 that we can provide exact translations for neither negation nor disjunction.
Inasmuch as ϕ ⇒ ψ is defined as ¬ϕ ∨ ψ, must material implication be forgone
as well? An example involving an implication has been given in the introduction
– page 53, – so it would seem that a translation can be provided in at least some
cases. Let us take the simple example X⇒ •Y. Assuming that any term u ∈ Π is
rewritten into some u ′ by a rule in X, then u ′ must be rewritable by Y, and only by
Y. The set of X-successors of Π being X(Π), those conditions yield the translation

π7 ≡ [R \ Y](X(Π)) = ∅ ∧ X(Π) ⊆ Y−1(T) . (π7)

Note that the way in which implication has been handled here is very different
from the approach taken for the other binary operators, which essentially consists
in splitting the formula around the operator and translating the two subparts
separately. In contrast, the antecedent of the implication was “assumed”, whilst
the consequent was translated as usual. In fact, recalling that π ′2 translates X, and
thus π ′′2 ≡ π

′
2[Y/X] translates Y, we have π7 ≡ π ′′2 [X(Π)/Π]. So, “assuming” the

antecedent consisted simply in changing our set of reachable terms – which we shall
from now on call the past, hence the notation Π. This is not an isolated observation;
if π0 denotes the translation (4.1)[p54] of �(X⇒ •Y) given in the introduction,

π0 ≡ [R \ Y](X(R∗(Π))) = ∅ ∧ X(R∗(Π)) ⊆ Y−1(T) ,

then π0 ≡ π7[R∗(Π)/Π]. Thus “updating” the past is enough of a tool to deal with
some simple uses of � and implication. . . but consider the following formula:
•Y ⇒ X. In that case the antecedent lies in the future, relatively to the consequent.
Therefore, in order to deal with all cases, we need some means of making assump-
tions about both past and future. This is the goal of the signatures presented in
Sec. 4.2.3[p62]. Examples of translations where the antecedent is in the future appear
at the very end of Sec. 4.3[p73].

4.2.2 Choosing a Suitable Fragment of LTL

As mentioned in Cases 3 and 4 of the previous section, negation of complex formulæ
is problematic, and we shall therefore work only with formulæ in a sanitised form,
such that negation appears only on literals, that differs from traditional NNF in that
implication remains allowed – and thus it is not a normal form at all. For instance,
(A∨B)⇒ C, (A⇒ C)∧ (B⇒ C), and (¬A∧¬B)∨C are three equivalent formulæ,
all sanitised. However, the first and second forms will be favoured over the third
(the NNF), because those forms fit into the translation system presented hereafter.
Some transformations of particular relevance are included into the translation rules
themselves, in Sec. 4.3[p73], but this is essentially a straightforward preprocessing
step, which we shall not detail.

Furthermore, there are operators – such as ^ – for which it seems that no exact
translation can be provided, since rewrite propositions are not expressive enough;

62 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

in particular, R∗(Π) hides all information regarding finite or infinite traces. Hence,
none of the operators of the “Until” family {^,U,W,R, . . . } can be translated
exactly, and, as we are primarily concerned about exact translations, they will not
be brought to play in what follows. Accordingly, we shall work chiefly within the
following fragment of LTL, which will be denoted by R-LTL:R-LTL: Rewrite LTL

ϕ := X | ¬X | ϕ ∧ϕ | ϕ ∨ϕ | ϕ⇒ ϕ | X ∈ ℘(R)

•m ϕ | ◦mϕ | �ϕ m ∈ N .

4.2.3 Girdling the Future: Signatures

As discussed in Sec. 4.2.1[p59], Case 7, implication is handled by converting the
antecedent ϕ of a formula ϕ ⇒ ψ into “assumptions”. Concretely, this consists
in building a model of ϕ – called a signature of ϕ, written ξ(ϕ) – which can beξ(ϕ): signature of ϕ

manipulated during the translation. This model will also be used to store sufficient
information regarding the context in order to determine whether the translation
ought to be “strong” or “weak”, as sketched in Case 4.

The variety of signatures defined hereafter handles formulæ ϕ within the fragment
A-LTL (A for antecedent), which is R-LTL without ∨ or ⇒. The reasons for andA-LTL: Antecedent LTL

consequences of this restriction will become clearer in Sec. 4.3[p73]; suffice it to
say that handling ∨ and right-associative ⇒ chains at the level of signatures is
simply unnecessary, as they are easily dealt with through trivial transformations
(cf. rules (∨⇒∧)[p75] and (⇒Σ)). Left-associative ⇒ chains should be reformulated
and generally entail an approximated translation.

This section defines signatures formally and presents a suitable map ξ(·) : A-LTL→
Σ, Σ being the space of signatures, whose correctness proof is broken down into
eight main lemmata, and finally summarised by Thm. 4.15[p72].

The informal idea behind our definition of signatures is to capture information
regarding the possible successive rewriting steps from the current language Π –
our past, as we called it in Sec. 4.2.1[p59], Case 7. The empty signature encodes
no information at all: all possibilities remain open. That is to say, starting from
t ∈ Π, there may or may not be a rewriting transition t r−→ t ′ and even if there is
all that can be said at this point is that r ∈ R; moreover, no further information is
available about t ′ and its possible successors. But as more information is gained
from antecedents, constraints will be added to the signature. Suppose that we are
faced with a formula of the form

X ∧ ◦1Y ∧ ◦2 �Z =⇒ ϕ ,

then we only need to worry about translating ϕ assuming that no rewrite steps
are taken (or not taken) in contradiction to the antecedent. In other words, for the
purpose of translating ϕ, we assume that there is a rewriting transition from Π,
and that it is by X, i.e. ∀t ∈ Π, ∃rt1 ∈ X : t

rt1−→ t1. Furthermore, we cannot directly
assume that there is then a second transition, this time by Y, because “◦1Y” does
not imply existence; however it can be assumed that if there is a second transition,
it must be activated by rules in Y. The last part of the antecedent, “◦2 �Z”, tells
us that, starting from the third transition, all rules involved must be within Z; but
again there is no guarantee that any such transition exists. Put schematically, the

4.2. Technical Groundwork: Antecedent Signatures 63

information gathered from this antecedent looks like this: starting from Π, we have
successively transitions by X (exists), Y (maybe), Z (maybe), Z (maybe),. . . Once
we have introduced the formal and notational apparatus, this information will be
denoted by

ξ
(
X ∧ ◦1Y ∧ ◦2 �Z

)
= PX, Y # Z | N1Q .

The intuitive meaning of X, Y and Z in this formula should be relatively transparent
at this point; the second component, N1, encodes the length of the maximal rewrite
words compatible with this signature. In this case, since we know that there
must be a X-transition, the empty word λ – of length 0 – is not compatible. On
the other hand, we have no further information about the potential existence
of other transitions, so provided that a rewrite word w follows the progression
X, Y, Z, Z, Z, . . ., it is compatible as soon as its length is 1 or more; that is to say,
as soon as #w ∈ N1. This notion of the compatibility of a rewrite word with a
signature is what gives them precise semantics; it will be made explicit by the
definition of constrained words below.

Signatures. A signature σ is an element of the space Σ: set of signatures

Σ =
⋃
n∈N

[(
J1, nK ∪ {ω}

)
→ ℘(R)

]
× ℘(N) .

Core, Support, Domain, Cardinal. Let σ = (f, S) ∈ Σ; then the function f is called
the core of σ, denoted by ∂σ, and S is called its support, written ∇σ. The domain of σ ∂σ: core of signature σ

∇σ: support of signature σis defined as domσ = dom f \ {ω}, and its cardinal is #σ = Card(domσ).
domσ: domain of signature σ

#σ: cardinal of signature σSpecial Notations, Empty Signature. A signature σ = (f, S) will be written
either compactly as σ = *f | S+, or in extenso as *f | S+: signature, compact

Pf1 . . . f #σ # fω | SQ:
signature, in extensoPf(1), f(2), . . . , f(#σ) # f(ω) | SQ .

Note that the example at the end of this string of definitions illustrates all this. A
signature of special interest, which we denote by ε = P#R | NQ, is the empty signature.
Let k ∈ N1 ∪ {ω}, then we write ε = P#R | NQ: empty signature

σ[k] =

{
f(k) if k ∈ domσ

f(ω) if k < domσ
.

The notation σ[k] is read “σ at (position) k” and is referred to as the at operator. σ[k]: signature “at” operator

Constrained Words. The set of maximal rewrite words which satisfy the con-
straints encoded by a signature, as defined below, will be used over and over
again throughout this section. It is this notion that assigns precise semantics to the
signatures we build. The maximal rewrite words of R, originating in Π and constrained
by σ are defined by LΠ #σM: words constrained by σ

LΠ # σM = {w ∈ LΠM | #w ∈ ∇σ ∧ ∀k ∈ domw, w(k) ∈ σ[k] } .

At some later point in this chapter (Lem. 4.17[p78]), we shall start having to reason
on the length of the words quite a bit, so for the sake of conciseness we write
LΠ # σM#

m the set {w ∈ LΠ # σM | #w = m }, LΠ # σM#
S the set {w ∈ LΠ # σM | #w ∈ S }, and LΠ #σM#

m: words constrained by
σ, of lengthmLΠ # σM#

≺n the set {w ∈ LΠ # σM | #w ≺ n }, for (≺) ∈ {<,>,6,> } and n ∈ N.

64 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

Example: Let σ = PX, Y # Z | N2Q; then its core is the function ∂σ = { 1 7→
X, 2 7→ Y,ω 7→ Z }, its domain is domσ = J1, 2K, its support is ∇σ = N2, its
cardinal is #σ = 2, and we have σ[1] = X, σ[2] = Y, σ[3] = σ[4] = · · · = σ[ω] = Z.
Its constrained words are the maximal rewrite words of length at least 2, whose
first two letters are in X and Y, respectively, and whose other letters are all in
Z. ♦

Our objective in this section is in particular to define a map

ξ(·) : A-LTL −→ Σ

such that ξ(ϕ) is a model of ϕ, in the sense that the maximal rewrite words
constrained by ξ(ϕ) are exactly those which satisfy ϕ. In formal terms, we expect
ξ(·) to satisfy the following property, for all Π ⊆ T and ϕ ∈ A-LTL:

LΠ # ξ(ϕ)M = {w ∈ LΠM | w |= ϕ } . (4.4)

The map ξ(·) will have to be built inductively on the structure of its argument, and
it so happens that all the tools needed to handle the base cases are already defined.
Let us start by observing that, as one would expect, the empty signature carries no
constraint at all, which bridges constrained words and maximal rewrite words:

Ñ Lemma 4.2: No Constraints

It holds that LΠ # εM = LΠM.

Proof. For this first proof, all steps have been detailed. We have

LΠ # εM = LΠ # P#R | NQM (i)

= {w ∈ LΠM | #w ∈ ∇ε ∧ ∀k ∈ domw, w(k) ∈ ε[k] } (ii)

= {w ∈ LΠM | #w ∈ N ∧ ∀k ∈ domw, w(k) ∈ R } (iii)

= {w ∈ LΠM | > ∧ > } = {w ∈ LΠM } = LΠM , (iv)

where step (i) proceeds by definition of the empty signature, step (ii) by
definition of constrained rewrite words, step (iii) by definition of the “at
operator” for signatures, and step (iv) rests on all lengths being in N, and all
rules in R.

As an immediate consequence of the above, the empty signature is a model of >.

Ñ Lemma 4.3: True

Taking ξ(>) = ε satisfies (4.4).

Proof. LΠ # ξ(>)M = LΠ # εM = LΠM = {w ∈ LΠM | w |= > } .

Conversely, to handle ⊥, we need a signature that rejects every possible rewrite
word; in that case there are many possible, equally valid choices, the most straight-
forward of which is as follows:

4.2. Technical Groundwork: Antecedent Signatures 65

Ñ Lemma 4.4: False

Taking ξ(⊥) = P#∅ | ∅Q satisfies (4.4).

Proof. The result rests on x ∈ ∅ being false for all x.

LΠ # ξ(⊥)M = LΠ # P#∅ | ∅QM

= {w ∈ LΠM | #w ∈ ∅ ∧ ∀k ∈ domw, w(k) ∈ ∅ }

= {w ∈ LΠM | ⊥ } = {w ∈ LΠM | w |= ⊥ } .

The introduction to this section has already dealt with an example more complicated
than the literal “X” alone, from an intuitive perspective. The next lemma begins to
show why the proposed translation was correct.

Ñ Lemma 4.5: Positive Literal

Taking ξ(X) = PX # R | N1Q satisfies (4.4).

Proof. Straightforward by translating #w in terms of domw.

LΠ # ξ(X)M = LΠ # PX # R | N1QM

= {w ∈ LΠM | #w ∈ ∇σ ∧ ∀k ∈ domw,w(k) ∈ σ[k] }

= {w ∈ LΠM | #w > 1 ∧w(1) ∈ X ∧ ∀k ∈ domw, k > 1⇒ w(k) ∈ R }

= {w ∈ LΠM | 1 ∈ domw ∧w(1) ∈ X }

= {w ∈ LΠM | (w, 1) |= X } = {w ∈ LΠM | w |= X } .

Negative literals are translated in roughly the same way as positive ones, the main
difference being that the length 0 is not excluded from their support.

Ñ Lemma 4.6: Negative Literal

Taking ξ(¬X) = PR \ X # R | NQ satisfies (4.4).

Proof. It suffices to break up the ∀k ∈ domw:

LΠ # ξ(¬X)M = LΠ # PR \ X # R | NQM

= {w ∈ LΠM | #w ∈ N ∧ ∀k ∈ domw,w(k) ∈ σ[k] }

= {w ∈ LΠM | ∀k ∈ domw,w(k) ∈ σ[k] }

= {w ∈ LΠM | 1 ∈ domw⇒ w(1) < X ∧ ∀k ∈ domw, k > 1⇒ w(k) ∈ R }

= {w ∈ LΠM | 1 ∈ domw⇒ w(1) < X } = {w ∈ LΠM | w |= ¬X } .

Now that the base cases are all covered, we move on to the inductive cases, the first
of which is conjunction. Let us take the simplest possible example: X ∧ Y. We have
by Lemma 4.5

ξ(X) = PX # R | N1Q and ξ(Y) = PY # R | N1Q ,

but also, considering that X ∩ Y is a positive literal as well:

ξ(X ∩ Y) = PX ∩ Y # R | N1Q .

66 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

It should be intuitively pretty clear that ξ(X ∩ Y) encodes both the constraints of
ξ(X) and ξ(Y); in that particular case it follows from the semantic equivalence of
w |= X ∩ Y and w |= X ∧ w |= Y. However, the general idea that “conjunction”
between signatures is translated by intersections stands on its own, as the next
lemmata will show.

Signature Product. Let σ and σ ′ be two signatures; then their product is another
signature defined as σ� σ ′ = *g | ∇σ ∩∇σ ′+, whereσ�σ ′: signature product

g =

∣∣∣∣∣dom∂σ ∪ dom∂σ ′ −→ ℘(R)

k 7−→ σ[k] ∩ σ ′[k]
.

Note that as a consequence, ∀k ∈ N1, (σ� σ ′)[k] = σ[k] ∩ σ ′[k].

Example: Let us take the two signatures σ = PX, Y # Z | N2Q and ρ = PX ′ # Z ′ |
N3Q; then σ� ρ = PX ∩ X ′, Y ∩ Z ′ # Z ∩ Z ′ | N3Q. ♦

Signature product is fairly well-behaved with respect to constrained words, and can
be “broken down” and replaced by the intersection of simpler constrained sets. The
next lemma and its generalisation (4.6)[p69] show this to be true of finite products,
and this property will later be generalised to infinite products (Lem. 4.12[p70]).

Ñ Lemma 4.7: Breaking Finite Products

For any signatures σ, ρ ∈ Σ, and any language Π, we have LΠ # σ� ρM =
LΠ # σM ∩ LΠ # ρM.

Proof. LΠ # σ� ρM is, by definition, the set of w ∈ LΠM such that

#w ∈ ∇σ ∩∇ρ ∧ ∀k ∈ domw, w(k) ∈ σ[k] ∩ ρ[k]
⇐⇒ #w ∈ ∇σ ∧ ∀k ∈ domw, w(k) ∈ σ[k]

∧ #w ∈ ∇ρ ∧ ∀k ∈ domw, w(k) ∈ ρ[k]

⇐⇒ w ∈ LΠ # σM ∧ w ∈ LΠ # ρM

⇐⇒ w ∈ LΠ # σM ∩ LΠ # ρM .

Thus LΠ # σ� ρM = LΠM ∩ LΠ # σM ∩ LΠ # ρM = LΠ # σM ∩ LΠ # ρM.

Ñ Lemma 4.8: Conjunction

Provided that the subformulæ ξ(ϕ) and ξ(ψ) satisfy (4.4), taking ξ(ϕ ∧ψ) =
ξ(ϕ)� ξ(ψ) satisfies (4.4).

Proof. Straightforward using the previous lemma:

LΠ # ξ(ϕ ∧ψ)M = LΠ # ξ(ϕ)� ξ(ψ)M = LΠ # ξ(ϕ)M ∩ LΠ # ξ(ψ)M
= {w ∈ LΠM | w |= ϕ } ∩ {w ∈ LΠM | w |= ψ }

= {w ∈ LΠM | w |= ψ ∧ w |= ϕ }

= {w ∈ LΠM | w |= ψ ∧ϕ } .

We shall generalise results on signature products to infinitary cases later on, which
will be necessary to encode �ϕ. Meanwhile, let us turn our attention to the strong

4.2. Technical Groundwork: Antecedent Signatures 67

and weak next operators. Let us consider for instance a formula ϕ whose signature
is given by

ξ(ϕ) = PW,X, Y # Z | N2Q ,

and propose plausible candidates for ξ
(
◦
1ϕ
)

and ξ
(
•1ϕ

)
. Although we still lack

all the formal tools to prove it, after numerous similar examples it is easy to derive
that

ϕ =W ∧ •1X ∧ ◦2Y ∧ ◦3 �Z .

The lengths of the words w |= ◦1ϕ can therefore be enumerated. By the semantics
of ◦1, if #w = 0 or #w = 1, then w is automatically a model of ◦1ϕ. Suppose that
#w > 2; then it must be the case that w2 |= ϕ. In particular, because of the strong
next this means that #w2 ∈ N2, in other words #w2 > 2; thus, since #w2 = #w− 1,
we have #w > 3. So the set of acceptable lengths is J0, 1K ∪ N3 = N \ {2}. Now, as
far as the rewrite rules are concerned, the first rule, if it exists, can be anything;
obviously the second one must live in W, the third in X, the fourth in Y, and all the
subsequent rules must come from Z. So we have derived the following signature:

ξ
(
◦
1ϕ
)
= PR,W,X, Y # Z | J0, 1K ∪ N3Q .

It is clear that ξ
(
•1ϕ

)
will have the same core as ξ

(
◦
1ϕ
)
, but a different support.

Indeed in that case the length 0 and 1 are clearly not suitable, while the rest of the
previous reasoning still holds. Thus we have immediately

ξ
(
•1ϕ

)
= PR,W,X, Y # Z | N3Q .

The work done on this example is generalised in the next definitions, and this
suffices to compute ξ

(
•1ϕ

)
and ξ

(
◦
1ϕ
)

for all ϕ, as shown in the next lemma.

Arithmetic Overloading. We overload the operator + on the profile ℘(N)×N→ arithmetic overloading, +

℘(N) such that, for any S ∈ ℘(N) and n ∈ N, we have

S+ n = {k+ n | k ∈ S } .

Right Shifts. Let σ ∈ Σ, m ∈ N and R1 = R, . . . , Rm = R; then we define the
weak m-right shift of σ as σ Bm: weakm-right shift of σ

σ B m = PR1, . . . ,Rm, ∂σ(1), . . . , ∂σ(#σ) # ∂σ(ω) | J0,mK ∪ (∇σ+m)Q ,

while the strong m-right shift of σ is σ Im: strongm-right shift of σ

σ I m = PR1, . . . ,Rm, ∂σ(1), . . . , ∂σ(#σ) # ∂σ(ω) | (∇σ \ {0}) +mQ .

The only point in those definitions that was not readily apparent in the above
example is the ∇σ \ {0} appearing in the support of the right shift. The reason for
its introduction is best understood in the context of a formula ϕ whose signature
admits zero in its support; when behind a strong next of level zero (•0), the only
change in the support of the signature is the removal of the zero. Let us write down
a few immediate equations that will come in useful in the proofs of Lem. 4.9, 4.10

and 4.13[p71]: for all m ∈ N and all k ∈ N1, if k 6 m, (σ I m)[k] = (σ B m)[k] = R

and if k > m, (σ I m)[k] = (σ B m)[k] = σ[k−m].

68 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

Ñ Lemma 4.9: Weak Next

Provided that the signature of the subformula ξ(ϕ) satisfies (4.4), taking
ξ(◦mϕ) = ξ(ϕ) B m satisfies (4.4).

Proof. We write σ = ξ(ϕ) and σm = ξ(ϕ) B m. Let w ∈ LΠM, then w |= ◦mϕ iff

1+m < domw ∨ w1+m |= ϕ ⇐⇒ #w ∈ J0,mK ∨ w1+m |= ϕ

⇐⇒ #w ∈ J0,mK ∨ (#w1+m ∈ ∇σ ∧ ∀k ∈ domw1+m, w1+m(k) ∈ σ[k])

⇐⇒ #w ∈ J0,mK ∨ (#w−m ∈ ∇σ ∧ ∀k ∈ J1+m, #wK, w(k) ∈ σ[k−m])

⇐⇒ (#w ∈ J0,mK ∨ #w ∈ ∇σ+m) ∧ (∀k ∈ J1+m, #wK, w(k) ∈ σm[k])

⇐⇒ #w ∈ ∇σm ∧ ∀k ∈ domw, w(k) ∈ σm[k] ⇐⇒ w ∈ LΠ # σmM .

Note that #w1+m = #w−m only holds because we can safely assume, by the left
member of the disjunction, that #w ∈ J0,mK, or in other words, #w > m.

Ñ Lemma 4.10: Strong Next

Provided that the signature of the subformula ξ(ϕ) satisfies (4.4), taking
ξ(•mϕ) = ξ(ϕ) I m satisfies (4.4).

Proof. We write σ = ξ(ϕ) and σm = ξ(ϕ) B m. Let w ∈ LΠM, then w |= •mϕ iff

1+m ∈ domw ∧ w1+m |= ϕ ⇐⇒ #w > m ∧ w1+m |= ϕ

⇐⇒ #w > m ∧ #w ∈ ∇σ+m ∧ ∀k ∈ domw1+m, w1+m(k) ∈ σ[k]

⇐⇒ #w ∈ (∇σ+m) \ {m} ∧ ∀k ∈ domw, w(k) ∈ σm[k]

⇐⇒ #w ∈ (∇σ \ {0}) +m ∧ ∀k ∈ domw, w(k) ∈ σm[k]

⇐⇒ #w ∈ ∇σm ∧ ∀k ∈ domw, w(k) ∈ σm[k] ⇐⇒ w ∈ LΠ # σmM .

Now there only remains to deal with the last inductive case: the � operator. To this
end, we recall Lem. 4.1[p57], whose first statement gives an equivalent expression of
� in terms of conjunction and weak next:

�ϕ ⇐⇒
∞∧
m=0

◦
mϕ .

We have already seen how signatures of formulæ involving those operators are
computed, so it stands to reason that we should be able to simply use those
previous results and write

ξ(�ϕ) =
∞⊗
m=0

[
ξ(ϕ) B m

]
, (4.5)

thus getting this last translation “for free”. This is exactly the approach which we
shall follow, but there remains work to do in order to assign a precise meaning to
(4.5), prove its correctness with respect to (4.4), and derive a closed form of (4.5) in
terms of ξ(ϕ), so that we may actually use it in an algorithm. In order to do so, we
must first establish the legitimacy of using a finite extended notation⊗∞

k=l σk: signature product,
finite big operator notation

m⊗
k=l

σk = σl � σl+1 � · · ·� σm

4.2. Technical Groundwork: Antecedent Signatures 69

with the usual properties, which is provided by Remark 4.11.

Ñ Remark 4.11: Extended Product Notation

The set of signatures Σ, equipped with the signature-product �, forms a
commutative monoid whose neutral element is ε.

Proof. The associativity and commutativity of � stem directly from those of ∪
and ∩. The neutrality of ε = P#R | NQ stems from that of N (= ∇ε) for ∩ within
℘(N), of R (= ε[k],∀k) for ∩ within ℘(R), and of ∅ (its domain) for ∪.

All our previous results involving product behave as one would expect them to
under extended notations; in particular, Lemma 4.7[p66] instantly generalises to

LΠ #
n⊗
k=1

σkM =
n⋂
k=1

LΠ # σkM ∀σ1, . . . , σn ∈ Σ, n ∈ N , (4.6)

and it follows that Lemma 4.8[p66] becomes

ξ

(
n∧
k=1

ϕk

)
=

n⊗
k=1

ξ(ϕk) ∀ϕ1, . . . , ϕn ∈ A-LTL, n ∈ N . (4.7)

Infinite Products. This is still not enough, however, as (4.5) involves an infinite
product, which is customarily defined based on finite products as follows: the
infinite product

⊗∞
k=l σk converges if and only if the associated sequence of partial ⊗∞

k=l σk: signature product,
infinite big operator notationproducts (

⊗n
k=l σk)n∈Nl converges, and in that case

∞⊗
k=l

σk = lim
n→∞

n⊗
k=l

σk .

This definition rests upon the introduction of suitable notions of convergence and
limit for sequences of signatures, to which we must now attend. Let ρ = (σn)n∈N
be an infinite sequence of signatures. It is said to be convergent if

(1) the sequence (∇σn)n∈N converges towards a limit ∇σ∞,

(2) for all k ∈ N1, the sequence (σn[k])n∈N converges towards a limit σ∞[k],
(3) the sequence of limits (σ∞[k])k∈N1 itself converges towards a limit σ∞[∞].

We call the sequence (σ∞[k])k∈N1 the limit core. It is not directly in the form of a limit core

bona fide signature core. However, its co-domain being ℘(R), which is finite, there
exists a rank N > 0 such that for all k > N, σ∞[k] = σ∞[∞], and thus, taking the
smallest such N, we define the limit of ρ, which we denote by lim ρ or limn→∞ σn,
or even more simply by σ∞, as σ∞, limn→∞ σn: limit of a

sequence of signatures

lim
n→∞σn = Pσ∞[1], . . . , σ∞[N] # σ∞[∞] | ∇σ∞Q .

Note that the core of the limit is equivalent to the limit core, in the intuitive sense
that they define the same constrained words. Otherwise ρ is divergent, and its limit divergent sequence of signatures

is left undefined.

On that subject, the meticulous reader will have noticed that, throughout this
section, we have omitted to mention that signatures are not unique, in the sense

70 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

that for instance PX # R | N1Q, PX,R # R | N1Q and PX,R,R # R | N1Q etcetera are all
equally valid choices for ξ(X). This slight ambiguity can easily be resolved by
defining a notion of extensional equivalence between signatures and working with
representatives of the classes. We have chosen to eschew this discussion entirely
in the main text, as it is mostly a cosmetic consideration and would make the
discussion more cumbersome. For future reference, extensional equivalence can beσ ≡ ρ: extensional equivalence

defined as σ ≡ ρ ⇐⇒ ∇σ = ∇ρ ∧ ∀k ∈ N1, σ[k] = ρ[k], and has the following
fundamental characterisation: σ ≡ ρ ⇐⇒ ∀Π ⊆ T,∀R, LΠ # σM = LΠ # ρM.

Example: Taking Xi = X ∀i, we have limn→∞PX1, . . . , Xn # R | J1, nKQ ≡
P#X | N1Q . It is easy to build artificial sequences that fail (1), (2) or (3). ♦

Without further ado, we can bring this notion of convergence to bear and further
generalise (4.6) to infinitary cases. This result will be central to the proof of
correctness.

Ñ Lemma 4.12: Breaking Infinite Products

For any language Π and any sequence (σn)n∈N of signatures such that the
infinite product

⊗∞
n=0 σn converges,

LΠ #
∞⊗
n=0

σnM =
∞⋂
n=0

LΠ # σnM .

Proof. Let ρm =
⊗m
n=0 σn, for m ∈ N, and ρ∞ = limm→∞ ρm. Let us compute

the support of this limit

∇ρ∞ = lim
m→∞∇ρm = lim

m→∞∇
(
m⊗
n=0

σn

)
= lim
m→∞

m⋂
n=0

∇σn =
∞⋂
n=0

∇σn ,

and its limit core; let k ∈ N1 in

ρ∞[k] = lim
m→∞ ρm[k] = lim

m→∞
[(m⊗
n=0

σn

)
[k]

]
= lim
m→∞

m⋂
n=0

σn[k] =
∞⋂
n=0

σn[k] .

So, a word w ∈ LΠ # ρ∞M is a word of LΠM such that

#w ∈ ∇ρ∞ ∧ ∀k ∈ domw, w(k) ∈ ρ∞[k]
⇐⇒ #w ∈

⋂∞
n=0∇σn ∧ ∀k ∈ domw, w(k) ∈

⋂∞
n=0 σn[k]

⇐⇒
∧∞
n=0

[
#w ∈ ∇σn ∧ ∀k ∈ domw, w(k) ∈ σn[k]

]
⇐⇒

∧∞
n=0w ∈ LΠ # σnM ⇐⇒ w ∈

⋂∞
n=0 LΠ # σnM .

We have just established that, provided that the infinite product is convergent, we
can break it, which will be as essential to the correctness proof as finite product
breaking (Lem. 4.7) was to the proof of Lem. 4.8. There remains to prove that the
infinite product of (4.5) is indeed convergent. Equivalently, we can see this as
a proof that the computation of ξ(�ϕ) always terminates and yields a useable
signature. We shall then finally be able to write the product in a closed form.

4.2. Technical Groundwork: Antecedent Signatures 71

Ñ Lemma 4.13: Shift-Product Convergence

Let (σn)n∈N be any sequence of signatures, and (ρn)n∈N its associated sequence
of partial products (

⊗n
i=0 σi)n∈N. Then (ρn)n∈N satisfies convergence criteria

(1) and (2). Furthermore, if σ is a given signature and σi = σ I i or σi = σ B i,
for any i ∈ N, then criterion (3) is satisfied as well, and the infinite product⊗∞
n=0 σn converges.

Proof. (1) For all n ∈ N, ∇ρn =
⋂n
i=0∇σi, thus it is clear that ∇ρn =

⋂n
i=0∇σi ⊇⋂n

i=0∇σi ∩ ∇σn+1 =
⋂n+1
i=0 ∇σi = ∇ρn+1 or, in other words, (∇ρn)n∈N is a

(trivial) contracting sequence of finite sets. Therefore it converges towards⋂∞
i=0∇σi. (2) Let k ∈ N1; we have

ρn[k] =

(
n⊗
i=0

σi

)
[k] =

n⋂
i=0

σi[k] ,

and thus ρn[k] =
⋂n
i=0 σi[k] ⊇

⋂n+1
i=0 σi[k] = ρn+1[k] and again, (ρn[k])n∈N is

a trivial contracting sequence of finite sets; therefore it converges towards a
limit which we denote by ρ∞[k] = ⋂∞i=0 σi[k]. (3) Suppose now that σi = σ B i
(resp. σi = σ I i, the computation will be unchanged), we have

ρ∞[k] =
∞⋂
i=0

σi[k] =
∞⋂
i=0

(σ B i)[k] =

(
k−1⋂
i=0

(σ B i)[k]

)
∩

(∞⋂
i=k

(σ B i)[k]

)

=

(
k−1⋂
i=0

σ[k− i]

)
∩

(∞⋂
i=k

R

)
=
k−1⋂
i=0

σ[k− i] =
k⋂
i=1

σ[i] .

Given that for all i > #σ, σ[i] = σ[ω], it follows that for all k > #σ, ρ∞[k] =⋂#σ+1
i=1 σ[i]. Thus (ρ∞[k])k∈N1 converges. This shows that the infinite product⊗∞
n=0 σn is convergent. Specifically, we have the following limit:

∞⊗
n=0

σn = Pσ[1], σ[1] ∩ σ[2], . . . ,
k⋂
i=1

σ[i], . . . ,

#σ⋂
i=1

σ[i] #
#σ+1⋂
i=1

σ[i] |

∞⋂
i=0

∇σiQ .

This is not completely a closed form yet, however, as the support ∇ρ∞ =⋂∞
i=0∇σi remains expressed in terms of σi and an infinite intersection. Let us

consider the case σi = σ B i, which is what we are really interested in. We
have 0 ∈ ∇ρ∞, since for all i ∈ N, 0 ∈ J0, iK ⊆ ∇σi. This is coherent with the fact
that λ |= �ϕ, for all ϕ ∈ LTL. Furthermore, let p > 1 such that p < ∇σ. For any
i ∈ N, it follows that p+ i < (∇σ+ i), and since p+ i < J0, iK, we have p+ i < ∇σi
and finally, p+ i < ∇ρ∞. In other words, we have just shown that for all p > 1,
p < ∇σ ⇒ Np ∩ ∇ρ∞ = ∅. Now let us take p > 1 such that J1, pK ⊆ ∇σ, then
for all i ∈ N we have J0, iK ∪ J1+ i, p+ iK = J0, p+ iK ⊆ ∇σi; thus in particular
p ∈ ∇ρ∞. There remains to observe that trivially +∞ ∈ ∇σ ⇐⇒ +∞ ∈ ∇ρ∞,
and we can now summarise this into a closed form for ∇ρ∞:

∇ρ∞ =
∞⋂
i=0

∇(σ B i) = {0}∪
r
1, min

(
N1 \ (∇σ ∩ N1)

)
− 1

z
∪
(
∇σ ∩ {+∞}

)
.

72 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

For σi = σ I i the computation is much more direct, as we have m < ∇σm, for
all m ∈ N. Thus in that case ∇ρ∞ = ∇σ ∩ {+∞}.

We now have every tool we need to write down the computation of ξ(�ϕ).

Ñ Lemma 4.14: Always

Provided that the signature of the subformula ξ(ϕ) satisfies (4.4), taking
ξ(�ϕ) =

⊗∞
m=0

[
ξ(ϕ) B m

]
satisfies (4.4).

Proof. By application of Lem. 4.13, 4.12, 4.9[p68] and 4.1[p57], we have

w ∈ LΠ #
⊗∞
m=0

[
ξ(ϕ) B m

]
M ⇐⇒ w ∈

⋂∞
m=0LΠ # ξ(ϕ) B mM

⇐⇒
∧∞
m=0w ∈ LΠ # ξ(ϕ) B mM ⇐⇒

∧∞
m=0w ∈ LΠ # ξ(◦

mϕ)M

⇐⇒
∧∞
m=0w |= ◦mϕ ⇐⇒ w |= �ϕ .

Example: Let us compute the signatures of two common �-based formulæ;
although we could use the closed form given in the proof of Lemma 4.13

directly, we shall show a few manual steps in order to better see how the result
is built:

ξ(�X) =
⊗∞
m=0[ξ(X) B m] =

⊗∞
m=0

[
PX # R | N1Q B m

]
=
⊗∞
m=0

[
PR1, . . . ,Rm, X # R | J0,mK ∪ (N1 +m)Q

]
=
⊗∞
m=0

[
PR1, . . . ,Rm, X # R | J0,mK ∪ N1+mQ

]
=
⊗∞
m=0

[
PR1, . . . ,Rm, X # R | NQ

]
= PX # X | NQ ≡ P#X | NQ .

Note that the closed form by itself yields PX # X | NQ, which could in this case
be manually simplified into the “prettier” P#X | NQ. These two signatures are
obviously equivalent in the sense discussed in the paragraph on extensional
equivalence page 69, and we shall henceforth carry out similar simplifications
as matter of course. As for the result itself, it is what was expected, as words
of any length can satisfy �ϕ.

ξ
(
� •1X

)
=
⊗∞
m=0

[
ξ
(
•1X

)
B m

]
=
⊗∞
m=0

[
PR, X # R | N2Q B m

]
=
⊗∞
m=0

[
PR1, . . . ,Rm,R, X # R | J0,mK ∪ N2+mQ

]
= PR # X | {0} ∪ {+∞}Q .

There again, the result should come as no surprise: the empty word satisfies
� •1X vacuously, and as soon as there is one transition, then there must be
another, and another. . . hence a word satisfying � •1X can only be either
empty or infinite. ♦

Lemma 4.14 concludes our discussion of signatures. Figure 4.2 and Thm. 4.15

summarise the eight main lemmata of this section.

Ò Theorem 4.15: Signatures

4.3. From Temporal Properties to Rewrite Propositions 73

ξ(>) = P#R | NQ = ε ξ(⊥) = P#∅ | ∅Q

ξ(X) = PX # R | N1Q ξ(¬X) = PR \ X # R | NQ

ξ(•mϕ) = ξ(ϕ) I m ξ(◦mϕ) = ξ(ϕ) B m

ξ(ϕ ∧ψ) = ξ(ϕ)� ξ(ψ) ξ(�ϕ) =
∞⊗
m=0

[
ξ(ϕ) B m

]

Figure 4.2: Building signatures on A-LTL.

For any Π ⊆ T and any ϕ ∈ A-LTL, and given the map ξ(·) : A-LTL → Σ

inductively defined in Fig. 4.2, it holds that

LΠ # ξ(ϕ)M = {w ∈ LΠM | w |= ϕ } .

4.3 From Temporal Properties to Rewrite Propositions

The technical trek through signatures being now over, we come back to our overar-
ching objective for the first problem, which is to translate temporal properties into
rewrite propositions – and of course prove the translation’s correctness. This will
be accomplished by means of translation rules that are used in a way similar to the translation rules

rules of a classical deduction system. Those rules are made up of translation blocks. translation blocks

We define the set B of translation blocks as

B =
{
〈Π # σ
 ϕ〉

∣∣ Π ⊆ T, σ ∈ Σ, ϕ ∈ LTL
}

,

where each translation block actually encodes a statement according to the following
semantics:

〈Π # σ
 ϕ〉 ≡ ∀w ∈ LΠ # σM, w |= ϕ . (4.8)

An exact translation rule is a statement of the form exact translation rule

l
〈Π # σ
 ϕ〉 P(σ,ϕ)

π
,

where the precondition P ∈ Σ× LTL→ B is a predicate on signatures and formulæ
that will be omitted entirely if it is a tautology – which is the case in most rules –
and π is a mixed rewrite proposition, generated by the following grammar:

π := γ | γ ∧ γ | γ ∨ γ γ := ` = ∅ | ` ⊆ ` | Υ X ∈ ℘(R)

` := Π | T | X(`) | X−1(`) | X∗(`) Υ ∈ B .

This is the grammar for rewrite propositions, as given in Sec. 4.1.3[p58], with the
added production γ := Υ, where Υ is a translation block. An exact translation rule
has the following semantics:

l
〈Π # σ
 ϕ〉 P(σ,ϕ)

π
≡ P(σ,ϕ) =⇒

(
〈Π # σ
 ϕ〉 ⇔ π

)
.

In one instance, we shall give an under-approximated translation rule, written and under-approximated rule

74 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

defined in a similar manner as exact rules:

↑
〈Π # σ
 ϕ〉 P(σ,ϕ)

π
≡ P(σ,ϕ) =⇒

(
π⇒ 〈Π # σ
 ϕ〉

)
.

While over-approximated translation rules could obviously be defined as well, weover-approximated rules

have no use for them in the context of this work, and the focus is markedly on
exact translations. In the following, the unqualified words “translation”, “rule”
etcetera will always refer to exact translations and rules. The modus operandi of
the (exact) translation of a formula ϕ ∈ R-LTL consists in starting with the initial
translation block 〈Π # ε
 ϕ〉, and transforming it by successive application of
valid exact translation rules until we have a pure rewrite proposition, that is to
say until there are no translation blocks left at all. The resulting tree of rules, with
〈Π # ε
 ϕ〉 at the root, will be called a derivation. By definition of the translationderivation

rules, this means that the rewrite proposition on the leaves of the derivation is
equivalent to the initial translation block, and by the next theorem, that block is
itself equivalent to the statement that the system R, given the initial language Π,
satisfies the property ϕ. In other words, it is an exact translation in the sense given
in our problem statement, Sec. 4.1.3[p58]. Complete examples of derivations are
given in Sec. 4.5.1[p97].

Ò Theorem 4.16: Translation Satisfaction

〈Π # ε
 ϕ〉 ⇐⇒ R, Π |= ϕ.

Proof. Recall that LΠ # εM = LΠM by Lemma 4.2[p64];

〈Π # ε
 ϕ〉 ⇐⇒ ∀w ∈ LΠ # εM, w |= ϕ ⇐⇒ ∀w ∈ LΠM, w |= ϕ

⇐⇒ R, Π |= ϕ .

Without further ado, we can begin to state and prove a few of the simplest trans-
lation rules. All rules given hereafter are theorems. We start with the simplest
possible rule that can be given.

l
〈Π # σ
 >〉

>
(>)

Proof. We have by definition 〈Π # σ
 >〉 ⇔ ∀w ∈ LΠ # σM, w |= >⇔ >.

Although simple, this rule proves useful later on (namely, in stable cases of rule
(� h)[p84]). Dealing with ⊥ is both more delicate and less useful, so we leave it for
the end.

l
〈Π # σ
 X ∧ Y〉
〈Π # σ
 X ∩ Y〉

(∧X) l
〈Π # σ
 X ∨ Y〉
〈Π # σ
 X ∪ Y〉

(∨X)

Proof. This is a simple application of the semantics of ∧ and X:

∀w ∈ LΠ # σM, w |= X ∧ Y

⇐⇒ ∀w ∈ LΠ # σM, w |= X ∧ w |= Y

4.3. From Temporal Properties to Rewrite Propositions 75

⇐⇒ ∀w ∈ LΠ # σM, w , λ ∧ w(1) ∈ X ∧ w(1) ∈ Y

⇐⇒ ∀w ∈ LΠ # σM, w , λ ∧ w(1) ∈ X ∩ Y
⇐⇒ ∀w ∈ LΠ # σM, w |= X ∩ Y .

Therefore by combining the empty and non-empty cases we obtain

∀w ∈ LΠ # σM, w |= X ∧ Y ⇐⇒ ∀w ∈ LΠ # σM, w |= X ∩ Y ,

which proves rule (∧X). Rule (∨X)[p74] is proven in the exact same way by
substituting ∨ for ∧ and ∪ for ∩.

l
〈Π # σ
 ϕ ∧ψ〉

〈Π # σ
 ϕ〉 ∧ 〈Π # σ
 ψ〉
(∧)

Proof. Conjunction distributes straightforwardly over the universal quantifier:

∀w ∈ LΠ # σM, w |= ϕ ∧ψ ⇐⇒ ∀w ∈ LΠ # σM, w |= ϕ ∧w |= ψ

⇐⇒ (∀w ∈ LΠ # σM, w |= ϕ) ∧ (∀w ∈ LΠ # σM, w |= ψ) .

As pointed out in Sec. 4.2.1[p59], disjunction does not enjoy the same privileges,
and all we can do in general is state a very crude under-approximated translation
rule.

↑
〈Π # σ
 ϕ ∨ψ〉

〈Π # σ
 ϕ〉 ∨ 〈Π # σ
 ψ〉
(∨↑)

Proof. We have trivially:

∀w ∈ LΠ # σM, w |= ϕ ∨ ∀w ∈ LΠ # σM, w |= ψ

=⇒ ∀w ∈ LΠ # σM, w |= ϕ ∨ψ .

Please note however – and this cannot be over-emphasised – that (∨↑) is a shockingly
coarse under-approximation which will not be made use of in this work, that it was
only given here for the sake of completeness, and that it should only be considered
as marginally better than nothing. Furthermore, there are some cases in which
disjunction can be translated exactly; we have seen one such case already (albeit
admittedly a very trivial one) in rule (∨X), and two more useful cases will be
introduced by the next few rules. Therefore, while seeking the next translation rule
to apply in a derivation, (∨↑) should only be selected as the absolute last resort.

Recall that it was mentioned in Sec. 4.2.3[p62] that disjunction did not need to be
handled in signatures at all, as this was best left to a translation rule. Specifically,
disjunction in antecedents is handled by the following rule:

l
〈Π # σ
 [ϕ ∨ϕ ′]⇒ ψ〉

〈Π # σ
 ϕ⇒ ψ〉 ∧ 〈Π # σ
 ϕ ′ ⇒ ψ〉
(∨⇒∧)

76 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

Proof. The result rests on the tautology
(
[ϕ ∨ϕ ′]⇒ ψ

)
⇔ (ϕ⇒ ψ)∧(ϕ ′ ⇒ ψ).

The detailed steps, easy and very similar to previous proofs, are omitted.

Note that neither (∨⇒∧) nor similar rules based on tautologies – (∨X), (∨¬⇒) – are
strictly necessary for the translation: the transformation could be done indepen-
dently. They are nevertheless well worth a mention because they point out both
limits and common modi operandi of the translation process. With this, and barring
base cases and the many other obvious tautology-based rules which we are not
going to state (commutation etcetera), we have exhausted the supply of translation
rules which do not act on their signatures. The next rule, called the rule of signature
introduction, is essential to any non-trivial derivation, and rests upon the definition
of ξ(·) given in the previous section.

l
〈Π # σ
 ϕ⇒ ψ〉 ϕ ∈ A-LTL

〈Π # σ� ξ(ϕ)
 ψ〉
(⇒Σ)

Proof. We use the main property (4.4)[p64] of ξ(·) (cf. Theorem 4.15[p72]), as well
as the (reverse) finite product-breaking Lemma 4.7[p66].

∀w ∈ LΠ # σM, w |= (ϕ⇒ ψ)

⇐⇒ ∀w ∈ LΠ # σM, (w |= ϕ)⇒ (w |= ψ)

⇐⇒ ∀w ∈ LΠ # σM, w ∈ LΠ # ξ(ϕ)M⇒ w |= ψ

⇐⇒ ∀w ∈ LΠ # σM ∩ LΠ # ξ(ϕ)M, w |= ψ

⇐⇒ ∀w ∈ LΠ # σ� ξ(ϕ)M, w |= ψ .

The signature-introduction rule makes it possible to handle disjunction in some
more cases, as the next rule will show.

l
〈Π # σ
 ϕ ∨ψ〉 ∃ϕ̄ ∈ A-LTL : ϕ̄⇔ ¬ϕ

〈Π # σ
 ϕ̄⇒ ψ〉
(∨¬⇒)

Proof. Rests on a tautology: ϕ ∨ψ ⇐⇒ ¬ϕ⇒ ψ.

While rule (∨¬⇒) is technically trivial, it has the merit of clearly showing the
importance of the form in which a temporal formula is given, as mentioned at the
beginning of Sec. 4.2.2[p61]. The best form to use is any form that allows an exact
translation – there may be several.

We have now run out of translation rules that we can state and prove easily using
only previously established results and definitions. Recall to mind the discussion of
“strength” and “weakness” of translations in Sec. 4.2.1[p59]; it was then said that this
necessary bookkeeping would be handled by signatures. However, Sec. 4.2.1[p59]

focused on translating antecedents and did not broach the subject; the use of
signatures to handle the “mode of translation” (i.e. weak or strong) makes their
intuitive meaning less obvious but, as we shall see, it comes out pretty naturally

4.3. From Temporal Properties to Rewrite Propositions 77

in the computations (b). Let us see what weakness or strength of context mean as
far as signatures are concerned, by considering the least invasive operators that
introduce a new context: the weak- and strong-next operators of level zero, ◦0 and
•0. If σ is the signature of some formula ϕ, then by definition of the weak and
strong right shifts and by Lem. 4.9[p68] and 4.10, we have:

ξ
(
◦
0ϕ
)
= *∂σ | {0} ∪∇σ + and ξ

(
•0ϕ

)
= *∂σ | ∇σ \ {0} + .

In other words, what the context really changes – from the point of view of the
signatures – is whether or not 0 ∈ ∇σ. We shall refer to a signature σ as weak if
0 ∈ ∇σ, and strong if 0 < ∇σ. This terminology is consistent with the operators
of the above equations, and with the view that stronger signatures contain more
information, i.e. define stronger constraints and reject more rewrite words. We shall
now argue that the mode of translation should mirror the quality of the signature
in the current translation block. That is to say, given a block 〈Π # σ
 ϕ〉, the
translation of ϕ should be strong if σ is weak, and weak if σ is strong. Thus we
shall transition from a strong translation mode (or “strong context”) to a weak mode
(or “weak context”) by “strengthening” the current translation block’s signature:
if σ is a signature, then ?σ = *∂σ | ∇σ \ {0}+ is its strengthening. Let us apply this ?σ: strengthening of σ

reasoning on the atomic cases of our translation: the literals ¬X and X, starting with
the former; translating ¬X is exactly like translating R \ X in a weak context.

l
〈Π # σ
 ¬X〉
〈Π # ?σ
 R \ X〉

(¬X)

Proof. The proof rests on the equality between the sets LΠ # ?σM and LΠ # σM#
>0,

which is justified by the definition of LΠ # σM.

∀w ∈ LΠ # σM, w |= ¬X

⇐⇒ ∀w ∈ LΠ # σM, 1 ∈ domw⇒ w(1) < X

⇐⇒ ∀w ∈ LΠ # σM, #w > 0⇒ w(1) ∈ R \ X

⇐⇒ ∀w ∈ LΠ # σM, 0 < ∇σ⇒ (1 ∈ domw ∧w(1) ∈ R \ X)

⇐⇒ ∀w ∈ LΠ # ?σM, w |= R \ X .

The case of the atom is actually passably more complicated, and we leave it for the
very last. We now deal with the translation of the weak next operator; the simplest
way to approach this is to recall the semantics of w |= ◦mϕ in terms of suffixes, that
is to say w |= ◦mϕ ⇐⇒ w1+m = λ ∨ w1+m |= ϕ. This suggests that, if the set of
(1+m)-suffixes can be expressed as a set of constrained maximal rewrite words
LΠ ′ # σ ′M, then we shall simply need to ensure that those suffixes satisfy ϕ. In other
words, the translation will be of the form 〈Π ′ # σ ′
 ϕ〉. The initial language Π ′

is immediately determined: (1+m)-suffixes are obtained after m rewriting steps
from Π, performed according to σ. This is a very common pattern, and deserves a
compact notation.

Signature Iteration. Let Π ⊆ T a language, and σ ∈ Σ a signature; then for
n ∈ N we let Πnσ = σ[n]

(
σ[n− 1](· · ·σ[1](Π) · · ·)

)
be the n-iteration of the signature σ. Πnσ : iteration of σ, n times

(b)In [Héam, Hugot & Kouchnarenko, 2012a] we used weak and strong intertwined semantics to
keep track of the mode of translation, however this did not prevent weak and strong aspects from
emerging in signatures. The translation was made simpler and more direct by removing them.

78 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

More formally, it is defined recursively such that Π0σ = Π and Πn+1σ = σ[n+ 1](Πnσ).

With this notation, we have the initial language Π ′ = Πmσ . As for the signature σ ′, it
is intuitively obtained by an operation which is dual to the right shifts seen in the
previous section: on each step the leftmost constraints of σ are “consumed” into
the language. Naturally, we call this operation the left shift.

Arithmetic Overloading. We overload the operator − on the profile ℘(N)×N→arithmetic overloading, −

℘(N) such that, for any S ∈ ℘(N) and n ∈ N, we have

S− n = {k− n | k ∈ S } ∩ N .

Shift Left. Let σ ∈ Σ, m ∈ N, then we define the m-left shift of σ asσ Cm: weakm-left shift of σ

There is no strong left shift.
σ C m = P∂σ(m+ 1), . . . , ∂σ(#σ) # ∂σ(ω) | ∇σ−mQ .

Note that we have, in a fashion dual to right shifts, the property that for all m ∈ N
and all k ∈ N1, (σ C m)[k] = σ[k+m]. However, this time there is no need to define
weak and strong versions; instead, the strengthening star will be used whenever
needed. One could nevertheless write the strong left shift as σ J m = ?(σ C m), as
in [Héam, Hugot & Kouchnarenko, 2012a].

Example: Let σ = PX, Y # Z | N2Q; then σ J 1 = σ C 1 = PY # Z | N1Q. ♦

Our earlier intuition about (1 +m)-suffixes can now be formalised into the next
lemma; note however the condition on the length of the words, which was
not discussed above. It is a technicality: recall that by definition of suffixes,
w#w+1 = w#w+2 = w#w+3 = · · · = λ. It is therefore necessary to exclude too-short
words, otherwise the empty word would have to appear in LΠmσ # σ C mM not only
when a term of Πmσ cannot be rewritten, but also if any term of some Πnσ , n < m,
could not be rewritten. This of course would be contrary to our definition of rewrite
words.

Ñ Lemma 4.17: Shifting Suffixes

Let σ be a signature and Π ⊆ T a language; then

LΠmσ # σ C mM =
{
wm+1

∣∣∣ w ∈ LΠ # σM#
>m

}
.

Proof. (1 : ⊆) Let x ∈ LΠmσ # σ C mM. There exists um ∈ Πmσ such that um
x(1)−−−→

um+1
x(2)−−−→ um+2

x(3)−−−→ · · ·, and either um+#x < R−1(T) or x is infinite.
By definition of Πmσ , there exist u0, . . . , um−1 ∈ T such that u0 ∈ Π0σ =
Π, . . . , um−1 ∈ Π

m−1
σ and ρ1, . . . , ρm ∈ R such that ρ1 ∈ σ[1], . . . , ρm ∈ σ[m]

and u0
ρ1−→ u1

ρ2−→ · · · ρm−−→ um. Let us consider the word w = ρ1 . . . ρmx; its
length is #w = #x+m and #x ∈ ∇(σ C m) = ∇σ−m, thus #w ∈ (∇σ−m)+m =

∇σ \ J0,m− 1K. Furthermore, for all k ∈ J1,mK, we have by construction
w(k) = ρk ∈ σ[k], and for all k ∈ Jm+ 1, #wK, w(k) = x(k − m). By defi-
nition of x ∈ LΠmσ # σ C mM, for all i ∈ dom x, x(i) ∈ (σ C m)[i] = σ[i+m],
thus for all k ∈ Jm+ 1, #wK, w(k) = x(k − m) ∈ σ[k−m+m] = σ[k]. So
we have that for all k ∈ domw, w(k) ∈ σ[k]. Thus we have built a word
w ∈ LΠ # *∂σ | ∇σ \ J0,m− 1K+M such that wm+1 = x. There only remains
to remark that w ∈ LΠ # *∂σ | ∇σ \ J0,m− 1K+M ⇐⇒ w ∈ LΠ # σM#

>m, and

4.3. From Temporal Properties to Rewrite Propositions 79

we can conclude this part. (2 : ⊇) Let x ∈
{
wm+1

∣∣ w ∈ LΠ # σM#
>m

}
,

and let w ∈ LΠ # σM such that x = wm+1; by the same type of immediate
arguments as for (1), x ∈ LΠmσ M. For all k ∈ domw, w(k) ∈ σ[k], so for
all k ∈ dom x, x(k) = wm+1(k) = w(k + m) ∈ σ[k+m] = (σ C m)[k]. As
above, we have #w ∈ ∇σ \ J0,m− 1K, and since #x = #w −m, it follows that
#x ∈ (∇σ \ J0,m− 1K) −m = ∇σ−m = ∇(σ C m). Thus x ∈ LΠmσ # σ C mM.

As announced, the translation rule is a forthright corollary of this lemma:

l
〈Π # σ
 ◦mϕ〉

〈Πmσ # ?(σ C m)
 ϕ〉
(◦m)

Proof. We use Lemma 4.17[p78] in the third step; in this context the condition
#w > m can be omitted because we only deal with cases where #w1+m > 1.

∀w ∈ LΠ # σM, w |= ◦mϕ

⇐⇒ ∀w ∈ LΠ # σM, #w1+m > 1 =⇒ w1+m |= ϕ

⇐⇒ ∀x ∈ {wm+1 | w ∈ LΠ # σM }, #x > 1 =⇒ x |= ϕ

⇐⇒ ∀x ∈ LΠmσ # σ C mM, #x > 1 =⇒ x |= ϕ

⇐⇒ ∀x ∈ LΠmσ # ?(σ C m)M, x |= ϕ .

Dealing with the strong next operator is not much more difficult, as its semantics
can be expressed in terms of that of its weaker counterpart: w |= •mϕ ⇐⇒ #w >
m ∧ w |= ◦mϕ. The only novelty here is the condition #w > m, which will be
translated by excluding smaller lengths.

Ñ Lemma 4.18

Let σ be a signature and Π ⊆ T a language; then for any m ∈ N, it holds that
LΠ # σM#

m = ∅ iff m ∈ ∇σ =⇒ Πmσ ⊆ R−1(T).

Proof. (1 : ⇒) Suppose that LΠ # σM#
m = ∅, and letm ∈ ∇σ such that ∃um ∈ Πmσ :

um < R−1(T). By definition of Πmσ , there exist u0, . . . , um−1 ∈ T such that u0 ∈
Π0σ = Π, . . . , um−1 ∈ Π

m−1
σ and ρ1, . . . , ρm ∈ R such that ρ1 ∈ σ[1], . . . , ρm ∈

σ[m] and u0
ρ1−→ u1

ρ2−→ · · · ρm−−→ um. The condition um < R−1(T) is equivalent
to R({um}) = ∅, thus the rewrite word w = ρ1 . . . ρm is maximal: w ∈ LΠM.
Furthermore, for all k ∈ domw, w(k) = ρk ∈ σ[k], and #w = m ∈ ∇σ, thus
it satisfies σ, and we have w ∈ LΠ # σM, and therefore w ∈ LΠ # σM#

m, which
is a contradiction. (2 : ⇐) Conversely, suppose that w ∈ LΠ # σM#

m, then by
definition of constrained words we must have m ∈ ∇σ, and there must exist
u0 ∈ Π and um ∈ Πmσ such that u0

w−→ um and R({um}) = ∅. This contradicts
um ∈ Π

m
σ ⊆ R−1(T).

Ò Corollary 4.19: Length Rejection

Let S ∈ ℘(N), σ ∈ Σ and Π ⊆ T; it holds that LΠ # σM#
S = ∅ iff

∧
m∈S∩∇σΠ

m
σ ⊆

R−1(T) iff (
⋃
m∈S∩∇σΠ

m
σ) ⊆ R−1(T).

80 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

Proof. The second equivalence is trivial; the first follows from Lemma 4.18[p79]:∧
m∈S∩∇σ

[
Πmσ ⊆ R−1(T)

]
⇐⇒

∧
m∈S

[
m ∈ ∇σ⇒ Πmσ ⊆ R−1(T)

]
⇐⇒

∧
m∈S

[
LΠ # σM#

m = ∅
]
⇐⇒ LΠ # σM#

S = ∅ .

Given those results, the following translation can quickly be proven:

l
〈Π # σ
 •mϕ〉

〈Π # σ
 ◦mϕ〉 ∧
∧

k∈J0,mK∩∇σ

Πkσ ⊆ R−1(T)
(•m)

Proof. Using Corollary 4.19:

∀w ∈ LΠ # σM, w |= •mϕ
⇐⇒ ∀w ∈ LΠ # σM, w |= ◦mϕ ∧ #w > m

⇐⇒ ∀w ∈ LΠ # σM, w |= ◦mϕ ∧ ∀w ∈ LΠ # σM, #w > m

⇐⇒ 〈Π # σ
 ◦mϕ〉 ∧ ∀w ∈ LΠ # σM, #w > m

⇐⇒ 〈Π # σ
 ◦mϕ〉 ∧ LΠ # σM#
J0,mK = ∅

⇐⇒ 〈Π # σ
 ◦mϕ〉 ∧
∧
k∈J0,mK∩∇σΠ

k
σ ⊆ R−1(T) .

The penultimate rules concern the � operator; the approach that we shall follow
is quite similar to that of Sec. 4.2.3 – see (4.5)[p68] – in that it is kicked off by
Lem. 4.1[p57] and handling of conjunction —in this case, through rule (∧). We start
by writing

〈Π # σ
 �ϕ〉 ⇔

〈
Π # σ

∞∧
m=0

◦
mϕ

〉
⇔

∞∧
m=0

〈Π # σ
 ◦mϕ〉 ,

and, after application of rule (◦m), we have

〈Π # σ
 �ϕ〉 ⇔
∞∧
m=0

〈
Πmσ # ?(σ C m)
 ϕ

〉
,

but this falls short of a usable translation, at least in its current, infinite form. The
usual intuition to overcome this kind of infiniteness is to hope for some kind of
fixed point to be reached, which would give licence for the infinite conjunction to
be trivially pared into a finite one. Unfortunately, this is not the case here, since
there is no reason in general to expect that there should exist some h such that
Πhσ = Π

h+1
σ . On the other hand, it seems reasonable that the signature may stabilise

at some point, that is to say we may find some h such that ?(σ C h) = ?(σ C (h+1)),
or more simply, h ′ such that σ C h ′ = σ C (h ′ + 1), and this may by itself provide
sufficient ammunition to express the conjunction more compactly.

Stability. A signature σ ∈ Σ is called left-stable, or simply stable, if it satisfies thestable signature

following three, equivalent conditions:

(1) σ C 1 = σ,

(2) ∀n ∈ N, σ C n = σ,

4.3. From Temporal Properties to Rewrite Propositions 81

(3) #σ = 0 ∧ ∇σ ∈ {∅, {+∞},N,N }.

By definition of the left shift, it is immediate that (σ C n) C 1 = σ C (n + 1), and
the first equivalence (1) ⇔ (2) follows. The implication (3) ⇒ (1) is also a simple
application of the definition. To obtain the converse (1)⇒ (3), notice that if #σ > 0
then #σ C 1 = #σ − 1 , #σ, but if #σ = 0 then #σ C 1 = #σ = 0. Similarly, we need
to have

∇σ− 1 = ∇σ ⇐⇒ ∀n ∈ N, n ∈ ∇σ− 1⇔ n ∈ ∇σ
⇐⇒ ∀n ∈ N, n+ 1 ∈ ∇σ⇔ n ∈ ∇σ .

Since ∞ + 1 = ∞, we can have either ∞ ∈ ∇σ or ∞ < ∇σ; furthermore, if 0 ∈ ∇σ
then ∇σ ∩ N = N, and if 0 < ∇σ then ∇σ ∩ N = ∅. All in all, there are only the four
possibilities listed in (3).

A stable signature allows for an easy translation of �ϕ, which can be stated as the
rule (� ∗). This rule, once proven, will serve as a lemma for the proof of the more
general (� h), which subsumes it in the translation system. It will still be used in
examples when possible, as it is much simpler than (� h).

l
〈Π # σ
 �ϕ〉 σ is stable〈

σ[ω]∗(Π) # ?σ
 ϕ
〉 (� ∗)

A small intermediary remark is required for a complete proof:

Ñ Remark 4.20: Constrained Union

Let σ ∈ Σ, I ⊆ N, and for each i ∈ I, Πi ⊆ T. Then
⋃
i∈ILΠi # σM = L

⋃
i∈IΠi # σM.

Proof. It is immediate from the definition that we have
⋃
i∈ILΠiM = L

⋃
i∈IΠiM.

Likewise, we have by definition LΠ # σM = {w ∈ LΠM | P(w,σ) }, where P(w,σ) is
some predicate depending only on w and σ, the details of which are irrelevant
for this proof. We have

⋃
i∈ILΠi # σM =

⋃
i∈I {w ∈ LΠiM | P(w,σ) } = {w ∈⋃

n∈ILΠiM | P(w,σ) } = {w ∈ L
⋃
n∈IΠiM | P(w,σ) } = L

⋃
n∈IΠi # σM.

Proof of rule (� ∗). Assume that σ is stable.

〈Π # σ
 �ϕ〉
⇔
∧∞
m=0

〈
Πmσ # ?(σ C m)
 ϕ

〉
⇔
∧∞
m=0

〈
Πmσ # ?σ
 ϕ

〉
⇔∀m ∈ N, ∀w ∈ LΠmσ # ?σM; w |= ϕ ⇔ ∀w ∈

⋃∞
m=0LΠ

m
σ # ?σM; w |= ϕ

⇔∀w ∈ L
⋃∞
m=0Π

m
σ # ?σM; w |= ϕ ⇔ ∀w ∈ L

⋃∞
m=0 σ[ω]m(Π) # ?σM; w |= ϕ

⇔∀w ∈ Lσ[ω]∗(Π) # ?σM; w |= ϕ ⇔
〈
σ[ω]∗(Π) # ?σ
 ϕ

〉
.

However, rule (� ∗) is of limited use by itself, as signatures have no particular reason
to be stable. In the next paragraphs, we explore whether and how a signature can
be stabilised, that is to say how to get a stable signature from an unstable one, and
how to employ that to effect the translation of �ϕ in the general case.

High Point. The high point of a signature σ ∈ Σ, denoted by hσ, is defined high point

according to either of the following equivalent statements:

(1) hσ = min{h ∈ N | σ C h is stable },

(2) hσ = min{h ∈ N#σ | ∇σ ⊇ Nh or ∇σ ∩ Nh = ∅ }.

82 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

The equivalence between those two definitions stems from the third characterisation
of stability, because the stability of σ C hσ entails #(σ C hσ) = 0, which implies hσ >

#σ, and ∇(σ C hσ) = ∇σ− hσ ∈ {∅, {+∞},N,N }, hence ∇σ ⊇ N hσ or ∇σ ∩ N hσ = ∅.
Note that since σ C 0 = σ, the high point gives a fourth characterisation of stability
– which is the most convenient one in practice – as σ is stable if and only if hσ = 0.
There remains, however, that not all signatures have a high point; consider the
counterexamples σ1 = P#X | { 2k | k ∈ N }Q or σ2 = P#X | PQ, where P is the set of
prime numbers. We take the convention that in those cases hσ = +∞, and say that
a signature σ is stabilisable if hσ ∈ N. It is fortunate that, while all signatures of Σ
may not be stabilisable, in practice this is the case for all the signatures we shall
need to deal with, as the next lemma will show.

Ñ Lemma 4.21: Stability of ξ(·)

The signature of any formula ϕ ∈ A-LTL is stabilisable; in other words,
 hξ(ϕ) ∈ N, ∀ϕ ∈ A-LTL.

Proof. Recall the definition of ξ(·) given in Thm. 4.15[p72]; we show the result
by induction on ϕ. The base cases are immediate:

 hξ(>) = hP#R | NQ = hε = 0 ∈ N, hξ(X) = hPX # R | N1Q = 1 ∈ N,

 hξ(⊥) = hP#∅ | ∅Q = 0 ∈ N, hξ(¬X) = hPR \ X # R | NQ = 1 ∈ N .

For the inductive cases, let us assume that hξ(ϕ) ∈ N and hξ(ψ) ∈ N. We
start with the weak next: hξ(◦mϕ) = h(ξ(ϕ) B m); we have #(ξ(ϕ) B m) =

#ξ(ϕ) +m and therefore

#
(
[ξ(ϕ) B m] C [hξ(ϕ) +m]

)
= max{ 0, #ξ(ϕ) +m− hξ(ϕ) −m } .

Since hξ(ϕ) > #ξ(ϕ), #
(
[ξ(ϕ) B m] C [hξ(ϕ) +m]

)
= 0. As for the support,

we have

∇
(
[ξ(ϕ) B m] C [hξ(ϕ) +m]

)
=
(
J0,mK ∪ (∇ξ(ϕ) +m)

)
− (hξ(ϕ) +m)

=
[(
J0,mK ∪ (∇ξ(ϕ) +m)

)
−m

]
− hξ(ϕ)

=∇ξ(ϕ) − hξ(ϕ) = ∇(ξ(ϕ) C hξ(ϕ)) ,

and by induction hypothesis, ∇(ξ(ϕ) C hξ(ϕ)) ∈ {∅, {+∞},N,N }. There-
fore, [ξ(ϕ) B m] C [hξ(ϕ) +m] is stable, and it follows that hξ(◦mϕ) =
 h(ξ(ϕ) B m) 6 hξ(ϕ) + m ∈ N. It is easy (but optional for this proof) to
see that we actually have the equality. Moving on to the strong next, we
have hξ(•mϕ) = h(ξ(ϕ) I m); since #(ξ(ϕ) I m) = #(ξ(ϕ) B m), it is im-
mediate that #

(
[ξ(ϕ) I m] C [hξ(ϕ) +m]

)
= 0, and a fortiori #

(
[ξ(ϕ) I m] C

[hξ(ϕ) +m+ 1]
)
= 0. The “+1” will be needed for the support, as this case

is somewhat different from the weak next: the same computation as before,
using hξ(ϕ) +m, would yield (∇ξ(ϕ) \ {0}) − hξ(ϕ), which is not enough to

4.3. From Temporal Properties to Rewrite Propositions 83

conclude. For this reason, we shall use hξ(ϕ) +m+ 1:

∇
(
[ξ(ϕ) I m] C [hξ(ϕ) +m+ 1]

)
=
(
[∇ξ(ϕ) \ {0}] +m

)
− (hξ(ϕ) +m+ 1)

=
([(

[∇ξ(ϕ) \ {0}] +m
)
−m

]
− 1
)
− hξ(ϕ) = ([∇ξ(ϕ) \ {0}] − 1) − hξ(ϕ)

=[∇ξ(ϕ) − 1] − hξ(ϕ) = ∇([ξ(ϕ) C 1] C hξ(ϕ)) = ∇([ξ(ϕ) C hξ(ϕ)] C 1) .

By the induction hypothesis we have immediately ∇([ξ(ϕ) C hξ(ϕ)] C 1) ∈

{∅, {+∞},N,N }. Finally, hξ(•mϕ) = h(ξ(ϕ) I m) 6 hξ(ϕ) + m + 1 ∈ N.
In the case of the product, we have easily hξ(ϕ ∧ψ) = h(ξ(ϕ) � ξ(ψ)) 6
max[hξ(ϕ), hξ(ψ)]. By definition of signature product, #[ξ(ϕ)� ξ(ψ)] =
max(#ξ(ϕ), #ξ(ψ)), thus

#([ξ(ϕ)� ξ(ψ)] C max(hξ(ϕ), hξ(ψ)))

=max
(
0,max[#ξ(ϕ), #ξ(ψ)] − max[hξ(ϕ), hξ(ψ)]

)
= 0 .

As for the support, we derive

∇([ξ(ϕ)� ξ(ψ)] C max(hξ(ϕ), hξ(ψ)))

=∇(ξ(ϕ)� ξ(ψ)) − max(hξ(ϕ), hξ(ψ))

=(∇ξ(ϕ) ∩∇ξ(ψ)) − max(hξ(ϕ), hξ(ψ))

=[∇ξ(ϕ) − max(hξ(ϕ), hξ(ψ))] ∩ [∇ξ(ψ) − max(hξ(ϕ), hξ(ψ))]

=[∇ξ(ϕ) − hξ(ϕ)] ∩ [∇ξ(ψ) − hξ(ψ)] ∈ {∅, {+∞},N,N } ,

as this four-element set is closed by intersection. There only remains the case
of hξ(�ϕ) = h

(⊗∞
m=0[ξ(ϕ) B m]

)
for which we come back to the closed form

given at the end of the proof of Lem. 4.13[p71]. The closed form shows that the
cardinal remains unchanged by the infinite product: #

(⊗∞
m=0[ξ(ϕ) B m]

)
=

#ξ(ϕ), therefore hξ(�ϕ) > #ξ(ϕ). The closed expression of the support is
passably complicated, but can be sufficiently summarised for our purposes by
the inclusion

∇

(∞⊗
m=0

[
ξ(ϕ) B m

])
⊆ J0,NK ∪ {+∞} ,

for some N ∈ N. Either N is finite or it is not. If N = +∞, then the support be-
longs to {N,N }, and is stable by any left-shift – in particular by max(hξ(ϕ), N).
If N ∈ N, then ∇

(⊗∞
m=0[ξ(ϕ) B m]

)
− max(hξ(ϕ), N) ∈ {∅, {+∞} }. Thus we

know that hξ(�ϕ) 6 max(hξ(ϕ), N) ∈ N. We conclude by a summary of the
inductive cases:

 hξ(◦mϕ) = hξ(ϕ) +m ∈ N hξ(ϕ ∧ψ) 6 max[hξ(ϕ), hξ(ψ)] ∈ N
 hξ(•mϕ) 6 hξ(ϕ) +m+ 1 ∈ N hξ(�ϕ) 6 max(hξ(ϕ), N) ∈ N .

With this in place, the solution to a general translation of �ϕ is suggested by the
second statement of Lem. 4.1[p57]. The conjunction of weak-next operators needs
only be unwound up to a certain, arbitrary rank, and we now know that there
always exists a rank beyond which the signature stabilises, and therefore beyond
which translation is no longer a problem. Hence we have the following complete
rule, which supersedes the less general rule (� ∗)[p81]:

84 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

l
〈Π # σ
 �ϕ〉 hσ ∈ N〈

Π # σ

 hσ−1∧
k=0

◦
kϕ

〉
∧
〈
σ[ω]∗(Π hσ

σ) # ?(σ C hσ)
 ϕ
〉 (� h)

Proof. This is a rather direct corollary of Lem. 4.1[p57]’s second statement and
of rules (� ∗)[p81], (∧)[p75], (>)[p74] and (◦m)[p79]:

〈Π # σ
 �ϕ〉 ⇐⇒
〈
Π # σ

[∧ hσ−1
k=0 ◦

kϕ
]
∧ ◦

 hσ �ϕ
〉

⇐⇒
〈
Π # σ

∧ hσ−1
k=0 ◦

kϕ
〉
∧

〈
Π # σ
 ◦ hσ �ϕ

〉
⇐⇒

〈
Π # σ

∧ hσ−1
k=0 ◦

kϕ
〉
∧

〈
Π

 hσ
σ # ?(σ C hσ)
 �ϕ

〉
⇐⇒

〈
Π # σ

∧ hσ−1
k=0 ◦

kϕ
〉
∧

〈
[?(σ C hσ)][ω]∗(Π

 hσ
σ) # ?(σ C hσ)
 ϕ

〉
⇐⇒

〈
Π # σ

∧ hσ−1
k=0 ◦

kϕ
〉
∧

〈
σ[ω]∗(Π

 hσ
σ) # ?(σ C hσ)
 ϕ

〉
.

Note that rule (>) is used when hσ = 0, in which case the conjunction
∧ hσ−1
k=0 ◦

kϕ

is simply >. This brings us back to the case of ⊥, which was mentioned earlier.
Unlike >, ⊥ is never introduced by the rules themselves, since we never have to
deal with potentially empty disjunctions. And it is not particularly useful for
the user either, since termination can be enforced through other means (the atom
∅, for instance), and formulæ can easily be simplified beforehand to remove ⊥
through some basic tautologies. While some such tautologies make for useful
translation rules – (∨⇒∧), (∨X), (∨¬⇒) – this is not the case here. Nevertheless, for
the sake of completeness, we give a sketch of what the translation rule would
be like. In the following, the map ξ−1(·) : Σ → A-LTL acts as an inverse (up
to equivalence) for our signature-builder ξ(·). More specifically, it satisfies the
conditions ξ

(
ξ−1(σ)

)
≡ σ and w |= ξ−1(ξ(ϕ))⇔ w |= ϕ.

l
〈Π # σ
 ⊥〉

〈Π # ε
 ¬ξ−1(σ)〉
(⊥)

Proof. This rests on the first-order tautology ∀x, (P(x)⇒ ⊥)⇔ ∀x,¬P(x).

∀w ∈ LΠ # σM, w |= ⊥ ⇔∀w ∈ LΠ # σM, ⊥
⇔∀w ∈ LΠM, w < LΠ # σM ⇔∀w ∈ LΠM, w |=/ ξ−1(σ) .

Since (⊥) is not actually useful, as said above, there is no need to go to the trouble of
explicitly building ξ−1(·), though it is clear that such a map exists. In practice, one
can simply “replay” the derivation in reverse order, and reconstitute the original
formula through the calls to ξ(·) in instances of (⇒Σ). In all cases, it should be
noted that ξ−1(σ) does not necessarily yield a translatable formula, so using (⊥)
brings no advantage compared to preprocessing. Thus it remains best to remove
⊥s before the translation.

The very last case of this section is that of the atom X, and it is by far the trickiest to
translate, although this difficulty is mitigated by the reuse of previously established
lemmata. Let us start by acquiring some intuition: recall two previous results in

4.3. From Temporal Properties to Rewrite Propositions 85

the case σ = ε:

〈Π # ε
 ¬X〉 ⇔ 〈Π # ?ε
 R \ X〉 (¬X)[p77], σ = ε

〈Π # ε
 ¬X〉 ⇔ X(Π) = ∅ 1, Sec. 4.2.1[p59] .

The substitution of R \ X for X in the right-hand sides of the above equivalences
immediately yields the following translation of the atom X in the special but
common case when σ = ?ε:

〈Π # ?ε
 X〉 ⇔ [R \ X](Π) = ∅ . (X?
ε)

Bearing in mind the first two cases of Sec. 4.2.1[p59], this should look quite familiar –
and indeed it is π2, our first attempt at translating the positive literal. As seen then,
an additional condition was needed in order to ensure existence of the transition:
Π ⊆ R−1(T). With the additional notions and notations introduced since then, we
can couch that in terms of a translation rule:

l
〈Π # ε
 X〉

〈Π # ?ε
 X〉 ∧ Π ⊆ R−1(T)
, (Xε)

which bears a striking resemblance to another, recently introduced rule: (•m)[p80]. In
both cases, a strong translation defers most of the work to its weakened counterpart,
and merely adds an existential clause. Another way of seeing the existence of a
transition is as the rejection of some word lengths, and it is this perspective that
we shall adopt. A concrete way of interpreting the above rule is to say that it
exchanges the presence of 0 in the support of the signature for a statement rejecting
the existence of 0-length maximal rewrite words. As for the “weak” part of the
translation, [R \ X](Π) = ∅, it excludes all words of length 1 or more that do not
start with a rule of X. While this partition of lengths may appear artificial in this
case, it becomes more clearly marked in the next example. Let us consider the
formula

ϕ = X ∧ •1Y ∧ •2Z =⇒ A .

The intuition under its translation is to generate the assertion that any maximal
rewrite word which satisfies the antecedent, but does not satisfy the consequent,
cannot exist. What would such a word look like? Starting with the initial language
Π, it is obtained by successive applications of X, Y, and Z, followed by arbitrary
many other applications of any rule in R. Furthermore, its first rule is not in A. In
other words, any word built on Z(Y([X \A](Π))) would satisfy those criteria. Thus
we have the following translation:

π ≡ Z(Y([X \A](Π))) = ∅ .

Notice that this excludes only the words of length 3 or more which are built
according to the succession X \A, Y, Z. It is perfectly possible to have, for instance
a maximal word w = ρ of length 1, with ρ ∈ X \A and t0 ∈ Π

ρ−→ t1. While it may
violate the consequent, w does not actually satisfy the antecedent: because of the
strong next of level 2 •2, a length of at least 3 is required for that – in terms of
support, we have N3. Let us alter the formula ϕ a little bit and see how it affects
the translation; we take

ϕ ′ = X ∧ ◦1Y ∧ ◦2Z =⇒ A . (4.9)

86 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

Clearly all the words previously excluded must remain so, but this time the
antecedent is more lax in its requirements: words will now satisfy it that did not
for ϕ. Therefore more words may have to be excluded, such as w, which does still
violate the consequent, but no longer the antecedent, now compatible with a length
of 1 – the new support is N1. The solution is not to write [X\A](Π), as it is perfectly
acceptable to have a word that starts like w, provided that it can be extended into a
word that violates the antecedent. For instance if t1 can be rewritten, and then only
by a rule in R \ Y, then the antecedent does not apply. One step farther, we could
have t0

ρ−→ t1
Y−→ t2, provided that t2 cannot be rewritten by Z – failing that, there

would exist a word that violates ϕ ′. The natural way to translate those ideas is to
assume the succession of rules X \A, Y, Z, and to systematically reject the lengths
that are compatible with the antecedent, yielding the following:

π ′ ≡ Z(Y([X \A](Π))) = ∅

∧ [X \A](Π) ⊆ R−1(T) ∧ Y([X \A](Π)) ⊆ R−1(T) . (4.10)

By the same token, supposing now that we had to deal withϕ ′′ = X∧•1Y∧◦2Z⇒ A,
then the translation would instantly come to mind: π ′′ ≡ Z(Y([X \A](Π))) =

∅ ∧ Y([X \A](Π)) ⊆ R−1(T). At this point, the general method has become clear:
if, assuming ¬A for the first move, a length is in the support, and the words so
built could be extended into something that violates the antecedent, then reject it
by enforcing rewritability. However, if no possible extension of the words could
violate the antecedent, then assert emptiness of its target language. This does of
course raise the question of whether it is at all possible to reach a point where
no extension could violate the antecedent, and if so, what that point is. Recalling
the discussion of stability made earlier, that is certainly the case if the signature
stabilises onto ε. In order to write in a compact way the assumption that the first
transition is not by A, we overload the set difference operator \ on the profile
Σ× ℘(R)→ Σ such that, for any σ ∈ Σ and X ⊆ R, we have

σ \ X = σ� ξ(¬X) ≡ Pσ[1] \ X, σ[2], σ[3], . . . , σ[min(#σ, 1)] # ∂σ(ω) | ∇σQ .

We can now write the translation rule in the case where stabilisation is done on
ε:

l
〈Π # σ
 X〉 (σ \ X) C h(σ \ X) = ε

Π
 h(σ\X)
σ\X

= ∅ ∧

 h(σ\X)−1∧
k∈∇σ,k=0

Πkσ\X ⊆ R−1(T)

(X h)

Note that rules (X?
ε) and (Xε) are in fact special cases of the above. The proof of

this formula will be done with the help of the following small lemma:

Ñ Lemma 4.22

Let σ ∈ Σ and h ∈ N such that σ C h = ε; then LΠ # σM#
>h = ∅ iff Πhσ = ∅.

Proof. It suffices to characterise that property in terms of h-suffixes:

LΠ # σM#
>h = ∅ ⇐⇒

{
wh+1

∣∣∣ w ∈ LΠ # σM#
>h

}
= ∅ .

4.4. Generating an Approximated Procedure 87

Therefore, all we have to do is invoke Lem. 4.17[p78], and we obtain LΠ # σM#
>h =

∅⇔ LΠhσ # σ C hM = ∅⇔ LΠhσ # εM = ∅⇔ LΠhσM = ∅⇔ Πhσ = ∅.

Proof of rule (X h). A simple characterisation is derived through Lem. 4.7[p66]:

∀w ∈ LΠ # σM, w |= X ⇐⇒ ∀w ∈ LΠ # σM, w |=/ ¬X

⇐⇒ ∀w ∈ LΠ # σM, w < LΠ # ξ(¬X)M ⇐⇒ LΠ # σM ∩ LΠ # ξ(¬X)M = ∅
⇐⇒ LΠ # σ� ξ(¬X)M = ∅ ⇐⇒ LΠ # σ \ XM = ∅ .

It then becomes possible to reason on the length of the words; most of the
work is done by invoking Lem. 4.22[p86] and Cor. 4.19[p79];

LΠ # σ \ XM = ∅ ⇐⇒ ∀k ∈ N, LΠ # σ \ XM#
k = ∅

⇐⇒ LΠ # σ \ XM#
> h(σ\X) = ∅ ∧ LΠ # σ \ XM#

< h(σ\X) = ∅

⇐⇒ Π
 h(σ\X)
σ\X

= ∅ ∧
∧k= h(σ\X)−1
k∈∇σ,k=0 Πkσ\X ⊆ R−1(T) .

Cases when the signature does not stabilise onto ε – which correspond to σ(ω) R –
require an approximated approach to the same extent as a translation of ^ does,
and thus exceeds the scope of the present discussion. Complete examples of
derivations using the rules of this section are given in Sec. 4.5.1[p97].

4.4 Generating an Approximated Procedure

We now have the tools to translate the original verification problem into an equiva-
lent rewrite proposition, at least for a somewhat large gamut of temporal properties.
The difference between the original undecidable problem statement in terms of a
system and a temporal property, and the no less undecidable reformulation as a
rewrite proposition, is that the latter is much more amenable to being transformed
into a (possibly approximated) procedure. The reader will have noticed that, in the
previous section, the rewrite system R was seen as a black box, whose particular
properties were of no relevance. The same was true of the initial language Π; the
focus rested entirely on the temporal property ϕ, while decidability and represen-
tation of the languages involved by automata were ignored. In this section, we
focus solely on those aspects.

4.4.1 Juggling Assumptions and Expressive Power

Our objective here is to translate a rewrite proposition π into a decision or positive
approximated procedure δ – we call this operation “procedure generation”. For the
sake of clarity, we attribute a truth value to δ, which is computable and conflated
to the result of its execution, that is to say, such that δ is true if the execution of
the procedure generates a positive answer, and false if it does not answer. With
this convention, we have δ ⇒ π; this fits into our overall objective because if δ
answers positively we can then conclude that π holds. Since π is at worst an under-
approximated translation, we have in any case π =⇒ R, Π |= ϕ; thus a positive
answer of δ is enough to conclude that the system satisfies the expected property.

88 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

More precisely, what will really be generated is not merely a single procedure δ,
but a set of different theorems of the form “under such assumptions on the rewrite
system, δ decides (resp. approximates) π”.

We shall not use the same pseudo-code notations as in the introduction, as they
distract from the similarity of structure between a rewrite proposition and its
generated procedures – thus hiding the important differences. Instead, we use
almost the same notations. The grammar of rewrite propositions has been given
in Sec. 4.1.3[p58]. That of (possibly) approximated procedures is quite similar, but
their semantics, although linked, are very different.

δ := γ | γ ∧ γ | γ ∨ γ γ := α = ∅ | α ⊆ α X ∈ ℘(R) .

α := Π | T | X(α) | X−1(α) | X(∗)(α) | \α

In the context of a rewrite proposition, the cases Π | T | X(`) | X−1(`) mean exactly
what is written: a tree language. In the context of a procedure, however, the same
notation stands for an arbitrary tree automaton that accepts this same language.
Two kinds of automata are considered in this chapter: vanilla tree automata (TA)
and tree automata with global equality constraints (TA=), but the method can
certainly be extended to involve other varieties. In the same way, while the cases
` = ∅ | ` ⊆ ` stand for comparisons of languages in rewrite propositions, in
the context of procedures the corresponding cases designate either decision or
positive approximated procedures for emptiness and inclusion (respectively) of the
automata involved.

Actually, the only case where there is an approximation at this level is inclusion
when TA= are involved [Filiot et al., 2008]. There is also the special case X(`) = ∅,
where ` is a TA=-language, which corresponds to a special algorithm [Courbis
et al., 2009, Prp. 6], which will be handled in due time, i.e. during procedure
generation, at the end of this section. Note that this overloading of notation –
which is unlike [Héam, Hugot & Kouchnarenko, 2012a], where procedure names
such as isEmpty were used, – does not introduce any ambiguity, so long as the
context is kept clear. It also has the advantage of avoiding the introduction of
new notations, and of making it visually clearer what transformations the initial
rewrite proposition undergoes. This brings us to the cases X(∗)(α) | \α, which are
unique to positive approximated procedures – note the different stars: ∗ in ` versus
(∗) in α. The crux of the undecidability of π is the potential presence of X∗(`);
however there are well-known methods which, given a regular language `, compute
a TA recognising a regular over-approximation (that is to say, a regular superset)
of X∗(`), which is what we denote by X(∗)(α). We have discussed that at some
length in Chapter 3[p41]. As for \α, which we call here the “constraint relaxation
of α”, it is simply the underlying TA ta(A) obtained by removing all the equality
constraints from the TA= α. It is immediate that L(\α) ⊇ L(α), thus we have a
regular over-approximation again – but a very crude one, this time. Relaxations
will be avoided inasmuch as possible.

Of course there are implicit sanity rules which must be respected in order for the
generated δ to be a valid positive approximated procedure. For instance, \α ⊆ β
positively approximates L(α) ⊆ L(β), but α ⊆ \β does not. Granted, that would be
a silly way of approximating inclusion; it is merely an example to illustrate that
one has to be careful to use over-approximations only where it does not break the

4.4. Generating an Approximated Procedure 89

procedure. This has to be kept in mind during the generation of the procedure.
Note that, as it depends in part upon the kinds of automata involved, it is best
to deal with it separately, rather than attempting to incorporate those rules in the
grammar of δ.

So far we have only touched briefly on the question of the automata representation
of a language, but it is central to the decision/approximation phase. The main
question is the nature of an automaton α built to accept a language `: could it
simply be a TA? must it be a TA=? must it be something even more expressive? We
can require of the user that the input Π be a regular tree language, and there is no
question that T is regular in any case. It is also known that X−1(T) is accepted by a
TA= [Courbis et al., 2009, Prp. 5], as well as X(`), provided that ` is regular [Courbis
et al., 2009, Prp. 7]. Furthermore, properties of the rewrite systems can favourably
influence the expressive power required: for instance, if X is left-linear, then X−1(T)

is only a regular language. Moreover, there is a wide variety of properties of a

Note that, since X ⊆ R is
a set of rules, it is also a
rewrite system. In Chap-
ter 3[p41], the notation R

was just the default vari-
able name for a rewrite sys-
tem, while in this chapter
R is a very specific TRS,
encoding the behaviour of
the program, circuit, proto-
col,. . . under consideration.
This context should be kept
in mind when comparing
statements from this chap-
ter and statements from
elsewhere in this thesis.

rewrite system X under which X∗(`) is actually regular, provided that ` itself is
regular; refer to Chapter 3[p41] for more information on that topic. Thus we can
gain the following insights:

(1) The expressive power required to encode a language ` depends on a set of
assumptions on the inductive sub-parts of `. Each assumption belongs to one
of three possible categories:

a. the expressive power of a sub-language ` (regular, TA=, or beyond),

b. linearity or other regularity-preserving properties of a TRS X,

c. presence of an over-approximation or a positive approximated proce-
dure.

(2) Procedure generation needs to build that set of assumptions inductively.

(3) Actually, in theory different combinations of assumptions may be chosen,
which lead to potentially different procedures.

To illustrate this, let us consider ` = X(Y(Π)). The sub-language Π is regular by
hypothesis; Y(Π) requires a TA= (in general), thus ` cannot be expressed with a
TA=. There are two possible paths: we can either make an assumption, or introduce
an approximation. For instance, if we assume that Y preserves regularity through
one-step rewriting (e.g. if it is linear), then Y(Π) is regular, and it follows that `
is accepted by a TA=. Contrariwise, if we make no such assumption, we can still
proceed by computing α+ = X(\Y(Π)), which is also a TA=, but then we have
L(α+) ⊇ `, and we need to keep in mind (i.e. add to our assumptions) that we
are using an over-approximation. When considering the procedure generation
in an abstract way, both those paths must be considered; however it is clear that
one is preferable to the other. Generally, the path which minimises the use of
approximations will be considered the most desirable. This is tantamount to
minimising the expressive power required at each step. Of course, if Y does not
have any nice properties then there is no choice as to which path to take.

We shall deal with the question of expressive power and the related problem of
detecting approximations by means of a simple inference system, referred to as
“kind inference”, working recursively on an automaton α built by generation from
a rewrite language `. Let K = {TA,TA= } be the set of all “kinds” of tree automata K: kinds of automata

90 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

considered for the procedure generation. As mentioned before, there is nothing
foreordained in this particular choice: a real-world implementation of procedure
generation might incorporate many other kinds of tree automata, so long as they
play nicely with rewrite systems. Now let P = { left-lin, reg-pres, reg-pres∗ } be theP: properties of a system

set of possible properties of a rewrite system, where left-lin stands for left-linear
(regularity-preserving for backwards-rewriting of T), reg-pres is a place-holder for
any property or conjunction of properties that entail preservation of regularity
through one-step forward rewriting (i.e. linear, etc), and reg-pres∗ is a similar place-
holder for preservation of regularity wrt. reachability – i.e. ground, right-linear &
monadic, left-linear & semi-monadic, decreasing, etcetera; see Fig. 3.2 (c). Then we
let A be the set of all possible assumptions, defined asA : assumptions

A = {α : k | k ∈ K }] {X : p | X ∈ ℘(R), p ∈ P }] {α : +++ }] {γ : +++ } ,

where α is any automaton-expression and γ any test as defined by the grammar
given at the beginning of the section. The four disjoint sets in this definition
correspond to the four kinds of assumptions listed earlier. In the case of a test γ,
γ : +++ means that it is an approximation instead of an exact test. A kind-inferencekind-inference rule

rule is either simple or a chain of simple rules; a simple rule is of the form

Γ ` ∆ where Γ, ∆ ∈ ℘(A) ,

and the meaning that, whenever all the assumptions within Γ hold, then so do
all those within ∆. Regarding notations, the sets’ braces will be omitted when
writing the rules, and the comma is taken to mean set union: e.g. “Γ, Γ ′, a” means
“Γ ∪ Γ ′ ∪ {a}”. A chain-rule is a C-separated sequence of simple rules,

Γ1 ` ∆1 C Γ2 ` ∆2 C . . . C Γn ` ∆n ,

such that the antecedents form a chain wrt. inclusion: Γi ⊆ Γi+1. A chain-rule
behaves as one of the simple rules in the chain. Given the assumptions Γ , the rule
that applies is Γk ` ∆k, such that Γk ⊆ Γ , and either k = n or Γk+1 6⊆ Γ . Chain-rules
are useful in the common cases where making some more assumptions – on the
left, e.g. about a rewrite system – prevents us from having to make some other
assumptions – e.g. that such language is over-approximated. Given a set of rules
S – simple and chains – and a set of assumptions Γ , one-step deduction is writtenone-step deduction

Γ `1 ∆, and holds iff there is in S either a simple rule Γ ′ ` ∆ ′ such that Γ ′ ⊆ Γ
and ∆ ⊆ ∆ ′, or a chain-rule whose active simple rule, given Γ , satisfies the same
properties. A deduction, written Γ0 `∗ ∆, can be seen as extending this by reflexivitydeduction

and transitivity, and is defined as follows:

Γ0 `
∗ ∆ iff ∆ ⊆ Γ0 ∨ ∃Γ1, . . . , Γn : Γn ⊇ ∆ ∧ ∀k ∈ J1, nK,

⋃k−1
i=0 Γi `

1 Γk .

Let us now state the axioms of the kind-inference system, which are simply a
summary of the properties that have been informally mentioned earlier. We start
by the most immediate ones:

` Π : TA ` T : TA .

(c)The practical implementation detects the specific properties that ensures this, which we abstract
here. Note that this aspect will keep improving as new regularity-preserving classes of TRS are
discovered and implemented.

4.4. Generating an Approximated Procedure 91

The first rule is a practical hypothesis. The second is trivially true. A third basic
rule one might want to state is α : TA ` α : TA=, which would reflect the fact that
TA are technically degenerate cases of TA= where the set of constraints is empty –
in that sense any tree automaton is technically also a TA=. However, this rule is not
included in the system, as the assumption α : TA is taken to mean that α recognises
a tree language that is known to be regular, and therefore we can and do assume
that α is in fact a TA, while α : TA= means that α accepts a TA=-language that
may be regular, but which has no particular reason to be as far as is known, and
therefore it must be assumed that α is indeed a strict TA=. With this in mind, we
move on to forward rewriting, for which there are two main cases in a chain-rule:
either the rewrite system preserves regularity, or it does not, in which case we use
a TA= [Courbis et al., 2009, Prp. 7]. Forward rewriting cannot a priori be done on
a TA=-language while staying within the allowed kinds of tree automata – TA and
TA= – therefore there is no rule in that case:

α : TA ` X(α) : TA= C α : TA, X : reg-pres ` X(α) : TA .

Let us go this this chain rule in detail, and in plain English. If α is a BUTA (α : TA),
then we deduce (`) that one-step rewriting by an arbitrary X ⊆ R can be performed,
and the result is recognised by a TAGE, and we must assume that a TAGE is strictly
needed (X(α) : TA=). However, under the additional assumption (C, α : TA still
assumed) that X preserves regularity through one-step rewriting (X : reg-pres), we
can do better, and deduce instead that the result is accepted by a BUTA (X(α) : TA).

Backwards rewriting is similarly captured by a two-rules chain, hinging on left
linearity [Courbis et al., 2009, Prp. 5]:

` X−1(T) : TA= C X : left-lin ` X−1(T) : TA .

Note that we do not go to the trouble of dealing with the more general case X−1(`),
simply because the derivations of Sec. 4.3[p73] are such that no translation rule can
yield rewrite propositions that require it. Our first approximated case is constraint
relaxation, with two independent rules:

α : TA ` \α : TA α : TA= ` \α : TA, \α : +++ .

By the first rule, relaxing the constraints of a TA (that is to say a TA= whose set of
constraints is already empty), does not do much; the result still is a TA —the same
as before. A well-done procedure generation should avoid such useless relaxations,
which means that this rule should never be used in practice and could be omitted
without damage. The second rule simply states that relaxing the constraints of a
TA= results in a TA, and introduces an over-approximation. Note that this second
part is only true in general. One might construct special instances of TA= where
relaxation does not introduce any approximation, for instance if the constraints
involve states that are unreachable. However, as far as procedure generation is
involved, it must be assumed that an over-approximation has taken place, lest false
theorems be generated. Note that the two rules are not in competition, as α : TA and
α : TA= are contradictory assumptions. The other approximated case is reachability
over-approximation, captured by a two-rules chain.

α : TA ` X(∗)(α) : TA, X(∗)(α) : +++ C α : TA, X : reg-pres∗ ` X(∗)(α) : TA .

92 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

In the general case (first rule), the use of some over-approximation algorithm is
required; however in the best case (second rule), it can safely be assumed that no
approximation has taken place, and we have L

(
X(∗)(α)

)
= X∗(`). Note that it may

be possible in the future to use similar reachability over-approximation techniques
for TA=-languages, prompting the addition of a rule of the form α : TA= ` X(∗)(α) :

TA=, X(∗)(α) : +++, but there are no such results in the literature as yet.

Lastly, we must not forget to encode the fact that over-approximation propagates
through forward rewriting, and contaminates tests:

α : +++ ` X(α) : +++, (α = ∅) : +++, (α ⊆ β) : +++ ,

which in turn contaminate the entire procedure, confining it to approximation:

γ : +++ ` (γ ∨ γ ′) : +++, (γ ∧ γ ′) : +++ .

Even without any prior approximation, an inclusion test must be a positive approx-
imated procedure if its right-hand side is a TA=, and cannot be a TA; in that case
the usual method (α ∩ βc = ∅) cannot apply, since TA= cannot be complemented
[Filiot et al., 2008]. This is expressed by the rule:

β : TA= ` (α ⊆ β) : +++ . (4.11)

This system is not complete – and no implementation of it can be, since it would
need to know all possible regularity-preserving properties, for instance – but the
rules above are quite sufficient for our immediate purposes. Indeed, we can
now proceed to write the procedure generation itself. As mentioned before, the
generation is to be done inductively on the structure of the input rewrite proposition.
However, it should be noted that our intent is to explore all possible paths, and
generate a theorem for each of them. More precisely, given a rewrite proposition π,
we want to obtain the set of all possible couples ∆, δ, such that ∆ ⊆ A and δ is the
best (possibly) approximated procedure under the assumptions ∆. By “the best”
we mean “minimising the use of approximations”; we do not consider regular
under-approximations. Such a couple ∆, δ can be regarded as the theorem “If ∆,
then δ positively approximates π.”. This differs from an actual implementation
in the sense that an implementation would check on-the-fly which property the
rewrite system actually satisfies, and then explore that sole branch; this is expressed
immediately as a recursive function. Since using functions in this discussion would
force us to manipulate sets of answers everywhere, we use a recursive relation
instead, given as a set of rules. Here is what a procedure-generation rule looks like inprocedure-generation rule

the most general case:

Γ # [`1� ∆1, δ1; `2� ∆2, δ2; . . .] # P # π⇒ ∆ # δ .

Let us start by the parts that are not optional: Γ ⊆ A is a set of assumptions, in
practice only pertaining to properties of the rewrite system, i.e. excluding kind and
over-approximation assumptions; π is the rewrite proposition (resp. sub-part of a
rewrite proposition, such as a language ` or a comparison γ) being converted; δ is
the corresponding procedure (resp. sub-part of a procedure, such as an automaton
α or simple comparison γ), and ∆ is the set of assumptions under which δ is
constructed. The optional parameter P is a predicate which must be satisfied in
order for the rule to apply; it is mostly used for kind inference statements. The

4.4. Generating an Approximated Procedure 93

optional list of patterns of the form “`k� ∆k, δk” between brackets serves to name
possible recursive calls; the `k are supposed to be direct sub-components of π, and
the pair ∆k, δk corresponds to any one possible result of the procedure generation
for `k, under the assumptions Γ . The simplest rules need neither of those options:

Γ # Π⇒ Γ # Π Γ # T ⇒ Γ # T .

In both cases, the language on the left simply becomes the automaton on the right,
and no assumption is required or introduced. The case of backwards rewriting is
also quite simple, though it requires two rules:

Γ # X−1(T)⇒ Γ # X−1(T) Γ # X−1(T)⇒ Γ, X : left-lin # X−1(T) .

In the first rule, no extra assumption is introduced, which means that the resulting
automaton will need to be a TA= in general. In the second rule, the introduction of
the assumption X : left-lin means that it will only be a TA. Depending on which rule
is chosen, the subsequent derivation will yield different procedures (the first choice
may lead to constraints relaxations that are unneeded in the second, for instance),
different assumptions, and thus different theorems. This is a very common pattern;
in fact, that situation occurs at every point of the generation where the presence
or absence of some properties of the rewrite system changes the required kind
of the automaton. To avoid writing all the different possible rules manually, we
“factor” them by putting such properties between angle-brackets: 〈p1, . . . , pn〉. A
rule where this syntax appears is short for the 2n rules obtained by choosing all
possible subsets of those properties. Thus the last two rules can be written simply
as:

Γ # X−1(T)⇒ Γ, 〈X : left-lin〉 # X−1(T) .

Forward rewriting needs to be more general than the backwards case, thus the next
rules are recursive:

Γ # [`� ∆,α] # ∆ `∗ α : TA # X(`)⇒ Γ, ∆, 〈X : reg-pres〉 # X(α)
Γ # [`� ∆,α] # ∆ `∗ α : TA= # X(`)⇒ Γ, ∆, 〈X : reg-pres〉 # X(\α) .

Translated into plain English, the first rule means that, given the assumptions Γ ,
and further assuming that the language `, under the same assumptions Γ , can
be converted into the automaton α, with the resulting assumptions ∆, and also
assuming that it can be deduced from those new assumptions ∆ that α can be a
simple TA, the language X(`) can be represented by the automaton X(α), under
the union of our starting assumptions Γ , and the assumptions ∆ made during the

Note that ∆ `
∗ α is a

deduction, which may take
several steps, and not just
the application of a single
kind inference rule.

generation of α. Furthermore, whether or not X is regularity-preserving influences
the kind of automaton obtained, and thus leads to different branches. Note that
explicitly returning the union Γ ∪ ∆, as was done here, is not strictly necessary,
since we take care that no rule ever removes any assumptions – they can only be
added, – and thus ∆ ⊇ Γ .

The second rule deals with the case where the automaton α can only be a TA=;
in that case, we need to make an over-approximation by relaxing the constraints
of α before forward rewriting. Then again, different branches must be explored
depending on whether X is regularity-preserving. We have the same kind of pattern

94 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

for reachability:

Γ # [`� ∆,α] # ∆ `∗ α : TA # X∗(`)⇒ Γ, ∆, 〈X : reg-pres∗〉 # X(∗)(α)

Γ # [`� ∆,α] # ∆ `∗ α : TA= # X∗(`)⇒ Γ, ∆, 〈X : reg-pres∗〉 # X(∗)(\α) .

Depending on whether X is regularity-preserving for reachability, X(∗)(α) (resp.
X(∗)(\α)) will be exact or over-approximated (resp. over- and twice-over–approx-
imated). We are now done with the construction of automata, and move on to the
generation of tests γ, starting with inclusion.

Γ # [`� ∆,α; ` ′� ∆ ′, α ′] # ∆ ′ 6`∗ α ′ : +++ # ` ⊆ ` ′ ⇒ Γ, ∆,∆ ′ # α ⊆ α ′ . (4.12)

Since this is the first rule with multiple recursive call patterns, let us take the time
to translate it into plain English. We generate a positive approximated procedure
for the language inclusion ` ⊆ ` ′. To do so, we start by computing the automata
accepting those languages, using the generation rules which we have already seen,
and under the assumptions Γ . We obtain two automata α and α ′, and a bunch
of assumptions ∆ and ∆ ′ about them. If, based on the way in which α ′ has been
generated, we need not assume that it only captures an over-approximation of ` ′

(∆ ′ 6`∗ α ′ : +++), then we can proceed and invoke a decision or positive approximated
procedure for containment between α and α ′, and know that this approximates
` ⊆ ` ′. The output is this procedure, along with everything we know so far, that
is to say the assumptions Γ with which we started, and the deductions which
were made in the recursive calls, ∆ and ∆ ′. Note that the rule does not apply if
∆ ′ `∗ α ′ : +++, because if ` ′′ = L(α ′) ⊇ ` ′, then even if we could decide α ⊆ α ′,
we would know at best that ` ⊆ ` ′′, from which it does not follow that ` ⊆ ` ′.
Fortunately, no translation rule actually generates rewrite propositions such that ` ′

cannot be captured by a TAGE, so this is a moot point; nevertheless, the generation
rule would be wrong without this caveat. Furthermore, recall that if α ′ : TA=,
then (α ⊆ α ′) : + will be deduced by the other rules regarding approximations,
specifically (4.11)[p92], hence there is no call to pay it mind here.

The only other kind of simple test is emptiness testing:

Γ # [`� ∆,α] # ∆ `∗ α : TA ∨ ∆ `∗ α : TA= # ` = ∅⇒ Γ, ∆ # α = ∅ .

This is the immediate case: an automaton α accepting ` is built, and regardless of
whether α has constraints or not, an emptiness test is run on it; the algorithmic
complexity changes (ExpTime vs linear time), but this is a decision procedure
in both cases. There is another case, where it is possible to test emptiness of a
language without being able to build the corresponding automaton [Courbis et al.,
2009, Prp. 6], given by the next rule.

Γ # [`� ∆,α] # ∆ `∗ α : TA= # X(`) = ∅⇒ Γ, ∆ # X(α) = ∅ .

In that case X(α) cannot be built, since it is not even known whether it is at all
recognisable by a TA=. One possibility, covered by previous rules, is to actually
test X(\α) = ∅, which introduces an approximation; but in that case it is a terrible
idea, as X(`) = ∅ iff ` ∩R−1(T) = ∅, which is decidable thanks to TA= being closed
by intersection. The above rule reflects that fact, and “X(α) = ∅,” where α is a
TA=, is to be taken to abstract the above test. Note that no approximation will
be deduced for X(α); in fact, the previous rules simply have nothing to say about

4.4. Generating an Approximated Procedure 95

X(α), since it is not an automaton of any allowed kind, but merely a notation
that only takes meaning in the context of an emptiness test. Again, this could be
reflected explicitly in the grammar, at the cost of introducing new symbols. Lastly,
let us emphasise that both paths (exact intersection-emptiness test and constraint
relaxation) will be explored by the system, and yield two different theorems. It is
easy to discriminate between the two, as only the assumptions generated by the
second theorem will enable the deduction of (X(α) = ∅) : +, and not the first. In
a practical implementation, the best option is always chosen if this special rule
is applied with a higher priority than the more general forward-rewriting rules.
Before concluding, let us not forget the rules for conjunctions and disjunctions of
tests, which are trivial given our convention regarding the truth value of a positive
approximated procedure, mentioned at the beginning of this section:

Γ # [γ� ∆, δ;γ ′� ∆ ′, δ ′] # γ ∧ γ ′ ⇒ Γ, ∆,∆ ′ # δ ∧ δ ′

Γ # [γ� ∆, δ;γ ′� ∆ ′, δ ′] # γ ∨ γ ′ ⇒ Γ, ∆,∆ ′ # δ ∨ δ ′ .

A basic implementation in OCaml of some of the rules of this section, sufficient to
run on a few examples, is available on the web:

http://lifc.univ-fcomte.fr/~vhugot/RWLTL.

4.4.2 Optimisation of Rewrite Propositions

A complete translation chain is now defined. However, it is plain that a useful
implementation of such a chain should be given every chance to avoid introducing
approximations and inflating algorithmic complexity. In light of the previous
section, it appears that the best way of doing so is to take every opportunity to
notice regularity-preserving properties of the rewrite system —or more accurately,
of the “atoms” X ⊆ R which appear in the rewrite proposition. Let us take a
quick look at the concrete properties abstracted by reg-pres, reg-pres∗ and left-lin:
linearity (left/and right), monadicity and semi-monadicity, being ground, being
decreasing. . . All those properties share a common pattern: X satisfies property of a
rewrite system if all rules of X satisfy property of a rewrite rule. Therefore, if X, Y ⊆ R

are two rewrite systems such that X ⊆ Y, and Y satisfies one of those properties, so
does X. Since it is always in our best interests to manipulate atoms that satisfy as
many of these properties as possible, it is advisable that the rewrite proposition
given as input to the procedure generation use atoms as small as possible wrt. set
inclusion.

The translation rules, such as they have been defined earlier, are not optimal in
that respect. Recall for instance the translation of X. In Sec. 4.2.1[p59], the following
rewrite proposition was given:

[R \ X](Π) = ∅ ∧ Π ⊆ X−1(T) ,

but the translation rule (Xε)[p85], which is a particular case of the general rule
(X h)[p86], yields instead

[R \ X](Π) = ∅ ∧ Π ⊆ R−1(T) .

By the above arguments, X is more likely to be left-linear than R, and therefore, the
rewrite proposition generated by the translation rules is actually worse than the

http://lifc.univ-fcomte.fr/~vhugot/RWLTL

96 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

handwritten one. Recall the argument for the simplification, given in Sec. 4.2.1[p59]:
starting with the second version, and then looking at both conjuncts, we observed
that, since [R \ X](Π) = ∅, it follows that R−1(T) = X−1(T); only then was the
substitution made. Other similar optimisations could be done, for instance when
translating �X; we gave [R \ X](R∗(Π)) = ∅ in Sec. 4.2.1[p59], and it turns out that
this is also the result of the derivation using rules (X h)[p86] and (� h)[p84]. . . but we
can do better. The above proposition is equivalent to [R \ X](X∗(Π)) = ∅, which is,
again, quite preferable from the viewpoint of procedure generation. Could these
optimisations be integrated into the translation rules themselves? Let us look at
rule (X h)[p86], and take (4.9)[p85]

ϕ ′ = X ∧ ◦1Y ∧ ◦2Z =⇒ A (4.9)

and its translation (4.10)[p86]

π ′ ≡ Z(Y([X \A](Π))) = ∅ (4.10)

∧ [X \A](Π) ⊆ R−1(T) ∧ Y([X \A](Π)) ⊆ R−1(T)

as examples again. An optimisation of the same nature as that made for the
translation of X is applicable here: one could advantageously write Y([X \A](Π)) ⊆

[R \ Z]−1(T) for the second length-rejection statement. The same reasoning does
not extend to the first one, though. In general, the last length-rejection statement
can be optimised if the signature-iteration involved in it directly precedes the one
appearing in the emptiness statement. Let us recall rule (X h):

l
〈Π # σ
 X〉 (σ \ X) C h(σ \ X) = ε

Π
 h(σ\X)
σ\X

= ∅ ∧

 h(σ\X)−1∧
k∈∇σ,k=0

Πkσ\X ⊆ R−1(T)

(X h)

Applying the above, we obtain an optimised version of (X h):

l
〈Π # σ
 X〉 (σ \ X) C h(σ \ X) = ε

∧

 h(σ\X)−2∧
k∈∇σ,k=0

Πkσ\X ⊆ R−1(T)

∧

∧
k∈∇σ∩{ h(σ\X)−1}

Πkσ\X ⊆
[
R \ (σ \ X)

[
 h(σ \ X)

]]−1
(T)

∧ Π
 h(σ\X)
σ\X

= ∅

.

Integrating our second example of optimisation – for �X – into the translation
rules seems more difficult, because this time there are two rules involved, (X h) and
(� h), neither of which has a full view of the rewrite proposition being written. This
is a general remark: each part of a rewrite proposition gives information that may
help to optimise another part of it. Indeed, if the input temporal property is a con-
junction of many sub-properties, nothing prevents the derivation from ultimately
yielding [R \ X](Π) = ∅ ∧ . . . ∧ Π ⊆ R−1(T), both statements stemming from
completely independent parts of the input formula, instead of being the product
of a single application of (X h); the optimisation, although as valid as ever, will
not be performed in that case. The same applies when length rejection statements
are introduced by other rules, such as (•m)[p80]; there is an example of that in
Sec. 4.5.1[p97]. Thus tinkering with rules for the purpose of optimisation seems

4.5. Examples & Discussion of Applicability 97

unequal to the challenge of detecting all possible improvements. Optimisation is
likely best kept to an intermediate, specialised processing phase, wedged between
translation and procedure generation; only there can it have a full view of the
rewrite proposition.

Note that there are doubtless many kinds of possible optimisations besides the
two pointed out in this section, the exploration of which exceeds the scope of this
discussion.

4.5 Examples & Discussion of Applicability

The informal question of whether the proposed verification chain is applicable
in the real world rests on two separate issues. The first, and most important, is
whether the fragment of LTL which can be handled is actually sufficiently large
to describe relevant properties of systems. The second is whether the quality
of the resulting positive approximated procedures is likely to be acceptable. To
address the first issue, we take a look at the kinds of temporal patterns which can
be translated, and attempt to quantify how useful they might be, based on the
comprehensive study done on a large number of specifications in [Dwyer et al.,
1999]. The second issue is dependant on both the depth of the temporal formula that
needs to be checked, and the properties of the rewrite system under consideration.
Thus we look at some existing TRS models in the literature, specifically a model
for the Java Virtual Machine and Java bytecode in [Boichut et al., 2007], a model
for the Needham–Schroeder protocol in [Genet & Klay, 2000], and a model for
CCS specifications without renaming in [Courbis, 2011]. As a prelude to these
discussions, we give three examples of derivations, using the temporal patterns of
[Courbis et al., 2009].

4.5.1 Examples: Three Derivations

The three temporal properties below, while simple, are varied enough to test
every main translation rule. The unused rules consist mostly of the tautology-based
simplifications, such as (∨⇒∧)[p75], (∨¬⇒)[p76], (∧X)[p74], (∨X), etcetera; all occasionally
handy, especially on longer formulæ, but ultimately inessential. The first pattern,
�(X ⇒ •1Y), has already been discussed and illustrated in the introduction; its
translation into a rewrite proposition is obtained through a straight-forward, five-
step derivation:

l
〈
Π # ε
 �(X⇒ •1Y)

〉
(� ∗)

l
〈
R∗(Π) # ?ε
 X⇒ •1Y

〉
(⇒Σ)

l
〈
R∗(Π) # PX # R | N1Q
 •1Y

〉
(•m)

l
〈
R∗(Π) # PX # R | N1Q
 ◦1Y

〉
(◦m)

l
〈X(R∗(Π)) # ?ε
 Y〉(X?

ε)
[R \ Y](X(R∗(Π))) = ∅

∧ X(R∗(Π)) ⊆ R−1(T) .

The result can and should then be optimised into [R \ Y](X(R∗(Π))) = ∅ ∧

X(R∗(Π)) ⊆ Y−1(T), which is the expected final translation. Recalling the dis-
cussion of optimisation in Sec. 4.4.2[p95], this is a very typical case where the

98 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

optimised version of rule (X h) is completely useless, as both parts of the formula
are generated at different points. Hence the usefulness of a dedicated optimisation
phase.

For the second phase, that is to say procedure generation, one cannot expect as
nice and readable a derivation as for the first phase. Indeed, besides branching
on the structure of the rewrite proposition, one would require a new branch each
time there is a choice to make – and even for this simple proposition, there are
quite a lot of choices. The resulting tree structure is hard to represent on paper.
Instead, we shall effect the generation “from the inside out”, unwinding the recur-
sivity and keeping track of the branching possibilities manually. Let us deal with
[R \ Y](X(R∗(Π))) = ∅ first; we build the automaton accepting the language, step
by step, and without making any a priori assumptions: thus we have Γ = ∅. Our
first step is the initial language: ∅ # Π ⇒ ∅ # Π; there is only this one possibility.
The second step is R∗(Π), which is handled by the rule for reachability, applied to
our particular case:

∅ # [Π� ∅, Π] # ∅ `∗ Π : TA # R∗(Π)⇒ 〈R : reg-pres∗〉 # R(∗)(Π) .

Here is our first branching: either X is regularity-preserving (for reachability) or it
is not. Third step: X(R∗(Π)), using the rule for forward-rewriting. Let us explore
the first branch, where 〈R : reg-pres∗〉 = ∅:

∅ # [R(∗)(Π)� ∅,R(∗)(Π)] # ∅ `∗ R(∗)(Π) : TA # X(R(∗)(Π))

⇒ 〈X : reg-pres〉 # X(R(∗)(Π)) .

And now, the second branch, where 〈R : reg-pres∗〉 = {R : reg-pres∗}, which we
write ∆ in an effort to save a bit of space:

∅ # [R(∗)(Π)� ∆,R(∗)(Π)] # ∆ `∗ R(∗)(Π) : TA # X(R(∗)(Π))

⇒ ∆, 〈X : reg-pres〉 # X(R(∗)(Π)) .

In both cases, this creates a new branch, depending on whether X is regularity-
preserving for one step rewriting, for a total of four different possibilities, which
one could summarise as

〈R : reg-pres∗, X : reg-pres〉, X(R∗(Π)) .

On to the fourth step; this time, there are two possible rules that may apply.
One could go on and compute the automaton for [R \ Y](X(R∗(Π))), applying
the forward-rewriting rule again; however, this is not possible in all branches.
To simplify, let us state that the presence or absence of R : reg-pres∗ is moot
at this point; it only influences whether R(∗)(Π) is an approximation. On the
other hand, X : reg-pres influences the kind of automaton generated for X(R∗(Π)),
thus we really just need to discriminate between ∆ ∈ 〈R : reg-pres∗〉 and ∆ ∈

{X : reg-pres} ∪ 〈R : reg-pres∗〉 – writing ∆ the assumptions accumulated in the
current branch. In the first case(s), we have ∆ `∗ X(R(∗)(Π)) : TA=, which requires
the use of a constraint relaxation \:

∅ # [X(R∗(Π))� ∆,X(R(∗)(Π))] # ∆ `∗ X(R(∗)(Π)) : TA=#

[R \ Y](X(R∗(Π)))⇒ ∅, ∆, 〈R \ Y : reg-pres〉 # [R \ Y](\X(R(∗)(Π))) .

4.5. Examples & Discussion of Applicability 99

In the second case(s), we have ∆ `∗ X(R(∗)(Π)) : TA, which obviates the need for
such:

∅ # [X(R∗(Π))� ∆,X(R(∗)(Π))] # ∆ `∗ X(R(∗)(Π)) : TA#

[R \ Y](X(R∗(Π)))⇒ ∅, ∆, 〈R \ Y : reg-pres〉 # [R \ Y](X(R(∗)(Π))) .

Overall, this creates a third binary branching at this step; but there is more. As
mentioned before, there is another possibility: one could use the special rule for
testing emptiness without actually attempting to compute the automaton. While
this could in principle be done in every case, the rule as written only applies if
∆ `∗ X(R(∗)(Π)) : TA= – which makes sense since it is not indispensable when the
automaton can be built explicitly – and we have thus, for ∆ ∈ 〈R : reg-pres∗〉:

∅ # [X(R∗(Π))� ∆,X(R(∗)(Π))] # ∆ `∗ X(R(∗)(Π)) : TA=#

[R \ Y](X(R∗(Π))) = ∅⇒ ∆ # [R \ Y](X(R(∗)(Π))) = ∅ .

Let us count the cases: three binary branching account for 23 = 8 cases. Further-
more, we have just seen that, in two cases of the second level, a different operation
is permitted, which introduces no further branching, and concludes the genera-
tion – as far as [R \ Y](X(R∗(Π))) = ∅ is concerned. Therefore there are in total
8+ 2 = 10 cases, of which 2 are concluded. Now, considering the first 8 cases, there
remains to generate the emptiness test, which is a direct application of the relevant
rule —with ∆ being as usual the set of assumptions generated so far, and writing
` = [R \ Y](X(R∗(Π))) and α = [R \ Y](X(R(∗)(Π))), we have in all cases

∅ # [`� ∆,α] # ∆ `∗ α : TA ∨ ∆ `∗ α : TA= # ` = ∅⇒ ∆ # α = ∅ .

The rule applies whenever ∆ `∗ α : TA∨∆ `∗ α : TA=, that is to say in all cases, and
thus introduces no further branching nor any new assumptions, preserving the
final count of 10 cases. Not all those cases are equally interesting; discarding the
path that are strictly worse than others, there remain only two relevant possibilities:
〈R : reg-pres∗〉. Indeed, the following steps can be done without introducing any
new approximations, for all X and Y. Thus what we have generated so far is a
decision procedure if R : reg-pres∗, and merely a positive approximated procedure
otherwise. Note that this analysis of the cases can easily be automated: for each gen-
erated set of assumptions ∆, complete ∆ by kind inference into ∆ ′ = ∆∪{a | ∆ `∗ a };
only the cases where ∆ ′ is minimal wrt. inclusion have to be considered. Let us
move on to the second part of the rewrite proposition: X(R∗(Π)) ⊆ Y−1(T). The
automaton accepting X(R∗(Π)) is built exactly as before – again, there are four
cases. Y−1(T) is built in one step, and introduces a binary branching:

∅ # Y−1(T)⇒ ∅, 〈Y : left-lin〉 # Y−1(T) .

Let us recall the rule for inclusion (4.12)[p94]:

Γ # [`� ∆,α; ` ′� ∆ ′, α ′] # ∆ ′ 6`∗ α ′ : +++ # ` ⊆ ` ′ ⇒ Γ, ∆,∆ ′ # α ⊆ α ′ .

Fortunately, 〈Y : left-lin〉 6`∗ Y−1(T) : +++, so the rule applies, preserving the two cases.
If ∆ ′ = {Y : left-lin}, then ∆ ′ `∗ Y−1(T) : TA, and the inclusion test is approximated,
as shown by kind inference; if ∆ ′ = ∅, then ∆ ′ `∗ Y−1(T) : TA=, and it is a decision.
Overall, we have a decision procedure if Y : left-lin and R : reg-pres∗, and a positive

100 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

approximated procedure otherwise. Formally, a total of 12 cases (theorems) have
been generated, though most are redundant. It should be apparent by now that
procedure generation is easy to understand and implement, although cumbersome
to write – even in the somewhat bowdlerised version above, where all the kind-
inference derivations were kept implicit. Thus we shall focus on the first phase
(translation into rewrite propositions) for the remaining examples.

Our second example pattern, ¬Y ∧ �(•1Y ⇒ X), states that rules of Y may only
appear after rules of X – it features a typical case of an implication whose antecedent
is in the future wrt. its consequent, and showcases the generality of rule (X h)[p86].
A four-steps derivation suffices:

l
〈
Π # ε
 ¬Y ∧ �(•1Y ⇒ X)

〉
(∧)

l
〈Π # ε
 ¬Y〉 (¬X)

l
〈Π # ?ε
 R \ Y〉(X?

ε)
Y(Π) = ∅

∧ l
〈
Π # ε
 �(•1Y ⇒ X)

〉
(� ∗)

l
〈
R∗(Π) # ?ε
 •1Y ⇒ X

〉
(⇒Σ)

l
〈R∗(Π) # PR, Y # R | N2Q
 X〉(X h)

Y([R \ X](R∗(Π))) = ∅ .

Procedure generation for the resulting rewrite proposition,

Y(Π) = ∅ ∧ Y([R \ X](R∗(Π))) = ∅ ,

is strictly simpler than for the previous example. In this case, the property is
decided if R : reg-pres∗, and positively approximated otherwise.

The third example property, �(X ⇒ ◦1 �¬Y), states that any use of a rule in
X precludes the subsequent use of any rule in Y, for the remaining execution.
Applying the translation rules as usual, we obtain the following derivation –
writing ` = X(R∗(Π)) in order to save some space:

l
〈
Π # ε
 �(X⇒ ◦1 �¬Y)

〉
(� ∗)

l
〈
R∗(Π) # ?ε
 X⇒ ◦1 �¬Y

〉
(⇒Σ)

l
〈
R∗(Π) # PX # R | N1Q
 ◦1 �¬Y

〉
(◦m)

l
〈` # ?ε
 �¬Y〉 (� h)

l
〈
` # ?ε
 ◦0¬Y

〉
(◦m)

l
〈` # ?ε
 ¬Y〉 (¬X)

l
〈` # ?ε
 R \ Y〉(X?

ε)
Y(X(R∗(Π))) = ∅

∧ l
〈R(`) # ε
 �¬Y〉 (� ∗)

l
〈R∗(R(`)) # ?ε
 ¬Y〉 (¬X)

l
〈R∗(R(`)) # ?ε
 R \ Y〉(X?

ε)
Y(R∗(R(X(R∗(Π))))) = ∅ .

This, while correct, is not the best possible translation. It is indeed noticeable that
both statements overlap: overall they have the form Y(`) = ∅ and Y(R+(`)) = ∅,
which would gain to be combined into Y(R∗(`)) = ∅. This inefficiency can be
corrected by noticing that, since λ |= �ϕ, for all formulæ ϕ, it holds that

〈Π # σ
 �ϕ〉 ⇐⇒ 〈Π # ?σ
 �ϕ〉 ,

and thus, when translating a �, the star can simply be ignored in practice. In this
particular case, doing so proves useful, since ε is stable, while ?ε is not. Using this
remark, the nicer translation is obtained immediately; starting again at the fourth
step, we apply the “un-starred” version of (� ∗) instead of the overly general (� h):

l
〈X(R∗(Π)) # ?ε
 �¬Y〉 (� ∗)

l
〈R∗(X(R∗(Π))) # ?ε
 ¬Y〉 (¬X)

l
〈R∗(X(R∗(Π))) # ?ε
 R \ Y〉(X?

ε)
Y(R∗(X(R∗(Π)))) = ∅ .

4.5. Examples & Discussion of Applicability 101

Scope

Pattern Global Before After Between Until Support 6

Absence 41 5 12 18 9 48%
Universality 110 1 5 2 1 96%
Existence 12 1 4 8 1 0%
Bound Existence 0 0 0 1 0 0%
Response 241 1 3 0 0 99%
Precedence 25 0 1 0 0 96%
Resp. Chain 8 0 0 0 0 0%
Prec. Chain 1 0 0 0 0 0%

Support 6 95% 0% 32% 0% 0% 83%

Figure 4.3: Partially supported patterns from [Dwyer et al., 1999].

The resulting translation, Y(R∗(X(R∗(Π)))) = ∅, can be optimised into

Y([R \ Y]∗(X([R \ X]∗(Π)))) = ∅ ,

following a slight generalisation of the second optimisation idea in Sec. 4.4.2[p95] –
a generalisation which is easy to automate and justify. Ultimately, this property can
be decided under the assumptions R : reg-pres∗ (or, more precisely, R\X : reg-pres∗

and R \ Y : reg-pres∗), and X : reg-pres; it is positively approximated otherwise.

4.5.2 Coverage of Temporal Specification Patterns

A survey was conducted in [Dwyer et al., 1999] on a large number (555) of specifica-
tions, from many different sources and application domains. They were classified
according to which pattern and scope – as in [Dwyer, Avrunin & Corbett, 1998] –
each specification was an occurrence of. In this section we examine briefly which
of those pattern/scope combinations are amenable to checking using our method –
often assuming that the pattern atoms P, Q etcetera correspond to simple formulæ –
and tally the percentages of real-world cases (per the survey) each such combination
accounts for. Note that this has to be a somewhat optimistic estimation because of
the assumption on the simplicity of atoms, without which one could simply choose
an atom complicated enough to make any pattern untranslatable. In this section,
we only consider the first phase (translation into rewrite proposition), and do not
accept approximated translations.

Absence patterns are supported for global scopes (�¬P) and after scopes (�(Q ⇒
�¬P)) —the second derivation of the previous section was an example of that. In
both cases, P should follow the grammar P := X | ¬X | P∧P | P∨P, so that it always
boils down to an atom P ⊆ R after liberal application of rules (∧X)[p74], (∨X) and
(¬X)[p77]. Note that the latter rule can be applied without caution because, in both
cases, P is under the scope of a � operator, which, as we have seen in the previous
section, renders moot the introduction of a star performed by rule (¬X). As for
Q, it should be an A-LTL formula. The other scopes (Before, Between, and Until)
involve heavy uses of ^ and U, and thus cannot be translated exactly —in fact we
cannot handle those scopes for any pattern.

102 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

Universality is very similar to Absence, and is handled for global scopes (�P) and
after scopes (�(Q⇒ �P)). Again, Q should be A-LTL, but this time – thanks to the
absence of negations – there is no particular restriction on P.

Response is partially supported; global scopes are of the form �(P ⇒ ^S) and
after scopes of the form �(Q ⇒ �(P ⇒ ^S)). Although both use a ^ operator,
this is not strictly needed in some practical cases. For instance, the first formula
of the previous section was a response pattern, but instead of stating that there
would eventually be a response, it was more specific and used a next operator to
assert that the response would take place on the next step. Thus the following
response patterns are supported: �(P ⇒ ◦kS), �(P ⇒ •kS), �(Q ⇒ �(P ⇒ ◦kS))
and �(Q⇒ �(P ⇒ •kS)), for P,Q ∈ A-LTL, and without any specific restriction on
S.

Similarly, Precedence is partially supported for global scopes: (�¬P)∨ (¬PUS) is not
directly translatable, but whenever the exact number of steps is known, a pattern of
the form �(•kP ⇒ S) suffices. Again, P ∈ A-LTL, and S has no special restriction.

The remaining patterns (Existence, Bounded Existence, Response Chain and Precedence
Chain) are not translatable, and using explicit numbers of steps in those cases
would likely be less useful in those cases than it can be for Response and Precedence

Table 4.3 is a summary of the results of the survey in [Dwyer et al., 1999], that shows
to which pattern/scope combination each of the 555 specifications belongs. The
combinations which are handled to some extent by an exact translation into rewrite
propositions have their numbers shown in bold face. For each pattern, the last
cell of the line gives the proportion of cases belonging to a supported (or partially
supported) scope. For each scope, the last cell of the column gives the proportion
of cases belonging to a supported (or partially supported) pattern. The cell at the
bottom-right gives the proportion of cases which belong to a supported (or partially
supported) pattern/scope combination, out of all cases which corresponded to a
recognisable pattern/scope (511).

What should be taken from this table is certainly not the final 83%, which is grossly
optimistic. It should be kept in mind that the numbers in boldface constitute upper
bounds. For instance, it is unknown how many of the global response patterns
were formulated – or could have been reformulated – in terms of exact steps, and
that is the single largest category. Nevertheless, the table shows that the patterns
and scopes that the method targets are actually the ones which are most likely to
matter in practice.

4.5.3 Encodings: Java Byte-Code, Needham–Schroeder & CCS

Even if the temporal property under consideration admits of an exact translation
into rewrite proposition, there is no guarantee that the corresponding positive
approximated procedure will be fine-grained enough to be of any use. How fine
or coarse it is depends upon two factors: the depth of the temporal formula, and
the properties of the TRS. There are three main constructions which introduce
approximations: R∗(`), Πnσ , and ` ⊆ ` ′, where ` ′ is not regular. The first is
the best-controlled source of approximations, which draws upon considerable
resources in the existing literature. The second can be very crude: let us write

4.5. Examples & Discussion of Applicability 103

Πnσ = Xn(· · ·X2(X1(Π)) · · ·). If it cannot be assumed that each Xi is regularity-
preserving for one-step rewriting, then the generated automaton will have to be the
TA= Xn(\Xn−1(· · · \X2(\X1(Π)) · · ·)). That amounts to a total of n − 1 constraint
relaxations in a row, each of which is a very crude approximation. The third only
occurs in length rejection statements, of the form ` ⊆ R−1(T), and can be a problem
as soon as R is not left-linear. It is thus clear that, in order for the method to
perform well, either the temporal formula must be kept quite simple, or the TRS
must have some nice properties. We look at some existing non-trivial TRS models
in the literature in order to see what properties they satisfy, and thus get an idea of
how applicable the method might be in their application domains.

Let us look at a TRS modelling Java Virtual Machine and Java bytecode semantics,
given in [Boichut et al., 2007] and implemented for automatic generation from Java
bytecode in [Barré et al., 2009], of which an example rule is given below:

xframe(add,m, pc, stack(b, stack(a, s)), l)→
frame(m, next(pc), stack(xadd(a, b), s), l) .

By construction, all the rules of the system are left-linear: this is actually a constraint
under which the authors were working, in order to accommodate the completion
algorithm they were using. Left-linearity is not a crippling constraint in many
cases, as basic functional definitions and pattern-matchings in programming lan-
guages are naturally left linear. This is good, since it means that length-rejection
statements and their inclusions need not be approximated, and removes one source
of coarseness. Looking further at the rules encoding Java bytecode semantics, it
turns out that they are actually also right-linear. The TRS is linear overall, and
that means that any atom X ⊆ R is regularity-preserving for one-step rewriting:
languages of the form Πnσ are regular and can be computed exactly. This leaves only
instances of R∗(`) as a potential source of approximation. That one is unavoidable,
but fortunately it is also the “best” kind of approximation, as mentioned earlier. All
in all, the method is likely to apply quite well to TRS from this problem domain.

Contrariwise, the TRS encoding the Needham–Schroeder protocol proposed in
[Genet & Klay, 2000] is neither left- nor right-linear. Here is an example rule –
slightly modified to remove notations irrelevant to this discussion:

goal(x, y)→ join(goal(x, y),

mesg(x, y, encr(pubkey(y), x, cons(N(x, y), cons(x, null))))) .

It is likely that the encodings of most cryptographic protocols should present
similar challenges, given how often they rely on tests of equalities – of keys, agents
etcetera, which precludes left-linearity, – and repetition of information – for instance
the agent may appear both in clear and encrypted, which precludes right-linearity.
It is of course possible to alleviate this problem by abstracting the TRS – as done in
[Genet & Klay, 2000] over agents and nonces, – but this introduces another layer of
approximation. Choosing whether to abstract at the level of the TRS, or to incur
coarser approximations later on, is therefore a compromise that is best made on a
case-by-case basis.

104 Part II. Chapter 4. Approximating LTL on Rewrite Sequences

A TRS encoding of CCS specifications without renaming is given in [Courbis, 2011];
two of the rewrite rules involved are reproduced below:

Com(r, Sys(x, p))→ Sys(x,Com(r, p))

Com(Sys(x, p), Sys(bar(x), r))→ Sys(τ,Com(p, r)) .

As in [Boichut et al., 2007], although right-linearity was not a design constraint,
it turns out in practice that all the rules are right-linear. Conversely, while left-
linearity was a requirement, for the same reasons as before, two of the rules – such
as the second rule reproduced above – are not left-linear. The solution used in
[Courbis, 2011] consists in replacing each of those non-left-linear rules ρ by the set
of rules obtained by substituting an action for x in ρ. Since any given CCS program
makes use of only a finite number of actions, the resulting TRS is therefore finite,
and linear.

Another way to deal with that would have been to notice that both non–left-linear
rules are of the same form as (3.3)[p50], and can therefore be handled through the
use of language intersections. Either way, as for Java bytecode, this leaves R∗(`)

as the sole potential source of approximation, and the method seems therefore
well-suited to this domain as well.

4.6 Conclusions & Perspectives

The systematic generation of (possibly) approximated procedures to determine
whether a given term-rewriting system satisfies a specific linear temporal logic
property is addressed in two steps: first, an equivalent rewrite proposition is
generated; second, a (possibly) approximated procedure is derived from the rewrite
proposition. The first step is achieved through a set of translation rules relying on
the notion of signatures, or models of the sub-formulæ appearing as antecedents
of the general LTL formula. The second step is served by procedure generation
rules, whose main aim is to juggle with the expressive power required to encode
the tree languages involved, and to manage approximations. A survey of the
existing literature indicates that the method targets widely used patterns of (safety)
properties, and that linearity properties which alleviate coarseness in the positive
approximated procedure are naturally met by existing TRS models in some problem
domains (e.g. bytecode, CCS semantics).

Regarding approximations, the focus of the present work is on exact translations for
the first step, relegating all approximations to the second, where the body of work
existing on approximating regular tree languages comes into play. Future works
should focus on extending the first step with fine under-approximated translations
wherever exactness is not achievable, in particular with operators of the “until”
family —though the method we are currently considering requires a slightly more
expressive variety of rewrite propositions. Integrating equational theories in the
same framework, if feasible, would also increase the method’s applicability. The
end goal is of course the integration of our proposals into the verification chain
dedicated to the automatic analysis of security-/safety-critical applications.

4.6. Conclusions & Perspectives 105

— Part III —

Efficiently Solving Decision Problems
for

Tree Automata with Global Constraints

106

Chapter 5
A Brief History of Constraints

Contents
5.1 Tree Automata With Positional Constraints 107

5.1.1 The Original Proposal . 108

5.1.2 A Stable Superclass With Propositional Constraints 109

5.1.3 Constraints Between Brothers 109

5.1.4 Reduction Automata . 110

5.1.5 Reduction Automata Between Brothers 111

5.2 Tree Automata With Global Constraints 111

5.2.1 Generalisation to Propositional Constraints and More . . 112

5.2.2 Rigid Tree Automata . 113

5.3 Synthetic Taxonomy of Automata With Constraints 114

5.4 Notations: Modification of an Automaton 115

—Where we meet a lot of automata with constraints, old and new.

T
ree automata with global constraints, which are an significant compo-
nent of our model-checking method, are a rather recent development of
automata theory. The present chapter completes the curt presentation that
was afforded them in Sec. 2.5[p35] by putting them into a larger context. It

provides a few motivating examples for the study of constraints and fleshes out the
history, state of the art, and taxonomy of extended models of tree automata. The
reader uninterested in such things may want to skip directly to the very last section,
which introduces a few notational conventions that will prove convenient in this
part of the thesis – and particularly indispensable in the next chapter, where our

More in the Appendix!

The reader interested in
a more exhaustive survey
will find that two other
classes – DAG and mem-
ory automata – are pre-
sented in the Appendix,
Section 11.1[p191].

own contributions to the study of the algorithmic complexity of decision problems
for global constraints are presented.

The primary reference for this chapter is of course [Comon et al., 2008], which
provides an extensive survey of automata with positional constraints, though it
does not touch on global constraints. On this latter subject, we would point the
reader towards [Filiot et al., 2010; Vacher, 2010] both as primary literature and
surveys.

5.1 Tree Automata With Positional Constraints

A powerful motivation for the study of constraints was encountered in Part II: as
we have mentioned, regularity is not preserved through rewriting, even when a

107

108 Part III. Chapter 5. A Brief History of Constraints

single step is involved. That is to say, R being some rewrite system, R(`) is not –
in general – regular, even if ` itself is a regular tree language. That this is the case
is quite clear when considering non-linear rewrite rules, such as g(x) → f(x, x).
With the reminder that the language of ground terms of f(x, x) is denoted by L=
(2.4)[p35], it is immediate that{

g(x)→ f(x, x)
}
(T(A)) = L= ,

and while T(A) is trivially regular, L= is, as we have already seen, known to be
non-regular [Comon et al., 2008], although it is easily recognisable by a TAGE. This
example makes two important general points: first, non-linearity is problematic,
and second, crafting extended models of automata capable of testing equality of
subterms presents itself as a natural solution to that problem. This observation is not
novel by any means, nor is the interest in tackling non-linearity of terms and rules,
which pervades logic, equational programming, etcetera. Under that impetus, the
first class of tree automata extended with such capabilities, tree automata with localtree automata with local equality

and disequality constraints equality and disequality constraints (TALEDC, and originally RATEG) was proposed
TALEDC more than three decades ago in the thesis [Mongy, 1981], supervised by Max

Dauchet.

5.1.1 The Original Proposal

A TALEDC is a BUTA whose transition rules carry additional information: indeed,
each rule is coupled with a set C of constraints of the form αuβ or α6β, where
α and β are some positions. No provision is made at this stage as to whether
those positions “exist” in some sense; they are simply strings of integers. Encoding
positions starting with 1, as is the convention throughout most of this document,
they need simply satisfy α,β ∈ N∗1. We call these positional constraints so as topositional constraints

distinguish them from the global constraints on states seen in sections 2.5[p35] and
5.2[p111]. Notation-wise, positional constraints are generally affixed to the left-hand
side of the rules or to the arrow, as follows:

σ(p1, . . . , pn)[C]→ q or σ(p1, . . . , pn)→C q .

For the sake of brevity, an empty set of constraints is not represented:

σ(p1, . . . , pn)→∅ q is written σ(p1, . . . , pn)→ q .

The execution – or run – of a TALEDC is defined as a direct extension to that
of a BUTA. The mapping ρ : P(t) → Q is a run on t if, for all α ∈ P(t), there is
a transition t(α)(ρ(α.1), . . . , ρ(α.n))[C] → ρ(α) ∈ ∆ such that, for all constraints
βuγ ∈ C (resp. β6γ ∈ C), α.β, α.γ ∈ P(t) and t|α.β = t|α.γ (resp. t|α.β , t|α.γ).
For instance, the transition rule

f(q1, q2, q3)[13u 2, 126 13]→ q

may only apply at position α when t|α.13 = t|α.2 and t|α.12 , t|α.13. This class
is quite expressive; it can easily accommodate L=, for instance, with Q = {q, qf },
F = {qf} and the following transitions:

∆ = {a→ q, b→ q, f(q, q)→ q, f(q, q)[1u 2]→ qf } . (5.1)

5.1. Tree Automata With Positional Constraints 109

TALEDC are closed by union and intersection, but unfortunately not by comple-
mentation; moreover, the emptiness problem is undecidable, which is a crippling
shortcoming for some applications. This class is still actively studied, however. For
instance a recent result [Godoy, Giménez, Ramos & Àlvarez, 2010] showed that
any member of the positive subclass can be complemented into a member of the
negative subclass, and conversely.

The negative/positive ter-
minology introduced in sec-
tion 2.5 generalises to all
classes of automata with
constraints. Positive = only
equalities; negative = only
disequalities.

5.1.2 A Stable Superclass With Propositional Constraints

As could be expected, the limitations of TALEDC elicited interest in more tractable
classes. One way of approaching that is to trade some degree of expressive power
for decidability of emptiness. The other angle of attack, if one is interested in closure
properties rather than in decidability, is to go the opposite way and look for a stable
superclass. It so happens that there is a painless way in which to achieve stability:
it suffices to generalise the sets of constraints C, where all atomic constraints
c1, . . . , cn ∈ C can be seen as being taken conjunctively as c1 ∧ c2 ∧ · · · ∧ cn, into

In using the “superclass”
angle of attack, we follow
the unifying approach of
[Comon et al., 2008]. This
slightly deviates from the
historical definitions, but
provides a much smoother
overview wrt. closure prop-
erties of the other classes be-
low.

more general propositional formulæ:

C := βuγ | β6γ | C ∧ C | C ∨ C | ¬C | (5.2)

The satisfaction of such constraints is defined in the obvious way. This class, which
we shall call tree automata with propositional local equality and disequality constraints tree automata with propositional

local equality and disequality
constraints

(TAPLEDC), is studied in [Comon et al., 2008, Chap. 4, as AWEDC], and is shown to
TAPLEDCbe determinisable in exponential time – with up to exponential size increase – and

closed by all boolean operations in the same way as run-of-the-mill BUTA – linearly
for union, quadratically for intersection, and exponentially for complementation.
Indeed, TAPLEDC is simply the closure of TALEDC by complementation; this is
vindicated by the intuition that one needs to negate constraints in order to effect
determinisation. Membership is decidable in polynomial time – or even in linear
time in the deterministic case – but emptiness is, of course, undecidable, as befits a

A TAPLEDC is still deter-
ministic if two transitions
have the same left-hand
side, provided that the con-
junction of their constraints
is not satisfiable.

superclass of TALEDC.

5.1.3 Constraints Between Brothers

Let us now examine classes for which emptiness is decidable. Instead of directly
looking for subclasses of TALEDC, we shall use TAPLEDC as a starting point,
and in so doing obtain decidability without necessarily losing the aforementioned
cosy closure properties. The restrictions that we are about to invoke are indeed
orthogonal to whether the constraints are taken conjunctively or not.

The first decidable subclass to be discovered is founded on the observation that
one does not always need constraints over the full range of possible positions. The
automaton (5.1) illustrates this by showing that the ur-example L= is expressible
using a constraint over direct children. The class obtained by restricting TALEDC to
constraints βuγ ∈ C (resp. β6γ ∈ C) such that |β| = |γ| = 1 is called tree automata tree automata with equality and

disequality constraints between
brothers

with equality and disequality constraints between brothers (TABB), and was first studied
TABBin [Bogaert & Tison, 1992].

As desired, emptiness is decidable, though not cheaply so in the non-deterministic
case: the problem is ExpTime-hard. The proof is similar to that for TAGE [Filiot et al.,

110 Part III. Chapter 5. A Brief History of Constraints

2010, 2008], and we shall see another version of this argument – albeit in a more
restrictive context – in the next chapter. TABB inherit from TAPLEDC the closure
properties by all standard boolean operations, without any modification of the
algorithms – determinisation of TAPLEDC rearranges the propositional constraint
formula but does not alter the nature of its atomic constraints. Additionally, in the
deterministic case, emptiness is actually testable in polynomial time.

Generally speaking, almost all standard decidability results about BUTA carry
over to TABB – albeit with increased complexities – and the linearity conditions
wrt. rewriting etcetera are relaxed into conditions of “shallow” non-linearity. Ex-
ceptions to that arise chiefly in the domain of automata on tuples of finite trees
[Comon et al., 2008, Sec. 3.2]. For instance, TABB are not closed under projection
and cylindrification. This mainly reflects the fact that positional constraints do not
mix well with overlapping trees; for instance it holds that 16 2 for the tree

f, f

a, ba, a

= f

aa

+ f

ba

,

where + symbolises tree overlapping, but this is no longer the case for the projection
on the first component. More recently, TABB have also been extended to unranked
trees [Wong & Löding, 2007].

5.1.4 Reduction Automata

The second subclass, reduction automata (RA), was introduced in [Dauchet, Caron &reduction automata
RA Coquidé, 1995], and is a bit more delicate to define. The intuition is that there is a

bound on the number of equality constraints – but not of disequality constraints –
that may be invoked in any individual run of the automaton. This is accomplished
by means of an ordering of the states, and an additional condition on the transitions.
Indeed, an RA is a TAPLEDC equipped with a partial ordering on states (4) ⊆ Q2

such that, for all transitions σ(p1, . . . , pn)[C] → q ∈ ∆, it must hold that pi 4 q,
for all i ∈ J1, nK. That is to say, q is an upper bound of {p1, . . . , pn } wrt. 4.
Furthermore, if any of the atoms of C is an equality constraint, then the upper
bound must be strict: pi ≺ q, for all i. To show that a particular TAPLEDC is an
RA, it suffices to exhibit a suitable ordering on the states. By way of example, the
automaton (5.1) accepting L= can be shown to be an RA simply by taking q ≺ qf.

RA are closed under union and intersection, but it has yet to be determined
whether they are closed under complementation. It is, however, known that
complete, deterministic RA are closed under complementation. The history of
emptiness decision for RA is slightly convoluted. It was claimed in [Dauchet
et al., 1995] that emptiness was decidable, a claim that stood for more than a
decade, until [Jacquemard, Rusinowitch & Vigneron, 2008] contradicted it in the
non-deterministic case by reducing the halting problem for 2-counter machines.
Nevertheless, decidability does hold in the complete and deterministic case; note
that the proof of [Dauchet et al., 1995] pertained to that case, and that the claim that
the argument could be generalised to the non-deterministic case was only made
en passant. The proof only provides an impracticably high upper bound on the
complexity, though; the lower bound is unknown. Finiteness is decidable as well,
under the same conditions of completeness and determinism.

[Comon et al., 2008, Thm.
4.4.9] claims finiteness to be
decidable, without restric-
tion, but that is probably a
remnant from the 2007, pre-
[Jacquemard et al., 2008]
version. See the next chap-
ter for a reduction of empti-
ness to finiteness.

5.2. Tree Automata With Global Constraints 111

RA have deep applications in the domain of rewriting; let us just mention two
important results which illustrate why they are called “reduction” automata. Given
any term rewriting system R, the set of ground R–normal-forms can be represented
by an RA – the construction is exponential in time and size. Therefore, one can
deduce from the results on RA that, for any TRS R, it is decidable whether the
language of ground R–normal-forms is empty, and it is also decidable whether it is
finite. Another important result in that field is that it is even decidable whether it
is regular.

Further known restrictions of RA sport better decidability results whilst preserving
very useful capabilities. The negative subclass of RA (-RA) – or equivalently of -RA

TAPLEDC, since the ordering on states is moot in the negative case – is expressive
enough to accept ground R–normal-forms, but emptiness can be decided in expo-
nential time. Moreover, deterministic RA whose constraints do not overlap (noRA) noRA

admit of a polynomial time emptiness test.

It is worth noting that RA, along with BUTA, have recently been extended to
equality modulo theories in [Jacquemard et al., 2008].

5.1.5 Reduction Automata Between Brothers

The two subclasses RA and TABB can be merged into the more general class known
as generalised reduction automata (GRA), introduced in [Caron, Comon, Coquidé, generalised reduction automata

GRADauchet & Jacquemard, 1994], which is defined as a TAPLEDC such that, for all
transitions σ(p1, . . . , pn)[C] → q ∈ ∆, q is an upper bound of {p1, . . . , pn }, and,
if any of the atoms of C is an equality constraint βuγ such that |β| = |γ| > 1,
then the upper bound must be strict. In other word, this relaxes the bound of
RA on the number of equality tests, but only where tests between brothers are
concerned. This class inherits the closure and decidability results of RA. This is

GRA actually predate RA
by a few months; GRA gen-
eralised TABB and another
class called encompassment
automata. The relation-
ships are given here in hind-
sight.

the most general known class of automata with positional constraints for which
emptiness is decidable – again, under conditions of completeness and determinism.

Same remark as above
concerning the unspecified
claim of decidability of
[Comon et al., 2008, p133]

5.2 Tree Automata With Global Constraints

In comparison to positional constraints, the use of global constraints is a very
recent development. While positional constraints have many applications, as the
previous section attests, they are intrinsically limited in some ways that hamper
their applicability in certain contexts, in particular regarding tree patterns for XML.
The nub of their shortcomings in that field stems from their inability to test equality
of subterms that may be arbitrarily far from one another. A typical example is the
case of a bibliography and a pattern X(author(x), author(x)), where X is a binary
context. The set of ground terms of such a pattern cannot be represented with
positional constraints, as there is no telling how far the first instance of author
may be from the other one. The emergence of XML as a lingua franca of Internet
services, file formats, databases and more has renewed interest in formalisms
capable of handling such cases. Driven by those motivations, the first variety

112 Part III. Chapter 5. A Brief History of Constraints

of automata with global constraints was initially introduced in [Filiot, Talbot &
Tison, 2007] as a means to prove decidability of a sizeable fragment of TQL, a
query logic for semi-structured data. The authors of that paper have continued
their study of TAGED in [Filiot et al., 2008, 2010; Filiot, 2008]. We have already
given the definition for this class in section 2.5[p35]. They are closed by union and
intersection, but not by complementation; they are not determinisable. Membership
testing is NP-complete, and emptiness as well as finiteness are ExpTime-complete
for the positive subclass, while emptiness for the negative subclass is in NExpTime

– a result that can be refined into NP-hardness by noting the connexion to DAG
automata, which is presented in section 11.1.1. Whether emptiness is decidable for
the general class remained an open question for a few years – until the works cited
in the next section – but it was shown decidable in 2NExpTime for vertically boundedvertically bounded TAGED

TAGED (vbTAGED), i.e. TAGED for which the number of disequality constraintsvbTAGED

along any root-to-leaf path is bounded. Universality and inclusion are undecidable.

5.2.1 Generalisation to Propositional Constraints and More

TAGED were extended in [Barguñó, Creus, Godoy, Jacquemard & Vacher, 2010]
following the same modus operandi as the generalisation of TALEDC in TAPLEDC.
Instead of having two sets of constraints (equalities and disequalities), the automa-
ton is equipped with a boolean formula of constraints, as in (5.2). Since this is
presently the most general class of automata with global – equality and disequality
– constraints, it is simply called tree automata with global constraints (TAGC). It istree automata with global

constraints
TAGC

proven in [Barguñó et al., 2010] that emptiness is decidable for TAGC, and therefore
for TAGED. The authors pushed the inquiry even further, by considering global
arithmetic constraints over the number |q| of occurrences of a given state q during
a run, or even over the number ‖q‖ of distinct subterms evaluated in q during a
run. The arithmetic constraints are expressed as linear inequalities of the form∑

q∈Q

aq|q| > b or
∑
q∈Q

aq‖q‖ > b with aq, b ∈ Z,∀q ∈ Q .

Tree automata with such constraints – and only such constraints – are known
as Parikh tree automata [Klaedtke & Rueß, 2002], or linear constraint tree automataParikh tree automata

[Bojanczyk, Muscholl, Schwentick & Segoufin, 2009], and emptiness is known to
be decidable for this class. However, adding global equality constraints to Parikh
automata (Parikh+E) immediately breaks decidability. It is possible to remedy thatParikh+E

by restricting arithmetic constraints to natural linear inequalities, by adding the
proviso that the coefficients aq and a all have the same sign. Equivalently, the
coefficients are restricted to natural numbers, and the constraints are of the form∑

q∈Q

aqf(q) R b with aq, b ∈ N, f ∈ { |·|, ‖·‖ }, (R) ∈ {>,6 } .

The class of Parikh automata with natural linear constraints as well as global
equality and disequality constraints (NParikh+ED) has decidable emptiness. More-NParikh+ED

over, the capabilities of TABB can be added to that mix, yielding tree automata
capable of simultaneously testing global equalities, disequalities, and natural linear
inequalities, as well as local positional constraints between brothers (NParikh+EDB),NParikh+EDB

while preserving decidability of emptiness.

5.2. Tree Automata With Global Constraints 113

Another interesting generalisation that appears – silently – in [Barguñó et al., 2010]
is the fact that the disequality constraints are defined as (2.8)[p36], and not as (2.7).
Thus they are not necessarily irreflexive, which is very useful in that it allows the
expression of key constraints, for instance in the context of an XML database. The
disequality constraint qkey 6qkey straightforwardly enforces the uniqueness of the
subterms under each occurrence of qkey, yet such a constraint would have been
invalid using the original definition of disequalities in [Filiot et al., 2008], for which
irreflexivity was mandatory. It has been shown in [Vacher, 2010, Lemma 2.17] that
allowing reflexive disequality constraints – and of course altering the definition of
satisfaction to range over distinct positions, as done in (2.8)[p36] – strictly extends
the expressive power of the model. We write TAGErD and TAGrD the classes TAGErD

TAGrDTAGED and TAGD altered to use this new definition.

5.2.2 Rigid Tree Automata

While the original motivation under the development of tree automata with global
constraints was the verification of semi-structured documents and databases, they
have found applications beyond that domain. In particular, the subclass of rigid tree rigid tree automata

automata (RTA) [Jacquemard, Klay & Vacher, 2009, 2011; Vacher, 2010] has shown RTA

itself to be of interest for the verification of cryptographic protocols. An RTA is a
TAGE whose constraints may only be diagonal, that is to say, puq =⇒ p = q;
the states q such that quq, and the constraints themselves, are called rigid, hence
the name of the class. This apparently benign restriction has consequences which
make RTA an eminently practical subclass. First, it has the same expressive power
as TAGE, as any TAGE can be “diagonalised” – the downside being that the
construction is exponential. Many applications, for instance in the verification
of cryptographic protocols, do not require the general notion of constraints; it is
natural in that field to require subterms built by the same state to be equal. The
comparative lack of conciseness of RTA compared to TAGE is therefore not neces-
sarily an obstacle, nor even an inconvenience. Second, emptiness and finiteness
become decidable in polynomial time – linear time for emptiness, which is a far
cry from the ExpTime-completeness of the same problems for TAGE.

The intuition under that spectacular efficiency is that rigid states, unlike general
equality constraints, do not interfere with the standard accessibility or marking
algorithms used to decide emptiness. Such algorithms typically attempt to exhibit
a witness, that is to say a term accepted by the automaton, which is built by
associating to each state q a term tq evaluating in q – marking q with that witness –
until no new state can be so marked. The question is then whether any final state is
marked. While there may be many possible witnesses – for instance a witness tp of
p may be a or b if a→ p, b→ p ∈ ∆ – one of them suffices; with f(p, p)→ q ∈ ∆,
one may build tq = f(a, a) or tq = f(b, b), it does not matter which. By definition,
the witness is accepted by a run where all states can be considered rigid, and
whether the automaton is a BUTA or an RTA is therefore irrelevant.

The other decision problems mentioned in this section are not affected by the
restriction to rigid constraints, nor are the closure and determinisation properties;
all are identical for TAGED, TAGE, and RTA. Intersection-emptiness is ExpTime-
complete, as for BUTA.

114 Part III. Chapter 5. A Brief History of Constraints

One weakness of RTA is that, like TAGED and TAGE, they cannot be determinised.
To palliate that shortcoming, the class of visibly rigid tree automata (VRTA) is definedvisibly rigid tree automata

VRTA by analogy to visibly pushdown automata. Whether or not a state is rigid is made
immediately visible by looking at the input symbol, by means of a partial function
ν : A → domu, such that for any rule σ(p1, . . . , pn) → q ∈ ∆, either σ ∈ domν

and q = ν(σ), or σ < domν and q ∈ Q \ domu. This restrictions allows VRTA to
be determined; the construction is exponential in time and size. VRTA have other
good properties in that there is a reasonably powerful class of TRS – linear and
invisibly pushdown TRS – for which rewrite closure becomes decidable, in the
sense that it can be tested whether t ∈ R∗(L(A)), for a TRS R and a VRTA A.

Linear and invisibly pushdown TRS are capable of encoding non-trivial crypto-
graphic protocols, and the expressive power of VRTA renders exact a number of
operations that methods based on regular tree languages have to approximate,
thereby avoiding a number of false alarms. For instance, it becomes possible to
model a local memory within which agents may store previously read messages.

5.3 Synthetic Taxonomy of Automata With Constraints

At this point, we have seen a large number of classes of automata, most of them
extensions of BUTA with constraints-testing abilities. The appendix to this thesis
also features other classes of closely related automata, namely DAG automata in
Sec. 11.1.1[p191], and tree automata with one memory – and some variants – in
Sec. 11.1.2[p193]. In Part IV, we shall meet a few more strains from the tree-walking
family, this time without constraints. Figure 5.1[p116] offers a synthetic view of the
classes of automata appearing in this thesis. Each node corresponds to a class,
and transitions describe the superclass/subclass relation. There are three types of
transitions: plain arrows

SuperClass SubClass

are used if the superclass is strictly more expressive than the subclass. When two
classes are equally expressive, each of the mutual transitions is either dotted or
dashed. A dashed transition means that there is a linear language-preserving
transformation from one class to the other, whereas a dotted transition means that
the transformation may lead to an exponential blow-up.

Concise Verbose Class1 Class2 .

Since decidability of the emptiness problem is such an important criterion for a
class of automata, the style of each node reflects the status of the corresponding
class in that respect. There are four different styles:

Decidable Dec. Inherited Dec. Deterministic Undecidable .

They correspond respectively to: (1) maximal class for which emptiness is decidable;
(2) subclass of a decidable class, which therefore inherits decidability from its
parent – though it might have its own decidability proofs or more efficient decision

5.4. Notations: Modification of an Automaton 115

procedures; (3) class for which emptiness is decidable only in the complete and
deterministic case; (4) class for which emptiness is undecidable.

Note that word automata appear along with tree automata in the figure; their
expressive powers can be compared in the sense described in the first chapter, by
seeing words as unary trees. Contrariwise, relationships between context-free word
acceptors and tree acceptors do not appear: although one could see a PDA as more
powerful than a BUTA, for instance, doing so would require a different viewpoint
on words-as-trees, immaterial for this dissertation.

5.4 Notations: Modification of an Automaton

The next chapter features a number of somewhat heavy automata constructions.
Here we define some notations to make them easier to understand and avoid
repetitions.

The reader may have noticed that, in order to avoid having to give explicit tu-
ple representations of automata, we have already taken to assume in this docu-
ment that the attributes of an automaton A, when left unspecified, are the usual
〈A, Q, F, ∆,u,6, . . .〉. So Q, for instance, refers to the states of the automaton on
which our interest is currently focused – unless otherwise stated. This is an obvious
convention that simplifies exposition, but it is only unambiguous when dealing
with automata one at a time. In order to keep some similar degree of convenience
with constructions involving several automata, without opening the door to ambi-
guity, we define here a systematic “object-like’ naming scheme for TAGED – since
it is the class we use most. Any TAGED X is assumed to have attributes of the form
〈X :A,X :Q,X :F,X :∆,X :u,X :6〉.

It is often convenient to describe an automaton as being almost the same as another
one, except for one or a few attributes. The modification of an existing TAGED
is written *X | <modifs>+, where <modifs> is a comma-separated list of attribute
changes. For brevity, within the scope of *X | · · · + any unqualified attribute x
stands for X :x. For instance, *X | u := ∅+ is the bare tree automaton associated with
the TAGE X, or ta(X). Modifications of the form “x := f(x)” will just be written
“f(x)”; for instance *X | Q \ {q}+ is X from which the state q has been removed, as
with “Q := Q \ {q}” (or even “X :Q := X :Q \ {q}”). Of course in this example the
modification “F \ {q}” is completely omitted, as it is implied by “Q \ {q}”, given that
by definition X :F ⊆ X :Q. The same goes for the removal of all the rules of X :∆ and
constraints of X : u that used q.

Those notations are used in the next chapter, where we study the class of TA=k,
TAGE whose number of constraints is bounded by k.

116 Part III. Chapter 5. A Brief History of Constraints

FSA

BUTA

TWA

GRA Parikh

DTDTA

NParikh+EDB

TABB

pebble
TWA

TA1M

PDTA

RTA

DAGA

VRTA

TDTA

RA kTAGE

Parikh+E

TALEDC

TAGD

TAGE

TAGC

DTWA

VTAMSB

PDA

-RA

TAGErD

TAGrD

NParikh+ED

TAPLEDC

noRA

vbTAGED

2FSA

TAGED

Figure 5.1: A taxonomy of automata, with or without constraints.

Chapter 6
Bounding the Number of Constraints

Contents
6.1 The Emptiness & Finiteness Problems 118

6.2 The Membership Problem . 121

6.3 A Strict Hierarchy . 126

6.4 Summary and Conclusions . 128

—Where economy of constraints does not save that much time. . .

T
ree automata with global equality constraints – or TAGE, or TA= – are a
central component of the model-checking approach developed in Part II
of this thesis, and have many applications beyond that. Unfortunately, as
discussed in the previous chapter on related automata families, the boon of

expressive power which constraints provide is always tempered by a commensurate
increase in algorithmic complexity, up to and including a loss of decidability. Yet,
we have also seen that TAGE admit an equally expressive subclass – RTA, where
all constraints are of the form pup, cf. section 5.2.2[p113] – for which emptiness is
testable in linear time.

In this chapter, we raise a question that is in some sense orthogonal to this ob-
servation: if restricting the kind of constraints which may be taken can have such
a drastic effect on the complexity of some problems – from ExpTime-complete
to linear for emptiness – what would be the effect of bounding the number of
constraints instead? In the same way that some applications only require rigid
constraints, it is often the case that one can get by with only a handful of general
constraints. Can one therefore hope for efficient decision procedures in those cases?
What are the respective parts played by the constraints and the size of the input
data in the explosion of the complexity?

To answer this, we consider the classes of TA=k, for k ∈ N. A TA=k is a TA= whose TA=k: bounded TA=

number of constraints is at most k, that is to say, a TA= A is a TA=k if it satisfies
Card(A :u) 6 k. Assimilating classes of automata to the corresponding sets of
automata, we have by definition the following strict chain:

TA = TA=0 ⊂ TA=1 ⊂ · · · ⊂ TA=k ⊂ TA=k+1 ⊂ · · · ⊂ TA= =
⋃
k∈N

TA=k . (6.1)

The primary question is therefore to determine the algorithmic complexity of
useful decision problems for each of the different classes in this chain. In the first
section, we study the emptiness decision problem, which we show to be solvable in
linear time with just one constraint, but ExpTime-complete so soon as at least two
constraints are involved. A similar result then follows for finiteness. The second

117

118 Part III. Chapter 6. Bounding the Number of Constraints

section finds a different behaviour for the – NP-complete – membership decision
problem, which remains in PTime regardless of how many constraints there are –
so long as there is a bound. Those results have been published in [Héam, Hugot &
Kouchnarenko, 2012c].

Another line of inquiry pertains to the expressive power of those classes: does
bounding the number of constraints limit the recognisable languages, and if not,
how many constraints does one need a minima? We have yet to define precisely
what is meant by expressive power, though. If C is a class of automata on a certainL(C): expressive power of C

alphabet A – that is to say, a set of automata on A – then we write L(C) the class of
languages recognised by C, defined as

L(C) = { ` ⊆ T(A) | ∃A ∈ C : L(A) = ` } .

For instance, the class of regular languages is L(TA), and when we write that TA=,
for instance, are strictly more powerful than BUTA, this amounts to stating the
strict inclusion L(TA) ⊂ L(TA=). In such terms, by (6.1) we have obviously, for all
k > 0, L(TA=k) ⊆ L

(
TA=k+1

)
, but are all the inclusions strict? Or are they strict up

to some rank? Furthermore, is there a k ∈ N such that L(TA=k) = L(TA=)? Those
are our secondary and tertiary questions, which are answered – positively for the
one, and negatively for the other – in the third section of this chapter.

6.1 The Emptiness & Finiteness Problems

The complexity of emptiness and finiteness decision is tied to the number of
constraints. We first deal with the case of TA=1 which, as we shall see, admit
a polynomial transformation into rigid tree automata – unlike the general case.
The core of the argument is that the equality constraint can be simulated by an
intersection of regular languages, and therefore with a product of tree automata.
This holds in the case of one constraint because a single constraint cannot “nest
with itself”, in a sense which is made clearer by the following lemma:

Ñ Lemma 6.1: Incomparable Positions

Let A be a TA= with the constraint puq, and ρ an accepting run of A on a tree
t. Assume that both those states are involved in the run: {p, q} ⊆ ran ρ; then
any two distinct positions α,β ∈ ρ−1({p, q}), α , β, are incomparable: α f β.

Proof. Since α,β ∈ ρ−1({p, q}) and {p, q} ⊆ ran ρ and puq, we have t|α = t|β by
definition of the satisfaction of the equality constraint (2.6)[p35]. Suppose that α
and β are comparable; for instance, assume wlog. that α C β. Then it follows
immediately that t|α C t|β; this is absurd since t|β cannot be structurally equal
to one of its own strict subterms. Therefore α f β.

As mentioned before, every TA= can be transformed into an equivalent RTA; the
general construction of [Filiot, 2008, Lem. 5.3.5] is exponential, however – of
the order of 2|Q|2 . Perhaps a better construction could be found, but let us note
that regardless of possible optimisations, it would have to be exponential in the

6.1. The Emptiness & Finiteness Problems 119

general case. If there existed a sub-exponential language-preserving construction
r : TA= → RTA, then it would be possible to test emptiness of any TA= A in sub-
exponential time, by computing r(A) and testing its emptiness – which is decidable
in linear time for RTA. Since emptiness decision is ExpTime-complete for TA=,
such a procedure r cannot exist – at least not under the usual assumptions about
complexity classes. In any event, it is certain that no such r can be polynomial,
since the time hierarchy theorem implies that PTime ⊂ ExpTime. Yet this need not
apply when there is only one constraint, as we now show:

Ñ Lemma 6.2: Rigidification

For every TA=1 A, there exists an equivalent RTA B with at most one constraint,
whose size is at most quadratic in that of A.

Proof. If A has no constraints, or a rigid constraint (pup), then no transforma-
tion is needed: B = A. Assume that A has a single constraint of the form puq,
with p , q.

Building Blocks. We define the construction in terms of smaller automata
obtained by modification of A:

B¬p = *A | Q \ {p}+ Bp = *B¬q | F := {p}, ∆ := ∆p+

B¬q = *A | Q \ {q}+ Bq = *B¬p | F := {q}, ∆ := ∆q+

Bpq = Bp ×Bq ,

where ∆p is B¬q :∆ from which all rules where p appears in the left-hand side
have been removed, and ∆q is defined symmetrically to ∆p. Bpq is built to
accept the intersection of the languages of Bp and Bq using the standard
product algorithm; it has a single final state qf = (p, q). Note that all those
building blocks are vanilla tree automata.

Construction. With this we define the rigid tree automaton

B = B¬p]B¬q] *A | Q ′, ∆ ′, qf uqf + ,

with Q ′ = (Q \ {p, q})] (Bpq :Q) and ∆ ′ = ∆qf
pq] (Bpq :∆), where ∆qf

pq is A :∆

from which all left-hand side occurrences of p or q have been replaced by qf.

Equivalence. There remains to show that B is equivalent to A. Let t ∈ L(A),
accepted through a run ρ; then one of the following is true:

(1) neither p nor q appears in ρ,
(2) p appears, and q does not,
(3) q appears, and p does not,
(4) both p and q appear.

In the three first cases, the constraints are not involved, and t is accepted
by: (1) both B¬p and B¬q (2) B¬q (3) B¬p. In case (4), a subterm evaluating to p
will belong to Lp(A) by definition, and also to Lq(A) as it needs to be equal
to another extant subterm evaluating to q. Furthermore, p and q can only
appear at the root of each subruns, lest puq be trivially violated. Therefore,

120 Part III. Chapter 6. Bounding the Number of Constraints

σ

σ

u1

σ

u2

σ

u3

. . . σ

un−1

un

σ

u

σ

u

σ

u

. . . σ

u

u

Figure 6.1: Reduction of intersection-emptiness: the language.

a successful run of B can be constructed by simply substituting all p and q
subruns by qf-runs of Bpq. Thus t ∈ L(B).

Conversely, let t ∈ L(B); it is immediately seen by construction that L
(
B¬p
)
⊆

L(A) and L
(
B¬q
)
⊆ L(A). Suppose that t is accepted through a run of the

third and last part of B – namely *A | Q ′, ∆ ′, qf uqf+ – then every qf-subrun
can be replaced by either a p-run or a q-run of A. The result of this operation
is trivially an accepting run of ta(A); there remains to observe that it satisfies
puq, because the corresponding subtrees must be equal given the constraint
(qf, qf) ∈ B :u. Thus t ∈ L(A).

Size & Time. All building blocks are of size O(‖A‖), except Bpq, which is of
size O(‖A‖2). Globally, the size of B is therefore at most quadratic in that of
A. The construction is also straightforwardly done in quadratic time.

Ð Proposition 6.3: Emptiness

The Emptiness problem is in PTime for TA=1 , and ExpTime-complete for TA=2 .

Proof. TA=1 . Emptiness is testable in linear time for RTA, therefore the empti-
ness of A is testable in quadratic time using the construction of Lemma 6.2.

TA=2 . Overview. We reduce the test of the emptiness of the intersection
of n tree automata A1, . . . ,An, which is an ExpTime-complete problem, to
the emptiness of a TA=2 A. This is similar to the arguments of [Filiot et al.,
2008, Thm. 1], the major difference being that we can only use two constraints
instead of an unbounded number of constraints. The idea is to take advantage
of the fact that an explicit equality constraint between two positions effectively
enforces an arbitrary number of implicit equality constraints on the sub-
positions.

Assumptions. It is assumed without loss of generality that n > 2 and the
sets of states of the Ai are pairwise disjoint; that is to say, ∀i, j ∈ J1, nK, i ,
j ⇒ (Ai :Q) ∩ (Aj :Q) = ∅. Furthermore, it can be assumed that each Ai has
exactly one final state qfi. If that is not the case, then Ai can be modified to be
so, which results in its size doubling in the worst case.

Language. We define the language ` as the set of trees of the form given in
Figure 6.1[p120], where σ is a fresh binary symbol and for all i, ui ∈ L(Ai) and
u = ui. Note that this implies that u ∈

⋂
iL(Ai), and therefore ` is empty if

and only if
⋂
iL(Ai) is empty.

6.2. The Membership Problem 121

Automaton. We build a TA=2 A that accepts `, by first building a universal
tree automaton U, of final state qu. Then, we let A = 〈Σ,Q, F, ∆,u〉, where

Q = (
⊎
iAi :Q)] (U :Q)]

{
qu
1, . . . , q

u
n−1, q

v
1, . . . , q

v
n−1

}
] {qf}

F = {qf} qu uqu, qu
1 uq

v
1 Σ = (

⋃
iAi :Σ)] {σ/2}

∆ = {σ(qv
1, q

u
1)→ qf } ∪ (

⋃
iAi :∆) ∪ (U :∆) ∪{

σ(qu, qu
k+1)→ qu

k

∣∣ k ∈ J1, n− 2K
}
∪
{
σ(qu, qu)→ qu

n−1

}
∪{

σ(qfk, q
v
k+1)→ qv

k

∣∣ k ∈ J1, n− 2K
}
∪
{
σ(qfn−1, qfn)→ qv

n−1

}
.

With regards to Fig. 6.1[p120], the u are accepted into qu, and their equality is
enforced by the rigid constraint on that state. The entire branch is accepted
into qu

1. As for the other branch, accepted in qv
1, each ui is recognised in qfi,

and thus ui ∈ L(Ai), for all i. By the constraint qu
1 uq

v
1, both branches are

identical, and thus for all i, ui = u. Finally we have by construction L(A) = `,
and ‖A‖ = O(

∑n
k=1‖Ai‖), which concludes the proof of ExpTime-hardness.

Thus emptiness is ExpTime-complete.

With this result, a similar conclusion can be drawn for the finiteness problem:

Ð Proposition 6.4: Finiteness

The finiteness problem is in PTime for TA=1 , and ExpTime-complete for TA=2 .

Proof. TA=1 . Finiteness is testable in polynomial time for RTA – more precisely,
in O(‖A‖ · |Q|

2) according to the construction of [Filiot et al., 2010] – therefore
the finiteness of A is testable in polynomial time using the transformation of
Lemma 6.2. All in all, the above describes a decision procedure inO(‖A‖2·|Q|

4)

– or O(‖A‖6) to simplify – however this complexity can certainly be refined.

TA=2 . We reduce the emptiness problem for TA=2 to the finiteness problem.
Given a TA=2 A, we build

A ′ = *A | Q] {p}, F := {p}, Σ] {σ/1}, ∆
′+

where ∆ ′ = ∆ ∪ {σ(qf)→ p | qf ∈ F } ∪ {σ(p)→ p } .

A ′ is also a TA=2 . If A accepts the empty language, then so does A ′. Conversely,
if t ∈ L(A), then σ∗(t) ⊆ L(A ′), and thus L(A ′) is infinite. Consequently, the
language of A ′ is finite if and only if that of A is empty. This, combined with
Prp. 6.3[p120], shows that TA=2-finiteness is ExpTime-hard; since the general
problem for TA= is ExpTime, TA=2-finiteness is ExpTime-complete.

6.2 The Membership Problem

Let us begin with some general observations and notations. We shall need to
reason about the relation u; unfortunately, it is not an equivalence relation. For
instance, given the constraints pu r and ruq it is syntactically tempting, but in
general wrong, to infer puq by transitivity. The crux of the matter here is whether
the state r actually appears in the run: if it does, puq is effectively implied, but if

122 Part III. Chapter 6. Bounding the Number of Constraints

it does not, then both constraints pu r and ruq are moot. Lemma 6.5 shows that,
given the knowledge (or the assumption) of a set P ⊆ domu of the constrained
states which are actually present in runs, the constraints of u are interchangeable
with an equivalence relation, which we call the togetherness relation.

Ñ Lemma 6.5: Togetherness

Let A be a TA= and P ⊆ domu. Then any run ρ such that (ran ρ)∩(domu) = P

is accepting for A if and only if it is so for

AP = *A | u := (u∩P2)≡ + ,

where the equivalence closure is meant under dom(u∩P2).

Proof. Intuitively, this operation first removes all constraints which must be
moot – because they involve states not in P – and then adds the constraints
which can be deduced assuming all constrained states appear in the run.
Formally, let ρ be an accepting run of ta(A) such that (ran ρ) ∩ (domA :u) = P.
Since A and AP share their states and final states, constraints notwithstanding
it can be seen as a run of either TA=, and it is accepting for A if and only if it is
so for AP. Thus we only need to show that the constraints are compatible, that
is to say, that if ρ is a run of A it satisfies AP :u, and that if it is a run of AP, it
satisfies A :u. In keeping with our usual notations we write simply u for A :u.

(1 : “ =⇒ ”) Assuming that ρ is a run of A, it must satisfy the constraints u
by definition. We have trivially (u∩P2) ⊆ (u), so a fortiori ρ must satisfy this
subset of the constraints. There remains to show that the additional constraints
introduced by the equivalence closure are satisfied as well.

Symmetry. The definition of the satisfaction (2.6)[p35] of an equality constraint
puq is symmetric with respect to p and q, therefore it is trivial that whenever
puq holds, then so does qup. This does not depend on P and is not specific
to this proof – one can assume constraints to be symmetric as a matter of
course.

Transitivity. Suppose that pu r and ruq are satisfied, where p, q, r ∈ P. By
our hypothesis on ρ, P ⊆ ran ρ, and thus there exists in particular a position
αr ∈ ρ

−1({r}). For all possible positions αp ∈ ρ−1({p}) and αq ∈ ρ−1({q}), we
have t|αp = t|αr — to satisfy pu r — and t|αq = t|αr — to satisfy qu r. Thus
for any αp, αq we have t|αp = t|αr = t|αq , and puq is satisfied as well.

Reflexivity. Suppose that puq holds, for p, q ∈ P. Again, there exists in
particular a position αq ∈ ρ−1({q}). For any two αp, α ′p ∈ ρ−1({p}), we need to
have t|αp = t|αq and t|α ′p = t|αq to satisfy puq, and thus t|αp = t|α ′p . Therefore
pup holds.

(2 : “⇐= ”) Let us assume ρ to be a run for AP; again, by definition, it satisfies
the constraints of (u∩P2)≡. To show that it satisfies u, it suffices to verify
that it complies with any constraint (p, q) ∈ u \

(
u∩P2

)
, which is to say, any

constraint such that either p or q is not in P. Suppose without loss of generality
that p < P, and recall that (ran ρ) ∩ (domu) ⊆ P. Since p ∈ domu, we have
p < ran ρ, and ρ−1({p}) = ∅; it follows that puq is vacuously satisfied.

6.2. The Membership Problem 123

GP St←− h ∈ Ht
P −→

G1 = {p, q }

G2 = { r, s, t }

G3 = {qx}

Gn

...

CG1

CG2

CG1

CGn

•

• •

CG3
• • • •

• • • • • • • •

Figure 6.2: Housings: affecting a similarity classes to each group.

Let us take a notation for this equivalence relation: given a set P ⊆ Q, we write it

�P = (u∩P2)≡ , (6.2)

and say that q and q ′ are together with respect to P if q�P q ′. Its equivalence classes �P : togetherness wrt. P

over the constrained states are denoted by

GP =
dom(�P)
�P

=
dom(u∩P2)
(u∩P2)≡

and called groups. Note again that only a subset P of the constrained states GP : groups of states for �P
which actually appear in the run have any real influence: that subset is

⋃
GP =

dom(u∩P2). The others are part of constraints which are moot given P. If t is a
tree, we write ∼ (or ∼t when the tree under consideration is not obvious) for the
similarity relation on t, defined on P(t)2 such that α ∼ β ⇐⇒ t|α = t|β, and build ∼: similarity relation

the quotient set

St =
P(t)

∼
,

which we call the similarity classes of t. With this, we can outline a polynomial St: similarity classes of t

algorithm for testing membership, which is developed in the next lemma and
proposition. The idea is that given P, and in order to satisfy the constraints, there
must be a way to “house” each group of GP into the tree t, in the sense that all states
of a same group must be affected by the run to positions in the same similarity
class. There are finitely many such arrangements, thus we can simply test them all;
all that we need is to show that this can be done in polynomial time. To summarise,
the approach is in four iterated steps:

(1) Choose some P ⊆ domu – all are eventually chosen.
(2) Given P, turn u into the equivalence relation �P.
(3) Try all possible housings of GP into St.
(4) For each such housing, try to build an accepting run around it.

The next lemma begins to describe this notion of housing more precisely:

124 Part III. Chapter 6. Bounding the Number of Constraints

Ñ Lemma 6.6: Housing Groups

Let A be a TA=, P ⊆ domu and ρ a run of ta(A) on a tree t, such that
(ran ρ) ∩ (domu) = P. Then ρ satisfies the constraints of u if and only if each
group can be assigned a similarity class, such that all states of that group
appear within this class in the run. Formally: ∀G ∈ GP, ∃CG ∈ St : ρ−1(G) ⊆
CG.

Proof. Let G ∈ GP, and ρ as above.

(1 : “ =⇒ ”) Assume that ρ satisfies u. Then by Lem. 6.5[p122], it satisfies
�P. Let any p, q ∈ G; we have p�P q by definition of GP, and thus for all
αp ∈ ρ

−1({p}) and αq ∈ ρ
−1({q}), t|αp = t|αq . Or, using another notation,

αp ∼ αq. We let CG = [αp]∼ = [αq]∼. Since ρ−1(G) =
⋃
g∈G(ρ

−1({g})), any
α ∈ ρ−1(G) is such that ∃g ∈ G which satisfies α ∈ ρ−1({g}), and p�P g; thus
α ∈ [αp]∼ = CG.

(2 : “⇐= ”) Consider any constraint p�P q; the states p and q belong to the
same group G ∈ GP, and thus by the hypothesis there exists a similarity class
CG ∈ St such that ρ−1({p, q}) ⊆ ρ−1(G) ⊆ CG. This in turn implies that for all
αp ∈ ρ

−1({p}), αq ∈ ρ−1({q}), αp ∼ αq, or in other words: t|αp = t|αq . Thus ρ
satisfies p�P q; and since the choice of this constraint was arbitrary, it satisfies
�P. Therefore, invoking Lem. 6.5 a second time, ρ satisfies u.

It is such a mapping G 7→ CG which we call a housing. More generally, any map
from HtP = GP → St is a housing, in the sense that it affects groups of constrainedHtP : P-housings on t

states to similarity classes in the tree – cf. Fig. 6.2. However, a housing is only
interesting if it is possible to build a run around it. A housing h ∈ HtP is compatible
with a run ρ – and vice versa – if the conditions of the previous lemma are satisfied,
which is to say:

∀G ∈ GP, ρ
−1(G) ⊆ h(G) .

With this in mind, we can now make explicit the algorithm outlined above, while
counting the overall number of operations required.

Ð Proposition 6.7: Membership

Given an arbitrary but fixed n ∈ N, the Membership problem for TA=n is in
PTime — albeit with an overhead exponential in n.

Proof. Let A be a TA=n, and t a tree. The Housing Lemma (Lem. 6.6) has already
established that a run ρ of A on t satisfies u if and only if there exists a housing
h ∈ HtP which is compatible with ρ, where P = (domu) ∩ (ran ρ) is the set of
constrained states which actually appear in the run. Our strategy to check
the membership of t is simply to try each possible P ⊆ domu successively, by
attempting, for each possible housing h ∈ HtP, to craft an accepting run ρ of
ta(A) compatible with h. There are at most 22n possible P, and given a choice
of P, there are |St|

|GP| 6 ‖t‖2n P-housings on t, which gives at most 4n · ‖t‖2n

tests in total. Note that since n is a constant, this remains polynomial. There
only remains to show that given a choice of P and h ∈ HtP, the existence of a

6.2. The Membership Problem 125

compatible run can be tested in polynomial time. To do so, we use a variant of
the standard reachability algorithm, where the only constrained states which
may appear are those of P, and the states of a given group G ∈ GP may only
appear at the positions assigned to them by the chosen housing h. Formally,
given a choice of P and a housing h ∈ HtP, there exists such a run if and only if
ΦP,ht (ε) ∩ F , ∅, where

ΦP,ht (α) =

q ∈ Q
∣∣∣∣∣∣∣∣∣
t(α)(p1, . . . , pn)→ q ∈ ∆

∀i ∈ J1, nK, pi ∈ ΦP,ht (α.i)

q ∈
⋃
GP =⇒ α ∈ h([q]�P)

q < dom(u) \ P

 .

The reader will notice that, were the last two conditions removed, ΦP,ht (α)

would simply be the set of reachable states at position α. The additional two
constraints are polynomial operations, thus ΦP,ht (·) does run in polynomial
time; there only remains to show that our algorithm does what is expected of
it. There are two points to this: (1) no false negative: every successful run is
subsumed by some ΦP,ht (·) (2) no false positive: every run subsumed by some
ΦP,ht (·) is successful.

(1) Let ρ be a successful run for A, and P = (ran ρ)∩ (domu); then by Lem. 6.5
and the Housing Lemma, it satisfies �P, and there exists a housing h ∈ HtP
with which it is compatible. We propose that ρ is subsumed by ΦP,ht (·), which
is to say that for each position α ∈ P(t), we must have ρ(α) ∈ ΦP,ht (α). Indeed,
let α be any position, and q = ρ(α); we check that q satisfies all four conditions
for belonging to ΦP,ht (α). The first condition is trivially satisfied since ρ is
a run. The second one will be the hypothesis of our recursion which, quite
conveniently, evaluates to true vacuously if α is a leaf. The third condition is
taken care of by the Housing Lemma: suppose q ∈

⋃
GP; then there is a group

G ∈ GP such that q ∈ G (in fact G = [q]�P), and ρ−1(G) ⊆ h(G). Thus we have
the chain α ∈ ρ−1({q}) ⊆ ρ−1(G) ⊆ h(G), and in particular α ∈ h([q]�P). The
fourth and last condition is trivial given our choice of P: Assuming its negation
q ∈ dom(u) \ P, it follows that q < ran ρ, which is absurd.

(2) Let ρ be a run subsumed by ΦP,ht (·), for some P and h. By the fourth
condition, (ran ρ)∩ (dom(u) \ P) = ∅, and thus (ran ρ)∩ (domu) ⊆ P. Let α ∈
P(t); by the third condition, if ρ(α) ∈ G ∈ GP, then α ∈ h(G); in other words,
ρ−1(G) ⊆ h(G), thus by the Housing Lemma ρ is successful. The watchful
reader will notice that a more precise formulation of the lemma is required
to assert that, because Lem. 6.6[p124] as written requires (ran ρ) ∩ (domu) = P.
The inclusion is actually sufficient for the “if” part, as shown by the relevant
halves of the proofs of Lem. 6.6 and Lem. 6.5[p122]. Alternatively, one could
replace P and h by adequate P ′ ⊆ P and h ′ ∈ HtP ′ such that we have equality
and preserve subsumption. Either way this is an easy technicality which only
comes into play at this point of the proof.

126 Part III. Chapter 6. Bounding the Number of Constraints

6.3 A Strict Hierarchy

We now turn our attention to our secondary questions regarding the expressive
power of TA=k. The simplest approach to solve this is to exhibit a family of
languages L = (`k)k∈N such that encoding `k requires at least k equality constraints.
The intuition which guides us in the search for such a separation language is that, if
there are k subterm equalities in terms of the language, and all those equalities are
independent from one another, then k distinct constraints will be required, because
using a constrained state q to enforce two different equalities means breaking their
independence. To capitalise upon this informal idea, we work with the ranked
alphabet

⊎k
i=1 Ai] {σ/3,⊥/0 }, where Ai = {ai, bi/0, fi, gi/2 }, and define L such

that

(1) `0 = {⊥}

(2) `k = {σ(u, u, tk−1) | u ∈ T(Ak), tk−1 ∈ `k−1 }, for k > 1.

More graphically, `k is the language of all terms of the general form

σ

σ

σ

⊥ ,u1u1

uk−1uk−1

ukuk

(6.3)

with ui ∈ T(Ai), for all i. We can already note that `1 is virtually identical to L=,
and thus is a non-regular language easily recognisable using one global equality
constraint. In other words, we have `1 ∈ L(TA=1) \ L(TA), and there remains to
show that the same is true at every rank, which is to say that

`k ∈ L(TA=k) \ L
(
TA=k−1

)
, ∀k > 1 . (6.4)

Proof. The positive part — `k ∈ L(TA=k) — is easy to justify, as it suffices to exhibit
automata Ak ∈ TA=k such that L(Ak) = `k. The construction is immediate by
generalisation of the TAGE accepting L= given in section 2.5[p35]. Letting the
Ui ∈ TA be universal tree automata such that Ui :F =

{
qu
i

}
for all i, Ak is defined

with

Q = {qv
0}]

k⊎
i=1

Ui :Q] {qv
i } F = {qv

1} qu
i uq

u
i , ∀i ∈ J1, kK

∆ =
{
σ(qu

i , q
u
i , q

v
i−1)→ qv

i

∣∣ i ∈ J1, kK} ∪ {⊥→ qv
0 } .

The negative part — `k < L
(
TA=k−1

)
— requires a bit more work. Let us take the

notation acs ρ for the active constrained states of a run ρ, defined asacsρ: active constrained states

acs ρ = { ρ(α) | α ∈ P(ρ),∃β ∈ P(ρ) \ {α} : ρ(α)u ρ(β) } . (6.5)

That is to say, a state is considered active if it is a constrained state which not only
appears in the run, but actually involves the constraint, because there appears in

6.3. A Strict Hierarchy 127

the run at least one instance of its partner state – possibly another instance of itself.
For example, even if pup, one lone instance of p in the run is not enough for the
constraint to actually do anything. One needs appearances of p at two distinct
positions before it is considered active.

Let us assume for a moment that there is an automaton A ∈ TA=k−1 that recognises
`k. We first make the observation that there is no possible execution ρ of A such
that any active constrained state appears on the spine of the term. Formally, for
any execution ρ, there are no distinct positions α and β such that α ∈ 3∗ and
ρ(α)u ρ(β). Indeed, assuming that to be the case, given α ∈ 3∗, either β is also on
the spine 3∗ – in which case α and β are comparable, and Lem. 6.1[p118] is violated
– or it is not on the spine, in which case the subterms under α and β cannot be
equal, because one is rooted in σ and the other cannot be.

We are using the stan-
dard notations for regu-
lar expressions as a short-
hand for sets of positions.
e.g. 3∗(1+ 2) = {1,2, 31,

32, 331,332, . . . }.

This remark will come in handy in a short time. Meanwhile, it holds in particular
that A accepts a term t ∈ `k such that, in the terms of the general form (6.3),
|ui| > |Q|, for all i. By this we mean more precisely that

∣∣t|α∣∣ > |Q|, for all
α ∈ 3∗(1+ 2). Suppose now that there exists an accepting run ρ of A on t such that
at least one of the ui – either a first-child or a second-child instance – is accepted
without ever using any active constrained state. That is to say, there exists a position
α ∈ 3∗(1+ 2) such that ran ρ|α ∩ acs ρ = ∅. Since, by the above remark, there cannot
be any active constrained state on the spine either, there is overall no position in the
subterm ui involved by ρ in any equality test, whether directly or indirectly as a
consequence of an ancestor’s involvement in such. Thus, as far as t|α is concerned,
A behaves exactly as a run-of-the-mill BUTA, and this means that the pumping
lemma applies as usual. Since we have conveniently chosen t such that

∣∣t|α∣∣ > |Q|,
that means we may pump ρ under α – it doesn’t matter in which direction – to
obtain a new run ρ ′. Since ρ is final, so is ρ ′, and the constraints are still satisfied,
as none of the states involved in the pumping are active. Through ρ ′, A recognises
a new term t ′ , t, identical to t except under α. Suppose without loss of generality
that α = β.1, for some β ∈ 3∗; then t ′|β.1 , t ′|β.2. Thus t ′ < `k, and t ′ ∈ L(A),
which is of course a contradiction. From this we conclude that all accepting runs
of A on t must involve at least one active constrained state under each of the t|α,
with α ∈ 3∗(1+ 2).

This observation, combined with a counting argument, clinches the proof. Indeed,
consider an accepting run ρ of A on t and – using (6.3) – subterms ui and uj of t,
with i , j. It does not matter whether one considers the first-child or second-child
instances. By the previous paragraph, there must be active constrained states pi
and pj, appearing in the subruns on ui and uj, respectively. Their partner states qi
and qj must also appear somewhere in ρ, by dint of them being active. Suppose
that qi appears in the subrun on uj. Then there exist si E ui and sj E uj such that
si = sj. But ui ∈ T(Ai) and uj ∈ T(Aj), thus si ∈ T(Ai) and sj ∈ T(Aj), and since
the alphabets are disjoint by definition, T(Ai) ∩ T(Aj) = ∅. Thus si = sj ∈ ∅, which
is absurd. We must conclude that qi may only appear under ui itself, or under
its brother, but not at a different “level”. In a slightly more precise language, if
ρ(α)u ρ(β), then there exist γ ∈ 3∗ such that α E γ.1 and β E γ.2. So, whenever a
constrained state is used in a level, neither it nor its partner state may be used in
any other levels. And, as was shown above, each level uses at least one constrained
state. There are k levels by definition of `k, and only k− 1 constraints, by definition

128 Part III. Chapter 6. Bounding the Number of Constraints

of A. Therefore ρ cannot exist, and A cannot accept `k. This concludes the proof of
(6.4).

Ð Proposition 6.8: Strict Hierarchy

The TA=k form a strict hierarchy of expressive powers:

L(TA=0) ⊂ L(TA=1) ⊂ · · · ⊂ L(TA=k) ⊂ L(TA=k+1) ⊂ · · · ⊂ L(TA=) .

Proof. All the groundwork for this proof has been done above. Let k > 0. By
(6.1) we have L(TA=k) ⊆ L(TA=k+1), and by (6.4) the inclusions are strict.

6.4 Summary and Conclusions

In the case of emptiness and finiteness testing we have shown that, perhaps
somewhat counter-intuitively, and despite the loss of expressive power incurred by
bounding the number of constraints, the full complexity of the general, unbounded
problem comes into play as soon as two constraints are involved. While this is
unfortunate, there are a number of interesting cases which can be handled using
only one constraint – even if one may need to break down a problem in several
independent cases, each expressible with TA=1 , and deal with them separately. This
can be the case, for instance, if no nesting of constraints is required to encode the
property under consideration. More practically, one may want to define a class of
TA= with several constraints, but where constraints are not allowed to nest in a
run, and such that every class of the togetherness relation (6.2)[p123] on the active
constrained states (6.5)[p126] of any run is of a cardinality bounded by some integer
m. This would allow for polynomial time emptiness decision, while being enough
for some purposes such as – possibly – one-step rewriting. We discuss that idea in
a bit more detail in the general perspectives, Part V. In the general case, generating
rigid constraints inasmuch as possible and transforming into rigid tree automata
before testing appears to be the most viable strategy, since the exponential cost is
unavoidable either way.

This stands in contrast to the behaviour of the membership problem which, while
NP-complete in general, becomes polynomial once the number of constraints is
bounded by a constant, regardless of the size of that constant – though admittedly
“polynomial” is in that case quite unlikely to mean “efficient” for anything but
the smallest constants. Nevertheless, this suggests a potentially more scalable
alternative to the existing general SAT encoding approach of [Héam, Hugot &
Kouchnarenko, 2010b], which we present briefly in the next chapter.

Acknowledgements. The anonymous reviewers of the original version of [Héam,
Hugot & Kouchnarenko, 2012c], which covered sections 6.1 and 6.2, provided many
useful suggestions, in particular regarding the TA=1 parts of Propositions 6.3 and
6.4, which became Lemma 6.2 in the final version of the paper.

Chapter 7
SAT Encodings for TAGED Membership

Contents
7.1 Propositional Encoding . 130

7.2 Complexity and Optimisations . 135

7.3 Implementation and Experiments 136

7.3.1 Experimental Results . 137

7.3.2 The Tool: Inputs and Outputs 138

7.4 Conclusions . 139

—Where somebody else does all the hard work.

T
he uniform membership problem for TAGED is NP-complete. We have
already been reminded of the lower bound at the end of section 2.5[p35],
by the encoding (2.9)[p37] of formulæ of propositional logic, which shows
that deciding whether a formula is satisfiable reduces to testing TAGED

membership – hence the NP-hardness. As for the upper bound, it is easy to see that
a run can be guessed nondeterministically, and tested to be accepting in polynomial
time. As an NP-complete problem, the TAGED membership test is subject to the
reverse operation, in that it can in turn be reduced, in polynomial time and space,
to the boolean satisfiability problem. For the sake of self-containedness, let us state
that problem explicitly and say a few words of its importance in computer science.

The boolean satisfiability problem, or SAT problem, consists in determining whether, boolean satisfiability problem

for a given formula ϕ, there exists a valuation v – also called an interpretation –
which satisfies it, i.e. such that the formula evaluates to true. This is written v |= ϕ.
It is the first known NP-complete decision problem. Before it was proven to be so
by Cook in 1971, the notion of NP-completeness did not even exist. Since then, a
tremendous amount of research has gone into crafting highly optimised heuristics
for solving this problem, and into implementing them efficiently in specialised
tools, aptly called SAT solvers. Let us just mention two among them, which we SAT solvers

shall meet again in the experimental part of the present chapter: PicoSAT [Biere, PicoSAT

2008] and MiniSAT2 [Eén & Sörensson, 2003]. Those efforts were successful enough MiniSAT2

that modern SAT solvers are generally capable of dealing expediently with huge
formulæ, ranging in the hundred thousands of free variables, and even in the
millions.

NP-complete decision problems used to be generally considered intractable in prac-
tice, but while it is true that naive approaches are unlikely to scale, the tremendous
practical prowess of modern SAT solvers challenges that conception to a degree.
Since any NP-complete decision problem can, by definition, be polynomially re-
duced to an instance of the SAT problem, encoding a new NP-complete problem

129

130 Part III. Chapter 7. SAT Encodings for TAGED Membership

into SAT, and then solving it using a SAT solver, has arisen as a general and
viable vector of attack. Instead of spending much time determining, validating and
implementing specific heuristics for each new NP-complete problem, this method
takes advantage of all the hard work and sophisticated optimisations that went into
SAT solvers in almost forty years of active research. This modus operandi was first
introduced in [Clarke, Biere, Raimi & Zhu, 2001], where it is applied to bounded
model checking – already mentioned at the end of section 1.1[p10] – which proved
highly successful.

In this chapter, we present a SAT encoding of the membership problem for TAGED.
Of course, the overarching goal is to rely on the performance of SAT solvers to
decide membership efficiently. Experiments were conducted, using small examples
and the two solvers mentioned above. The main results of this chapter have been
published in [Héam, Hugot & Kouchnarenko, 2010b], though the presentation is
more thorough in this thesis.

7.1 Propositional Encoding

This section presents our propositional encoding of the membership problem,
which is justified step by step. We shall also illustrate our sub-formulæ as we
go along by instantiating them on a small example. For this purpose we use the
TAGED A , such that A = {a/0, f/2 }, Q = {q, q̂, qf }, F = {qf }, with the constraints
q̂u q̂ and q̂6qf, and the transitions

∆ = { f(q̂, q̂)→ qf, f(q, q)→ q, f(q, q)→ q̂, a→ q, a→ q̂ } . (7.1)

The reader will notice that this is almost the same automaton as that accepting
L=, given in section 2.5, the only difference being the addition of the disequality
constraint q̂6qf, which is of course redundant and moot, and used purely for
illustrative purposes. Thus we have L(A) = L=. We shall also make use of the
following annotated term:

t = f

f

aa

f

aa

= f2ε

f12

a022a021

f11

a012a011

. (7.2)

In the annotated term, the subscripts are of course the positions and the superscripts
are unique references to the structure of the subterms. On this example, we have
the following mapping:

0 7→ a 1 7→ f(a, a) 2 7→ f(f(a, a), f(a, a)) = t . (7.3)

This mapping will come in useful later on, when the need arises to speak about the
structural equality or difference of subterms.

The principle of the encoding is to translate the definition of an accepting run for
TAGED in terms of propositional logic. Let us summarise the conditions which
need to be satisfied in order for some term t to be accepted by a TAGED A through
a run ρ, and break them down in sub-conditions until we can encode them:

7.1. Propositional Encoding 131

(1) The run ρ is successful for the underlying tree automaton A ′ = 〈A, Q, F, ∆〉.
a. The run ρ is a function mapping positions of t to states of A:

i. ρ ⊆ P(t)×Q,
ii. ∀α ∈ P(t), p, q ∈ Q; (α, p) ∈ ρ ∧ (α, q) ∈ ρ =⇒ p = q,

iii. ∀α ∈ P(t),∃q ∈ Q; (α, q) ∈ ρ.
b. The run ρ must be compatible with the rules of ∆: (2.3)[p33].
c. The run ρ must be accepting, i.e. ρ(ε) ∈ F.

(2) It must satisfy the global equality constraints in u: (2.6)[p35].
(3) It must satisfy the global disequality constraints in 6: (2.7) or (2.8).

The first important point, expressed by condition (1(a)i), is that a run – as any
function – is a relation, in this case between positions and states. This suggests to
choose the building blocks of our formula as variables of the form Xαq , taken from Xαq : variable: (α,q) ∈ ρ

the set of propositional variables X and imbued with the intuitive meaning that at
a position α ∈ P(t), the run takes us into the state q ∈ Q. Thus, intuitively,

Xαq ≡ “ρ exists and ρ(α) = q” .

This can be made more precise, by introducing a specific correspondence between
valuations and relations. We define the higher-order mapping

$(·) :

∣∣∣∣∣X→ B −→ ℘(P(t)×Q)

v 7−→
{
α 7→ q

∣∣ v(Xαq) = >} ,

where B is of course the set of boolean values. By this definition, if v is a valuation,
then ρ = $(v) is the corresponding relation between positions of t and the states.
We extend this notation to formulæ; if ϕ is a formula, then $(ϕ) is defined as

$(ϕ) = {$(v) | v |= ϕ } .

That is to say, $(ϕ) is the set of relations which are compatible with, or described
by, the formula ϕ. The aim of the game is to come up with a formula ΘA(t) such
that $(ΘA(t)) is exactly the set of all the accepting runs of A on t. We start with the
least restrictive formula possible, >, such that $(>) = ℘(P(t)×Q), which is to say
that everything is possible, and we shall progressively sculpt this undistinguished
block into the accepting runs, by knocking off everything that violates any of the
conditions listed above. Each blow of our chisel will take the form of an additional
conjunctive clause.

By the above, we have already coded condition (1(a)i), as > describes the set of all
relations. Now we must implement the necessary restrictions to confine ourselves
to the set of functions. Condition (1(a)ii) encodes the fact that ρ is a functional
relation, i.e. a partial function. However, it is not expressed in a way which maps
nicely to our choice of variables; we need something expressible in terms of positive
and negative literals; fortunately, (1(a)ii) can equivalently be reformulated as

∀α ∈ P(t), p , q ∈ Q; (α, p) ∈ ρ =⇒ (α, q) < ρ , (7.4)

and, with another optional step, into our preferred form

∀α ∈ P(t), q ∈ Q; (α, q) ∈ ρ =⇒ ∀p ∈ Q \ q, (α, p) < ρ , (7.5)

which translates nicely into the partial function constraint Ω9: Ω9: partial function constraint

132 Part III. Chapter 7. SAT Encodings for TAGED Membership

Ω9 =
∧

α∈P(t)
q∈Q

Xαq =⇒
∧
p∈Q
p,q

¬Xαp

 .

Applied to our minimalist example (7.1) & (7.2), this yields

{Xεq ⇒ [¬Xεq̂ ∧ ¬X
ε
qf
]} ∧ {Xεq̂ ⇒ [¬Xεq ∧ ¬X

ε
qf
]} ∧ · · · ∧ {X22qf ⇒ [¬X22q ∧ ¬X

22
q̂]} .

It should be clear at this point that $(Ω9) = P(t)9 Q: we have encoded the set

All instantiations of the for-
mulæ on our running exam-
ple are elided versions of
the LATEX 2ε output of our
implementation. See the ex-
perimental section, for in-
stance Fig. 7.4[p140].

of partial functions. One would expect the next move to be encoding totality, as
per (1(a)iii), and we could indeed do so easily with∧

α∈P(t)

∨
q∈Q

Xαq , (7.6)

however this condition would actually become redundant with our encoding of
(1b), as we will see, so we move on directly to it. The object is to enforce the
compatibility of ρ with the transition rules of A. Let us then translate the fact that
a given transition rule applies at some position α by the rule application constraint
Ψα(·), which takes a rule r ∈ ∆ as its argument: for any α ∈ P(t), and any transitionΨα(·): rule application constraint

rule f(q1, . . . , qn)→ q ∈ ∆, we let

Ψα
(
f(p1, . . . , pn)→ q

)
= Xαq ∧

n∧
k=1

Xα.kpk .

This is fairly straightforward: we are stating that the rule f(p1, . . . , pn) → q ∈ ∆

applies at position α. By (2.3), this amounts to the statement:

ρ(α) = q ∧ ρ(α.1) = p1 ∧ . . . ∧ ρ(α.n) = pn .

Now, in order to express the notion of compatibility with the transition rules, and
to finally encode a run of the underlying BUTA A ′, there remains to assert that,
at each position in the term, a transition rule applies. Only those rules with the
right symbol can apply at any given position, so let us define ∆σ ⊆ ∆ as the subset
of rules which are rooted in the symbol σ ∈ A: ∆σ = {σ(. . .)→ · · · ∈ ∆ }. With this,∆σ: transitions rooted in σ.

we can write the rules compatibility constraint Ω∆:Ω∆: rules compatibility
constraint

Ω∆ =
∧

α∈P(t)

[∨
r∈∆t(α)

Ψα(r)

]
.

When instantiated on our small running example, this yields

([Xεqf ∧ X
1
q̂ ∧ X

2
q̂] ∨ [Xεq ∧ X

1
q ∧ X

2
q] ∨ [Xεq̂ ∧ X

1
q ∧ X

2
q]) ∧ · · · ∧ (X22q ∨ X

22
q̂) .

Note that Ω∆ subsumes (7.6), and thus takes care of the totality condition (1(a)iii)
on top of (1b), since at every position α ∈ P(t), we must be in some state q resulting
from the application of some transition rule, by the Xαq component of Ψα(r). Recall
that this clause is meant to be added conjunctively to what we already have: if both
Ω9 and Ω∆ are satisfied simultaneously, then at most one rule applies at each
position, so that in the end, exactly one rule applies. Thus we have so far

$(Ω9 ∧Ω∆) =
{
ρ
∣∣ ρ is a run of A ′ on t

}
.

7.1. Propositional Encoding 133

The last thing which is required to encode an accepting run for the underlying tree
automaton A ′ is that the run must end up in a final state at the root of the term,
satisfying condition (1c). This is directly translated into

∨
q∈F X

ε
q, and thus we have

$
(
Ω9 ∧Ω∆ ∧

∨
q∈F

Xεq

)
=
{
ρ
∣∣ ρ is an accepting run of A ′ on t

}
.

Now we must add further restrictions to ensure compatibility with the global
equality and disequality constraints, following conditions (2 and 3). The variables
which we have already defined are not sufficient to translate statements of the form
“such structural subtree does (or does not) evaluate to such state”. The keyword
here is structural, that is to say, considering only the tree t|α itself, and forgetting
the position α. Note that access to positions is not enough to discuss equality of
subterms, as t|α = t|β 6⇒ α = β, and a same subtree u may evaluate to different
states, in different positions. Therefore we need to introduce new variables to link
states and structural subterms by a relation. Let us use Tuq to denote “the subterm

Semantics & Notations

Although α appears in the
notation t|α, the informa-
tion α is not included in
the object t|α. Refer to the
definition of subtrees in sec-
tion 2.2[p24]. This has to do
with our convention that a
subtree is a normal tree: its
root is ε, and not α. Other
authors sometimes take the
second convention – which
is occasionally convenient.

Tuq : variable “u ∈ Lq(A)”u evaluates to q”, for any u E t and q ∈ Q: intuitively

Tuq ≡ “u ∈ Lq(A)” .

Of course, in order for that meaning to hold we need to “glue” these new variables
to the old ones: if we are in a certain state q at a position α, then it follows that the
subterm t|α evaluates to q: this is straightforwardly translated into the structural
glue formula Ω�: Ω�: structural glue

Ω� =
∧

α∈P(t)
q∈Q

[
Xαq =⇒ T

t|α
q

]
.

On our running example, this yields

{Xεq ⇒ T2q} ∧ {Xεq̂ ⇒ T2q̂} ∧ {Xεqf ⇒ T2qf} ∧ · · · ∧ {X22qf ⇒ T0qf} ,

where the superscript 2 of T2q designates the subtree f
(
f(a, a), f(a, a)

)
, 0 designates

a, and so forth, as given in the annotation (7.2) of t and the mapping (7.3). Note
that so far, this formula does not influence satisfiability at all, and we have

$
(
Ω9 ∧Ω∆ ∧

∨
q∈F

Xεq ∧Ω�

)
= $

(
Ω9 ∧Ω∆ ∧

∨
q∈F

Xεq

)
.

This will of course change so soon as negated versions of the Tuq variables are
added into the mix. Now that the different kinds of variables are linked, we can
move on and encode the equality constraint, as per condition (2). To do so, let
us rephrase statement (2.6)[p35] a bit; the idea is the same as in (7.5), that is, to
transform a positive statement into one expressible in terms of negative variables.
The following is equivalent to (2.6):

∀α ∈ P(t), ρ(α) = q ∧ puq =⇒ ∀u E t, u , t|α, u < Lp(A) .

Intuitively, supposing that ρ(α) = q, for the run to be compatible with the equality
constraint, it must be such that no subterm different from t|α may evaluate to p,
where puq. This reformulation translates straightforwardly into the constraint of
compatibility with u, Ωu: Ωu: compatibility with u

Ωu =
∧

α∈P(t)
q∈Q

Xαq =⇒
∧
p∈Q
puq

∧
uEt
u,t|α

¬Tup

 .

134 Part III. Chapter 7. SAT Encodings for TAGED Membership

On our running example, we obtain the formula

{Xεq̂ ⇒ [¬T1q̂ ∧ ¬T
0
q̂]} ∧ {X11q̂ ⇒ [¬T2q̂ ∧ ¬T

1
q̂]} ∧ · · · ∧ {X22q̂ ⇒ [¬T2q̂ ∧ ¬T

1
q̂]} .

There remains to encode the compatibility with the disequality constraint. Let us
deal with the case where either 6 is assumed to be irreflexive – as in [Filiot et al.,
2008] and (2.7)[p36] – or the states involved are different. Suppose that we are at
position α, and that ρ(α) = q; then we cannot have any subterm identical to t|α
evaluate to any p, when p6q. The translation of (2.7) is therefore immediate, and
we have the compatibility with 6 (for p , q) formula Ω,

6:Ω,
6: compatibility with irr. 6

Ω,
6 =

∧
α∈P(t)
q∈Q

Xαq =⇒
∧
p∈Q
p6q
p,q

¬T
t|α
p

 .

On our running example, this yields

{Xεq̂ ⇒ ¬T2qf} ∧ {Xεqf ⇒ ¬T
2
q̂} ∧ · · · ∧ {X22qf ⇒ ¬T

0
q̂} .

However, the current definition (2.8) of 6 does not assume irreflexivity [Filiot et al.,
2010], an aspect which, as has already been pointed out at the end of section
5.2.1[p112], is known to increase expressive power. With the current definition, one
is able to write statements such as q6q, with the meaning that no two distinct
subtrees which evaluate to q may be structurally identical. Here we hit a little snag,
since this distinction is made with respect to the positions in which the subtrees are
rooted. This is obviously not respected by Ω,

6, because, if the irreflexivity condition
is removed, the formula will not and cannot differentiate between two distinct
subterms and the same subterm, taken twice. To clarify that, suppose that ρ(α) = q.
Without the condition p , q in Ω,

6, ¬Tt|αq , and yet, by Ω� we have Tt|αq , yielding
an immediate contradiction – which mirrors the behaviour of (2.7).

This is why the case where q6q must be dealt with separately. The comparison
of positions which appears in (2.8) cannot be encoded yet, as we do not have any
means of linking subterms with positions. A new kind of variables is therefore
required, which we take of the form Sαu, encoding the intuitive statement “theSαu : variable “u rooted in α”

subterm u is rooted in α”. The above property is then encoded using this variable,
in the compatibility with 6 (for q6q) formula Ω=6:Ω,

6: compatibility with refl. 6

Ω=6 =
∧

α∈P(t)

Sαt|α ∧
∧

α,β∈P(t)
q6q

[
Xαq ∧ X

β
q =⇒ ¬Sαt|β

]
.

It should be noted that Ω=6 deals exclusively with constraints of the form q6q, and
is therefore only useful as a conjunct of Ω,

6. We can now state our main result, and
define the overall encoding formula ΘA(t):ΘA(t): membership formula

ΘA(t) = Ω9 ∧Ω∆ ∧
∨
q∈F

Xεq ∧Ω� ∧Ωu ∧Ω
,
6 ∧Ω

=
6 ,

such that, by all the above, we have

$(ΘA(t)) = { ρ | ρ is an accepting run of A on t } .

Equivalently, this can be stated as:

7.2. Complexity and Optimisations 135

Ò Theorem 7.1: TA=, membership, correctness and soundness

There exists a successful run ρ of the TA=, A on a term t if and only if
ΘA(t) is satisfiable. Moreover, if v |= ΘA(t), then for any α ∈ P(t) we have
ρ(α) = q ⇐⇒ v |= Xαq .

The above encoding has been simplified, implemented and tested. This is the
subject matter of the next sections.

7.2 Complexity and Optimisations

The encoding proposed above is straightforward, but in the interest of keeping the
size of the formula to a minimum, we quickly go over some ways in which it can
be lightened through some relatively simple observations.

Although the encoding is sizeable, it remains polynomial in the size of our input
automaton A and the term t: the size of ΘA(t) – as number of literals – is visibly
O(|t|2|Q|

2). In practice however, this can often be pared down considerably. Let
ρ be a successful run of the underlying tree automaton A on t, and consider for
instance the structural glue:

Ω� =
∧

α∈P(t)
q∈Q

[
Xαq =⇒ T

t|α
q

]
.

The formula considers all possible couples (α, q), but in general this is unnecessary
because not all states are obtainable at any given position. In order to ever have Xαq ,
that is to say, ρ(α) = q, there must be some transition rule of the form t(α)(. . .)→ q

in ∆, at least. Thus we let δ(α) be the set of possibly obtainable states at position α:

δ(α) = {q ∈ Q | ∃t(α)(. . .)→ q ∈ ∆ } ,

and, given a position α, we only need to deal with q ∈ δ(α). Another observation
which can be made a priori is that the only occurrences of negations of the form
¬Tuq appear in Ωu and Ω,

6, and then only when q is in the domain of either 6 or u.
It follows that literals of the form Tuq can only alter the satisfiability of ΘA(t) when
q is in dom(6) ∪ dom(u). Thus, writing

δ ′(α) = δ(α) ∩ (dom(6) ∪ dom(u)) ,

we can reduce the formula to

Ω� =
∧

α∈P(t)
q∈δ ′(α)

[
Xαq =⇒ T

t|α
q

]
.

Similar observations can be made for Ω,
6, Ω=6 and Ωu. Staying with variables of

the form Tuq , looking at Ωu, one can argue that in the subformula∧
uEt
u,t|α

¬Tup ,

136 Part III. Chapter 7. SAT Encodings for TAGED Membership

it is unnecessary to write ¬Tup when we know that the subtree u cannot possibly
evaluate to the state p. This is clearly the case if the root symbol u(ε) is not used in
any transition rule leading to p. Thus we let

τ(q) = {σ ∈ A | ∃σ(. . .)→ q ∈ ∆ }

be the set of symbols which a subterm may be rooted in, given that it evaluates to
the state q, and we lighten the above-mentioned subformula, yielding

Ωu =
∧

α∈P(t)
q∈Q

Xαq =⇒
∧
p∈Q
puq

∧
uEt,u(ε)∈τ(p)

u,t|α

¬Tup

 .

Lastly, in the compatibility formula Ω=6, it is clear that the variables Sαt|α serve no
purpose whatsoever when the subtree in α cannot evaluate to a state q such that
q6q. Thus we let

µ(q) = {α ∈ P(t) | t(α) ∈ τ(q) }

be the set of positions at which the subtree may evaluate to the state q, and reduce
the first part of Ω=6 to∧

α∈
⋃
q6q µ(q)

Sαt|α .

In its second part, we arbitrarily order positions and regroup couples of implications
with the same premises, and thus the condition becomes:

Ω=6 =
∧

α∈
⋃
q6q µ(q)

Sαt|α ∧
∧

α<β∈µ(q)
q6q

[
Xαq ∧ X

β
q =⇒ ¬Sαt|β ∧ ¬S

β
t|α

]
.

Note that reducing Ω9 is much more problematic, but it is possible to simply do
away with this part of the formula altogether if one replaces

∨
q∈F X

ε
q by

∧
q<F ¬X

ε
q,

provided that the term is accepted by the underlying tree automaton. This can be
checked separately by other, less expensive means, since the membership problem
for tree automata is polynomial. Of course in that case the second result of
Theorem 7.1 does not hold anymore.

While computationally inexpensive, these simplifications can yield significant
savings on TAGED with low density and where few states are involved in the
global constraints, which are fairly reasonable assumptions in the context of XML
documents processing. Note that one could find more drastic simplifications by
examining the tree automaton more closely; for instance one could remove, at each
position, any state which cannot appear in a successful run. Simplifications of this
kind would certainly yield better results on sizeable and complex TAGED, but it
is not certain that the overhead of implementing and computing them would be
compensated by the SAT-solving performance gains.

7.3 Implementation and Experiments

In the remainder of this chapter, we shall often be referring to the conjunctive normalconjunctive normal form

7.3. Implementation and Experiments 137

0

0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

20 40 60 80 100

SA
T

so
lv

in
g

ti
m

e
(s

)

Number of elements

picoSAT
MiniSAT2

Figure 7.1: CNF solving time, laboratory example.

form (CNF) of propositional formulæ, which has yet to be defined. A formula is in CNF

CNF if it is a conjunction of disjunction of literals, and any formula can be put in
CNF through various methods, generally by applications of De Morgan’s laws to
push the negations inside the formula and switch between ∧ and ∨, as well as the
other usual equivalences to get rid of implications and other unwanted operators.
This is a fairly important form, especially in this context, as SAT solvers generally
require their inputs to be in CNF.

One of our test cases refers to the example of an XML database modelling a
laboratory in a university, its teams, and its members. We do not give the detail
of this test case, as it is extremely similar to our “starship” running example;
cf. section 1.3[p16].

7.3.1 Experimental Results

For the tests, we implemented the static simplifications described in section 7.2,
which divided the size of the generated formula by 36 in the case of the laboratory
example automaton. The testing tool which we developed, implemented in the
OCaml programming language, takes as input a TAGED expressed in a syntax
close to that of Timbuk [Feuillade et al., 2004] and a term, from which it generates
the corresponding formula ΘA(t). However, most modern SAT solvers take input
in the DIMACS CNF format, and a naive conversion to Conjunctive Normal Form

DIMACS CNF

Example input for
(X ∨ ¬Z) ∧ (Y ∨Z ∨ ¬X):

c DIMACS CNF for ϕ
p cnf 3 2
1 -3 0

2 3 -1 0

(using De Morgan’s laws, distributivity and removal of double negations) could
lead to an explosion of the size of the formula.

In order to avoid running into this problem we used an existing tool to handle
linear-size conversion to CNF and generation of DIMACS CNF files: the bit-level bit-level analysis tool

analysis tool (BAT), version 0.2 [Manolios, Srinivasan & Vroon, 2007], which is a BAT

prototype implementation of an efficient CNF conversion algorithm [Chambers,
Manolios & Vroon, 2009]. Experiments were run on an 2.53 GHz Intel Core2 Duo
machine with 2Gb of RAM under the Linux kernel. It should be noted that this
was done in late 2010, and that the SAT solvers may have evolved – presumably
and hopefully improved – since that time. The BAT is still in version 0.2 at the time
of writing, though.

Figure 7.1 shows the respective running times of the two SAT solvers PicoSAT and
MiniSAT2 on an implementation of our laboratory example. Accepted trees of

138 Part III. Chapter 7. SAT Encodings for TAGED Membership

0

0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 2000 4000 6000 8000 10000 12000 14000 16000

SA
T

so
lv

in
g

ti
m

e
(s

)

‖t‖

picoSAT (accepted)
MiniSAT2 (accepted)

picoSAT (rejected)
MiniSAT2 (rejected)

Figure 7.2: CNF solving time, L=, for accepted and rejected terms.

varying sizes have been generated with random member names of random length.
In the figure, the size of the generated trees is given in terms of the number of
teams in the university; the size in terms of the number of nodes is proportional to
these data. The test shows that while both solvers perform very well on this query,
MiniSAT2 tends to outperform PicoSAT as the terms grow, which suggests that the
heuristic used for SAT solving may significantly affect the overall efficiency of our
queries.

Figure 7.2 shows the same experiment, this time with the small TAGED accepting
L= given in (7.1)[p130], and for both accepted and rejected terms. The size of the
terms designates the number of nodes of the tree, as usual. Both solvers display
similar performances for this experiment, with MiniSAT2 being about twice as
fast as PicoSAT on accepted terms. On rejected terms however both solvers show
roughly the same performances, and take less time than on accepted terms, by a
factor of 3 (PicoSAT) and 5 (MiniSAT2) on large terms.

It would have been interesting to increase the size of our terms until both solvers
timed out, but we were unfortunately limited by the software we used. Our own
tool is not optimised for speed, and CNF conversion with BAT took about 4.5 times
as much time as formula generation. Moreover, BAT fails with a stack overflow
when the input formula becomes too large. Despite these practical setbacks,
the results remain fairly encouraging, as the current bottleneck lies on the least
computationally expensive parts of the process: both the generation of the formula
and the conversion to CNF are quadratic in the worst case. On the other hand, SAT
solving proves quite efficient, even on fairly large formulæ: the order of magnitude
of the largest tested formulæ is of approximately 70 000 variables, 120 000 clauses
and 250 000 literals (in CNF), for a solving time well under one second.

7.3.2 The Tool: Inputs and Outputs

The testing prototype has been implemented in the OCaml programming language.
SAT solving is the hard part of the process, not formula generation and conversion,
which are both polynomial, or, more precisely, quadratic in the worst case. Experi-
mentally, with our static optimisations, the formula can grow linearly, as we have
observed in the case of L=, for instance. For this reason, we focused on SAT solving
time in our experiments; including our unoptimised tool in the benchmarks would
not be pertinent.

7.4. Conclusions 139

(* TAGED for L=, cf. (7.1)[p130] *)
Taged fxxA Alphabet f a b
States q qq qf Final qf
Rules f qq qq : qf
f q q : q f q q : qq

a:q a:qq b:q b:qq

Equal qq qq Different qq qf

f(f(a,a), f(a,a))

// input term t

// output: cf. Fig. 7.4[p140]

Figure 7.3: Input syntax of the membership tool: automaton and term.

The tool takes as input a TAGED in a syntax close to that of Timbuk [Feuillade
et al., 2004] and a term, and generates the corresponding formula in the BAT’s
input format. Example inputs of our tools are given in Figure 7.3.

The default mode of operation is of course to generate BAT input and to run BAT
and a SAT solver immediately. But there is also the possibility of outputting a
LATEX 2ε file detailing, in a user-friendly format, the input automaton, the annotated
input term, and the corresponding generated formula. Figure 7.4[p140] gives the
LATEX output corresponding to the input of Fig. 7.3 – although the disequality
constraints are disabled in that example. Note that the tool indexes both subterms
and positions, in an effort to keep the formula somewhat readable even on large
trees. This is the same convention as that taken for the annotations (7.1) of our
running example.

7.4 Conclusions

Though experiments were limited by extraneous factors – namely CNF generation –
the results are encouraging. Indeed, despite the respectable size of the generated
formulæ, SAT solving remains surprisingly fast. Indeed, CNF generation – an easy,
polynomial task in theory – was the bottleneck of our experiments. To recapitulate
the process schematically:

A t

Prototype BAT SAT t ∈ L(A) ?
ΘA(t) CNF(ΘA(t)) solving

.

For a practical implementation, it would probably be best to renounce the depen-
dency upon an external tool for conversion into CNF, especially as the tools are not
mature. It would certainly be much better to generate the CNF formula on-the-fly,
while interfacing with a SAT solver. The detection of conflicting clauses could then
be done in parallel to the generation itself. With luck, terms may be rejected before
the generation of the formula has even ended.

Also note that the formula ΘA(t), such as we have defined it, is already mostly
in CNF, the exception being the subformula Ω∆. If this could be recoded directly
in – reasonably sized – CNF, this would obviate the need for any supplementary
conversion step.

140 Part III. Chapter 7. SAT Encodings for TAGED Membership

Figure 7.4: Example LATEX output of the tool – cf. Fig. 7.3[p139].

7.4. Conclusions 141

— Part IV —

Decision Problems for
Tree-Walking Automata

142

Chapter 8
Tree Automata for XML

Contents
8.1 Tree-Walking Automata . 144

8.2 Abstracting Away Unranked Trees 148

8.2.1 Unranked Trees and Their Automata 148

8.2.2 Document Type Definitions (DTD) 151

8.2.3 Binarisation of Trees and Automata 152

8.3 Queries, Path Expressions, and Their Automata 155

8.3.1 Logic-based Queries . 156

8.3.2 (Core) XPath: a Navigational Language 157

8.3.3 Caterpillar Expressions . 160

8.4 The Families of Tree-Walking Automata 162

8.4.1 Basic Tree-Walking Automata 163

8.4.2 Nested Tree-Walking Automata 164

—Where we binarise trees, walk all over them, and then throw pebbles at them.

U
p until now, this thesis has concerned itself almost exclusively with
varieties of automata extending the standard bottom-up model, within
domains of inquiry chiefly tied to model-checking of programs. This
chapter and the next depart from that focus, as their objects include the

more stateful classes of automata, such as tree-walking automata (TWA), which are
defined in the first section, and the motivations have more to do with verification
and queries in the context of semi-structured documents and databases than with
programs and circuits – an aspect already mentioned in section 1.3[p16], which we
shall canvass in more detailed fashion in the present introductory chapter.

A point which must also be made clear before getting to our contributions is that
of the relevance of the ranked-tree model to that kind of questions; a model which
we have, to that point, assumed without justification – and none was required until
now. However, semi-structured documents are more readily seen as unranked trees.
To clarify that, the relationship between ranked and unranked trees is discussed in
the first section. Although this chapter draws on multiple references, [Comon et al.,
2008, Chap. 8] provides – yet again – a very comprehensive and detailed survey of
those topics.

The section on queries is also indebted to the thesis [Filiot, 2008], which focuses
on queries and XML, and provides exhaustive surveys in those domains. The
sections on tree-walking automata, caterpillar expressions and their variants draw
on [Bojańczyk, 2008] and [Hosoya, 2010] as well, the latter also being a good general
survey of some other topics presented here.

143

144 Part IV. Chapter 8. Tree Automata for XML

The definition of TWA in Sec. 8.1[p144] is required reading. However, while the
remainder of this chapter serves to put our contributions into due context, its
contents are not strictly required to understand them. The reader anxious to read
our own results may therefore, after reading Sec. 8.1, skim or skip this material and
proceed forthwith to the next chapter, page 165.

8.1 Tree-Walking Automata

Both the top-down and the bottom-up strains are sometimes referred to as branch-
ing tree automata, because the way in which they operate can be thought of as
having a moving head on each branch of the tree. A top-down automaton branches
out, as a head separates towards each child of the current node, while a bottom-up
automaton branches in, the heads on the children fusing onto the father. This is
in contrast to finite-state automata, which can be seen as a single head, moving
left-to-right on a word. Less restrictively, the head can actually be allowed to move
right-to-left as well, choosing which depending on its current state, the symbol
being read, and whether its current position is at the beginning, the middle, or
the end of the word. The purpose of this last datum is obviously to prevent the
head from inadvertently falling off the word. The class of FSA with a bidirectional
head is called two-way automata (2FSA) and, somewhat surprisingly, has exactly thetwo-way automata

2FSA same expressive power as baseline, unidirectional FSA. Bidirectionality is never-
theless occasionally convenient, as some languages can be represented much more
succinctly with it than without – up to an exponential decrease in the number of
states.

We have seen that the generalisation from FSA to BUTA is natural when looking
at the transitions rules: from σ(p) → q to σ(p1, . . . , pn) → q. But thinking of a
FSA as a moving head on a word, it is also natural to imagine a tree automaton
as being a head moving on a tree. This seems of dubious usefulness if the head
can only move in one way – it is obviously impossible to visit a tree without ever
doubling back – but by analogy with two-way automata, it may be allowed to move
from father to children and vice-versa. As in the case of words, there is a need for
some additional positional information to prevent the head from jumping off the
tree. This is not a problem at the leaves, because the information that there are no
children to move down to is encoded into the arity of the symbols at the leaves:
they are constants. On the other hand, the root of a tree has no such guardrail,
therefore the head must know whether it is at the root, lest it tries to move up
– although in Part IV[p143], we will make automata jump off the root of trees as a
matter of course. There are many variants on the matter of accepting conditions;
one can choose to have accepting or rejecting transitions or commands, or to switch
to a final state. In this thesis we shall use final states. While this is enough to define
a working class of tree automata, it is not a terribly powerful class, as the head
gets lost in the tree very quickly [Kamimura & Slutzki, 1981; Bojańczyk, 2008]. To
mitigate this effect, it is reasonable that, besides knowing whether it is at the root,
the head should know whether it is on a first child, a second child, etcetera.

The combination of those ideas defines the class of tree-walking automata (TWA).tree-walking automata

TWA

8.1. Tree-Walking Automata 145

For simplicity of exposition, in this document they will be defined only on binary
trees, which is not a fundamental restriction, as trees and automata can be binarised; binarisation

this aspect is discussed at some length in section 8.2.3[p152]. A binary alphabet is binary alphabet

a ranked alphabet A such that A = A0 ∪ A2, and binary trees are trees formed
over a binary alphabet. In this context, we shall use positions defined over { 0, 1 }∗,
whereas in other contexts they are taken over { 1, 2, . . . }∗; it seems to be a common
choice in the literature on TWA, which this document mirrors. To summarise the
intuitive ideas developed above, a tree-walking automaton can be thought of as
a head moving in the tree from father to son and from son to father. The head
chooses its next move based on its internal state, the symbol at its current position,
and whether its current position is the root of the tree, a left son, or a right son. A
TWA accepts a tree if, starting from the root in an initial state, its head can move
back to the root in a final state.

Ó Definition 8.1: Tree-Walking Automata

A tree-walking automaton A is a tuple 〈A, Q, I, F, ∆〉, where

A is a binary alphabet,
Q is a finite set of states,
I is the set of initial states,
F is the set of final states,
∆ is the set of transitions.

As usual, states are fresh nullary symbols, and initial as well as final states
are found in Q; in short, Q ∩ A = ∅ and I, F ⊆ Q. The transitions use special
symbols T and M to denote styles of positions in the tree and the direction of
movement, respectively:

∆ ⊆ A×Q× { ?, 0, 1 }︸ ︷︷ ︸
T : types

× { ↑,	,↙,↘ }︸ ︷︷ ︸
M : moves

×Q .

T: TWA node types

M : TWA moves
In order to formally explain how a tree-walking automaton activates its transitions,
let us introduce a few necessary notions and notations. Each node α of a tree t tyα: TWA type of α

has a type in T, denoted by tyα, such that tyε = ? (root), ty (β.0) = 0 (left son),
ty (β.1) = 1 (right son). In practice, it is useful to have a special notation S for the
sons: S = { 0, 1 } ⊂ T. We shall also put in relation types and moves through the S: TWA “son” types

function χ(·) : S→ {↙,↘ } such that χ(0) =↙ and χ(1) =↘. It is convenient to χ(·): TWA get move from type

take the special notation 〈f, p, τ → µ, q〉 for the tuple (f, p, τ, µ, q) ∈ ∆. With this
notation, some of the parameters can be replaced by sets, with the obvious meaning
that we consider the set of all transitions thus described. For instance

〈A2, p,T→	, q〉 = { (σ, p, τ,	, q) | σ ∈ A2, τ ∈ T } .

Furthermore, when building up composite states using information such as node
types and symbols, which will be done in our second example below, it is useful to
name some of the values in the sets on the left-hand side, so as to repeat them on
the right-hand side. For instance, if A0 = { x, y }, and f is some function,

〈v ∈ { x, y }, s, 0→ ↑, f(v)〉 = { 〈x, s, 0→ ↑, f(x)〉, 〈y, s, 0→ ↑, f(y)〉 } .

All the transitions from the set 〈A0, Q,T → {↙,↘ }, Q〉 ∪ 〈A, Q, ? → ↑, Q〉, corre-
sponding respectively to moving down to the children of a leaf, and to moving

146 Part IV. Chapter 8. Tree Automata for XML

up to the father of the root, are considered invalid and should not appear in any
well-formed automaton.

Let A be a tree-walking automaton. A configuration of A on a tree t is a pair
c = (β, q) ∈ P(t) ×Q; it is initial if c ∈ {ε} × I and final (or accepting) if c ∈ {ε} × F.
It is a successor of a configuration (α, p) if 〈t(α), p, tyα → µ, q〉 ∈ ∆, where µ is ↑
if β = parent(α), 	 if β = α, ↙ if β = α.0 and ↘ if β = α.1. We write c1 �A c2

(or simply c1 � c2 whenever A is clear from the context) if the configuration
c2 is a successor of c1. A run is a sequence of successive configurations c1 �run (TWA)

c2 � · · · cn � · · · . A run is accepting (or successful) if it starts with an initial
configuration and reaches a final configuration. As usual, a tree t is accepted by A

if there exists an accepting run of A on t.

Our first example is the TWA X, which will also serve as the running example of
Chapter 9[p165]. X is defined such that

A = {a, b, c/0, f, g, h/2 }, Q = {q`, qu }, I = {q`}, F = {qu},

∆ = 〈A2, q`, { ?, 0 }→↙, q`〉 ∪ 〈a, q`, { ?, 0 }→	, qu〉 ∪ 〈A, qu, 0→ ↑, qu〉 .

In total, X has two states and fourteen rules. Let us consider the tree f(h(a, b), c);
we have the following execution:

f[q`]

ch

ba

� f

ch[q`]

ba

� f

ch

ba[q`]

� f

ch

ba[qu]

� f

ch[qu]

ba

� f[qu]

ch

ba

.

This run makes use of the three subsets of rules in the order in which they have
been given in the definition. First, 〈A2, q`, { ?, 0 }→↙, q`〉 takes effect: the initial
state q` causes the head to go down and left, all the way to the leaves. At the
leaves, those rules cannot apply, since they are only defined on binary nodes. Then,
by 〈a, q`, { ?, 0 } → 	, qu〉, the head uses a stationary move, changing its state to
qu while staying in place. This is only possible because the leaf is labelled by a,
otherwise the head would be stuck. Lastly, 〈A, qu, 0 → ↑, qu〉 takes over, and the
head goes all the way up to the root, staying in state qu, which is final, and thus
accepting the term as soon as the root is reached. It is easy to see that X recognises
exactly all trees whose left-most leaf is labelled by a, including the trivial tree a,
accepted by the immediate run a[q`]� a[qu] thanks to the rule 〈a, q`, ?→	, qu〉.

This is not a very interesting language, however. Let us see how a TWA can
recognise the language of true variable-free propositional logic formulæ, so as
to contrast it with its BUTA counterpart seen in the previous section. The idea
is, when confronted with an internal node, to first evaluate one of the subtrees,
e.g. the left subtree. For instance, schematically denoting the position of the head
by ∗, let us say we have the following configuration: ∧(∨∗(>, u), v), where the

8.1. Tree-Walking Automata 147

head has already explored the left subtree >, and knows that it evaluates to true.
Then in that case there is no need to explore the right subtree u, and the head can
immediately move up, reporting the entire subtree ∨(>, u) as evaluating to true.
This brings it into the configuration ∧∗(∨(>, u), v); the head knows that the left
subtree is true, and the current symbol is ∧, which requires both its children to be
true. Thus, the head must visit the right child: ∧(∨(>, u), v∗). Whether v evaluates
to true or false, the entire tree will evaluate to v; thus, when the head goes back
up on ∧ with the result of the evaluation of the right subtree v, it can immediately
carry the information further up, without any change. This idea is implemented in
the TWA below, using i for the initial state (visiting a tree for the first time), and
(t, v) for the other states, storing the type of the last visited subtree in t, and the
value of that subtree in v.

A = {∧,∨/2,>,⊥/0 }, Q = i ∪ (S× {>,⊥ }), I = {i}, F = {(1,>)},

∆ = 〈v ∈ A0, i, ?→	, (1, v)〉 ∪ 〈v ∈ A0, i, t ∈ S→ ↑, (t, v)〉 ∪ 〈A2, i,T→↙, i〉
∪ 〈∧, (0,⊥), ?→	, (1,⊥)〉 ∪ 〈∧, (0,⊥), t ∈ S→ ↑, (t,⊥)〉
∪ 〈∨, (0,>), ?→	, (1,>)〉 ∪ 〈∨, (0,>), t ∈ S→ ↑, (t,>)〉
∪ 〈∧, (0,>),T→↘, i〉 ∪ 〈∨, (0,⊥),T→↘, i〉
∪ 〈A2, (1,>), t ∈ S→ ↑, (t,>)〉 ∪ 〈A2, (1,⊥), t ∈ S→ ↑, (t,⊥)〉

Note that the alphabet does not include ¬, simply because it is a unary symbol
while we are working with a binary alphabet. It would be easy to implement a
binary symbol ¬/2, which simply ignores its left subtree and negates the value of
its right. Extending the example to do precisely that is left as an exercise for the
reader. In the meantime, the following execution on a tree with only ∧ and ∨ is
sufficient to bring most of the transitions into play:

∨[i]

∨

∧

>>

⊥

∨

>∧

>⊥

� ∨

∨

∧

>>

⊥

∨[i]

>∧

>⊥

� ∨

∨

∧

>>

⊥

∨

>∧[i]

>⊥

�

∨

∨

∧

>>

⊥

∨

>∧

>⊥[i]

� ∨

∨

∧

>>

⊥

∨

>∧[0,⊥]

>⊥

� ∨

∨

∧

>>

⊥

∨[0,⊥]

>∧

>⊥

�

∨

∨

∧

>>

⊥

∨

>[i]∧

>⊥

� ∨

∨

∧

>>

⊥

∨[1,>]

>∧

>⊥

� ∨[0,>]

∨

∧

>>

⊥

∨

>∧

>⊥

148 Part IV. Chapter 8. Tree Automata for XML

� ∨[1,>]

∨

∧

>>

⊥

∨

>∧

>⊥

.

In that case, the BUTA version was much more compact; on the other hand, the
TWA version is lazy, in that it does not actually need to explore all the tree to
evaluate it. This is a useful quality of TWA in general, which makes them attractive,
and often more convenient than BUTA in circumstances when the aim is to locate a
specific subtree, and the context does not really matter. In particular, they constitute
a straightforward model of XML path expressions, which describe a navigation
along the nodes of the tree. This, and other connexions with XML, have greatly
contributed to the current research interest in TWA and their variants. However,
their expressive power is strictly less than that of BUTA: they still tend to get lost
in trees. More is said about TWA in section 2.6[p37] and in Part IV. Meanwhile, the
reader is invited to consult [Bojańczyk, 2008] for a survey of TWA and variants,
– especially from the viewpoint of expressive power – and [Hosoya, 2010, Chap.
12] for an overview of path expressions, XPath, Caterpillar expressions, TWA, and
their mutual relationships. The next sections survey such material.

8.2 Abstracting Away Unranked Trees

It has been casually remarked in section 8.1[p144] that it could be assumed, without
loss of generality, that one was dealing with ranked, even binary trees. Indeed,
other kinds of trees, whether non-binary ranked trees or unranked trees, can be
transformed into binary trees, and this transformation can be mirrored into the
corresponding tree acceptors. It therefore suffices to study binary trees, and any
result thus obtained can automatically be transferred to more general models. Since
this choice makes for considerably smoother exposition and shorter proofs, a large
proportion of the literature on semi-structured documents – objects which are most
naturally described by unranked trees – is written under the assumption of a binary
model. From what we have seen at least, it is a quasi-pervasive convention when
it comes to the literature on tree-walking automata, and an extremely convenient
shortcut of which we shall avail ourselves as well in our own contributions.

Nevertheless, this description of the – undeniable – ubiquity and convenience of the
binary approach must be tempered by a few caveats regarding the exact sense in
which results are “transferred” from one model to the other. A short presentation
of the classical binarisation processes is therefore in order.

8.2.1 Unranked Trees and Their Automata

We begin by a quick definition of unranked trees, which we have only mentioned
in passing so far. Although they have appeared as early as in the nineteen-sixties

8.2. Abstracting Away Unranked Trees 149

and -seventies, within works of Pair and Quere, Thatcher, and Takahashi, it is only
recently – late nineties, early 2000s – that they have attracted much research interest,
a resurrection which owes much to their numerous and immediate XML-related
applications. The next section serves to illustrate that by taking the example of
DTD, an essential component of day-to-day activity with XML documents, which
are direct applications of unranked tree automata.

As one could surmise, the nub of the unranked model is simply to disregard the
arity of all symbols. Any position of an unranked tree, regardless of the symbol
which it holds, may therefore admit any number of children. Not all structure is
abandoned, however, as the children must remain finite in numbers, and ordered.
One can therefore still characterise the children using ordinals – first child, second
child, etcetera – and refer to the next or previous sibling and so forth. A hedge being hedge

defined as a finite, possibly empty sequence of unranked trees – a terminology first
introduced in [Bruggemann-Klein, Murata & Wood, 2001] – an unranked tree is a unranked tree

hedge, coiffed with a functional symbol. Syntactically, we write

u := σ(h) h := ∅ | u : h σ ∈ A ,

where ∅ symbolises the empty sequence and A is an ordinary alphabet, i.e. not a
ranked alphabet. For the sake of simplicity, the unranked tree a(∅) is routinely
denoted by a() or a and a sequence u1 : · · · : un : ∅ by u1, . . . , un. For instance
f(a, b, c) is a shortcut to the unwieldy f(a(∅) : b(∅) : c(∅) : ∅) : ∅ – but it must be
kept in mind that this not the same object as the ranked tree f(a, b, c). The context
will always make clear whether we are dealing with ranked or unranked trees.

It is of course trivial to take any ranked alphabet (A, arity) and simply discard arity,
and in that sense every ranked alphabet and every ranked tree are also unranked.
The other direction is obviously a tad more thought-provoking, and is the object of
section 8.2.3. We write U(A) for the set of unranked trees over A, and U∗(A) for the
set of hedges over A. Furthermore, we assimilate a singleton hedge with the sole
unranked tree which it contains.

There remains to define a suitable notion of acceptors for unranked trees. Recall
the definition of bottom-up tree automata given in section 2.4[p30]. Disregarding
the connexions with term-rewriting systems, this definition could as well have been
given directly in terms of runs, and the transitions σ(p1, . . . , pn)→ q, instead of
being rewriting rules, could simply be seen as tuples (σ, p1, . . . , pn, q), so that

∆ ⊆
⊎
k∈N

AkQ
k+1
≡

⊎
k∈N

Ak ×Qk ×Q ,

isolating the target state in the last position. With unranked trees, there is no
predicting how many children a given symbol may take, so the generalisation to
unranked trees is of the form

∆ ⊆ A×Q∗ ×Q .

While the semantics of such transitions is intuitively clear by analogy to the ranked
case, this definition leaves the door open to rather questionable choices, such as

∆ = { (f,m, q) | m encodes a terminating Turing machine } .

Thus it is clear that the overall complexity of decision problems for unranked
tree automata is contingent upon the difficulty of representing and testing the

150 Part IV. Chapter 8. Tree Automata for XML

transitions. The usual solution is to limit the transitions to regular languages, so
as to control the overall memory footprint of the unranked automaton. Even then,
there is room for choosing different concrete representations: finite-state automata
come to mind most readily, but two-way automata, alternating automata (AFA)AFA

and two-way alternating automata (2AFA, [Ladner, Lipton & Stockmeyer, 1984]),2AFA

as well as all their deterministic variants, without forgetting regular grammars,
regular expressions, weak monadic second-order logic over the successor relation,
and many more, are all equally valid candidates, with varying degrees of efficiency
and conciseness depending on the specifics of the languages and tasks at hand.
Given the choice of such a class C of word automata – or another representation
of regular languages – we define unranked tree automata with C (UTA/C), also oftenunranked tree automata with C

UTA/C called hedge automata, as the variant of BUTA such that

∆ ⊆ A× L(C)×Q ,

the alphabet underlying the class C being understood as the set of states Q. The
unranked languages accepted by UTA are termed regular, like their ranked coun-
terparts. Let us go back – one last time – to our perennial example of variable-free
formulæ of propositional logic; instead of having fixed binary operators, as in
section 2.4[p30], we can now handle variadic conjunction and disjunction operators.
Taking the unranked alphabet A = {∧,∨,¬,>,⊥ }, we define the states Q = { 0, 1 },
F = {1}, and the transitions are expressed by an extension of the usual→ notation,
and using regular expressions as C:

∨
(
(0+ 1)∗1(0+ 1)∗

)
→ 1 ∨(0∗)→ 0 ¬(0)→ 1 >→ 1

∧
(
(0+ 1)∗0(0+ 1)∗

)
→ 0 ∧(1∗)→ 1 ¬(1)→ 0 ⊥→ 0 .

Note that a rule like > → 1 is shorthand for (>, ε, 1). Of course, the rules do
not cover every possible tree that may be formed on the alphabet; the automaton
will simply not run on a malformed tree – for instance if it contains ¬(x, y) – and
therefore such trees will be rejected regardless of the final state. On the other hand,
trees such as ∧() and ∨() will naturally be evaluated – to 1 and 0, respectively –
which is the expected behaviour in logic.

Decision problems have been studied for various choices of C; it is known in
particular [Martens & Neven, 2003; Neven, 2002; Comon et al., 2008] that

(1) membership is testable in
O(‖t‖ · ‖B‖2) for UTA/FSA, and it is
NP-complete for UTA/AFA.

(2) emptiness is
PTime-complete for UTA/FSA and
PSpace-complete for UTA/AFA or 2AFA,

(3) containment is ExpTime-complete for UTA/2AFA,

(4) equivalence is ExpTime-complete for UTA/2AFA.

Besides the problem of the choice of C, it is worth noting that certain properties
which are taken for granted with ranked automata do not carry over to their
unranked cousins. For instance, it is known and relied upon that deterministic
BUTA admit a unique – up to isomorphism – minimal automaton. With the usual

8.2. Abstracting Away Unranked Trees 151

definition of determinism for UTA, stating that

∀(σ, `, q), (σ ′, ` ′, q ′) ∈ ∆; q , q ′ =⇒ ` ∩ ` ′ = ∅ ,

and even assuming UTA/DFA, not only is there no unique minimal automaton, but
the minimisation problem is even NP-hard [Martens & Niehren, 2005]. However,
many results on ranked trees do carry over, as we shall see in section 8.2.3. Before
that, let us say a few brief words about an important and direct application of UTA
to semi-structured documents: DTD.

8.2.2 Document Type Definitions (DTD)

Recall the example XML document illustrated by Fig. 1.1[p18], in section 1.3. Doc- Document Type Definitions

ument Type Definitions (DTD), and more generally Schema languages, specify the DTD

general structure that a document must follow in order to be considered correct.
For instance, this is a possible DTD for our rather frivolous “Star Trek”-flavoured
running example:

<!DOCTYPE crew [

<!ELEMENT crew (team*)>

<!ELEMENT team (member+,starship)>

<!ATTLIST team name CDATA>

<!ELEMENT member (#PCDATA)>

<!ELEMENT starship (#PCDATA)>

]>

Attributes are generally abstracted – at least in first approximation – when reasoning
about XML from a theoretical point of view; in Fig. 1.1, we have simply represented
the attribute as just another node, so the actual tree is better described by the
addition of a text node name, and the modification of team so that this node appears
among its children:

Handling XML Attributes

As mentioned before, han-
dling the unordered and
non-duplicable aspects of
attributes is tricky, and re-
quires specialised tools out-
side the scope of this thesis.
See [Hosoya, 2010, Chap.
15] for a presentation of this
topic.

<!ELEMENT team (name,member+,starship)>

<!ELEMENT name (#PCDATA)>

With this detail out of the way, what information does a DTD actually provide? The
DOCTYPE instruction specifies the starting point, or outermost node, of the document,
while each ELEMENT is a statement of the general form “in order to obtain a valid
subtree of type x, the children need to follow some regular expression on the
types”. This is strikingly similar to the automaton model seen in the previous
section. Indeed, let us transform the above DTD into an unranked tree automaton
which accepts trees of the right structure, abstracting away the contents of the
data nodes. This is always possible, as DTD are – strictly – less powerful than
tree automata. We take the alphabet A = { crew, team, name, member, starship }

and, to avoid the multiplication of notations, the states are simply defined as
Q = A; this will not introduce any ambiguity. Since the data value of the nodes are
discarded, text elements will simply be considered as leaf nodes, thus a statement
<!ELEMENT x (#PCDATA)> is translated by the rule x(ε)→ x, or simply x→ x. This
takes care of name, member and starship, which are all data nodes. The last two

152 Part IV. Chapter 8. Tree Automata for XML

rules are

team(name member+starship)→ team
crew(team∗)→ crew ,

and the outermost element dictates the choice of the final state F = {crew}. This
illustrate how natural the unranked model is for semi-structured documents. In
the next section, we show how most results on ranked trees automatically carry
over to the unranked case.

8.2.3 Binarisation of Trees and Automata

The crux of the matter is to adopt a systematic, ranked representation of unranked
trees, and adapt unranked tree acceptors to work over this representation. For the
sake of brevity, this section only presents the tree encodings themselves; the reader
is referred to the literature for the full details.

There are many different kinds of encodings, the most common of which are the
first-child next-sibling encoding (FCNS), and tree currying (TC). The FCNS encodingfirst-child next-sibling

FCNS is probably the best established: it appears in [Knuth, 1997], and although we
quote the third edition, it was already present in the 1968 edition, as referenced
in [Takahashi, 1975, Thm. 4.3.1], and is often attributed to [Rabin, 1969]. It also
appears in [Hosoya, 2010, Sec. 4.2] and [Neven, 2002, Sec. 4.2]. FCNS corresponds
closely to a linked-list representation of data: it relies on the introduction of a
fresh nullary symbol which can be seen as playing the role of a null pointer. It
should be noted – and we shall come back on this point when discussing TC –
that it actually deals with hedges, and not isolated unranked trees. The FCNS
encoding and decoding functions are typed, for A an unranked alphabet and its
corresponding binarised ranked alphabet A# = {#/0}] {σ/2 | σ ∈ A }, as

[·]# : U∗(A)→ T(A#) and [·]−1# : T(A#)→ U∗(A) .

The intuition behind the encoding is this: any first child remains a first child, but
the encodings of its siblings, taken in order, become its right descendants. A leaf
node takes # for its left child. A node with no next sibling takes # for its right child.
Formally, we have[

σ(h) : h ′
]

= σ([h]#, [h
′]#) and [∅]# = # . (8.1)

Let us take a simple example: the binarisation of the unranked term f(a, b, c), or
equivalently, of the singleton hedge f(a(∅) : b(∅) : c(∅) : ∅) : ∅, which is what
really is under the simplified notation:

[f(a, b, c)]# = [f(a(∅) : b(∅) : c(∅) : ∅) : ∅]#

= f([a(∅) : b(∅) : c(∅) : ∅]#, [∅]#)

= f(a([∅]#, [b(∅) : c(∅) : ∅]#), #)

= f(a(#, b([∅]#, [c(∅) : ∅]#)), #)

= f(a(#, b(#, [c(∅) : ∅]#)), #)

= f(a(#, b(#, c([∅]#, [∅]#))), #)

= f(a(#, b(#, c(#, #))), #) .

8.2. Abstracting Away Unranked Trees 153

Graphically, and on a more complex example, we have the transformation:

Such encodings are often
given “by example”, with-
out a formal definition,
and without being explic-
itly named as FCNS, as the
method can be considered
to be folklore. Note that
in [Neven, 2002], for in-
stance, the example abbrevi-
ates a(#, #) into a. This is a
notational shortcut, and not
a different encoding.

f

bg

dc

a

→FCNS f

#a

g

b

##

c

d

##

#

#

. (8.2)

It is easy to see that this transformation is a bijection, whose inverse can be
straightforwardly defined as[

σ(b, b ′)
]−1

= σ([b]−1#) : [b ′]−1# and [#]−1# = ∅ . (8.3)

We can immediately check that [[h]#]
−1
= h, for any hedge h ∈ U∗(A). It has been

shown that this encoding preserves recognisability of languages, and furthermore,
the constructions are polynomial. Specifically, it is known [Neven, 2002] that

(1) for every UTA/FSA A, there exists a BUTA B such that L(B) = [L(A)]# and
‖B‖ = O(‖A‖n), for some n ∈ N,

(2) for every BUTA B, there exists a UTA/FSA A such that L(A) = [L(B)]−1# and
‖A‖ = O(‖B‖n), for some n ∈ N.

Through this, all closure properties of binary tree automata carry over UTA: to
recapitulate, they are closed by union, intersection and complementation. The above
results were probably most clearly proven in [Suciu, 2001], although this paper
does not use the exact FCNS encoding such as defined in (8.1) and (8.3). Whereas
we only introduce one fresh nullary symbol #, Suciu’s construction involves an
additional fresh binary symbol serving as a backbone of sorts for the binarised tree
– or as the cells of a linked list. Apart from that, the idea is pretty much the same.

Furthermore, all decidability results carry over as well, and since the encoding and
decoding functions can be expressed in weak monadic second-order logic with
child and next-sibling relations (WMSO), the regular unranked tree languages are WMSO

characterised by WMSO, thus extending the results for WSkS previously mentioned
for BUTA [Neven, 2002, Sec. 4.3]. However, it should be noted that complexity
results do not carry over directly, as they depend in fine upon the choice of the
class C in the unranked representation, as discussed at the end of section 8.2.1.

It was briefly noted above that deterministic unranked tree automata are not as
well-behaved as their ranked counterparts. Deterministic automata may become
exponentially larger after the encoding, if the target is to be deterministic as well.
And then, minimisation is difficult, in great part because any reasonable definition
of the size of an UTA must account for that of the C representations. Indeed, the
transitions may be split while leaving the language unchanged, like so:

{σ(`)→ q } ≡ {σ(`1)→ q, . . . , σ(`n)→ q } with
n⋃
i=1

`i = ` .

154 Part IV. Chapter 8. Tree Automata for XML

While this operation augments the number of rules, it does not follow that the
overall size of the unranked automaton follows suit and increases. This is quite
unlike the behaviour of ranked automata, and is understood by looking at the
definition of the “size” of an unranked automaton:

‖〈A, Q, F, ∆〉‖ = |Q|+
∑

(σ,`,q)∈∆

(
2+ ‖`‖

)
,

where ‖`‖ is of course the size of the C-representation of the language, and not the
cardinal of the language itself. Thus, if splitting a rule in a certain way allows for
much more compact representations of some of the sub-languages `i, the global size
may actually decrease despite the automaton having a higher number of individual
rules. Another related problem is the lack of a Myhill-Nerode theorem for UTA.

We shall now see a second binary encoding, the tree currying (TC) encoding, whichtree currying

TC not only allows a transfer of closure and decidability properties, but also provides
good properties with respect to determinism and minimisation. This encoding was
presented and studied in [Carme, Niehren & Tommasi, 2004; Martens & Niehren,
2005], although the idea of the extension operator that underlies it was already
present three decades before in [Takahashi, 1975, Def. 4.2.1]’s l-operator – albeit in
reversed form.

The extension operator @ : U(A)→ U(A) simply inserts its second argument as the
last sibling of its first:

σ(u1, . . . , un) @ t = σ(u1, . . . , un, t) . (8.4)

The intuition is to see a term as a λ-term, or function application, and to apply the
well-known currying operation, through which multi-ary functions are naturallycurrying

transformed into unary functions and vice versa, a process related to partial
application. For instance, the following are the signatures of a binary function f
and its curried counterpart fc:

f : D1 ×D2 → C ≡ fc : D1 → (D2 → C) ,

and both functions are equivalent in the sense that f (x, y) = (fc x)y, for all x ∈ D1
and y ∈ D2. Since trees can naturally be interpreted as describing function
applications, one can apply this reasoning to them as well, and thus

f(a, b, c) ≡ ((f a)b) c .

Now, using an explicit binary operator @ for function application – that is to say,

Note that we use the fx
notation for function ap-
plication, as is common
in programming languages
rooted in λ-calculus. Since
curried functions are the de-
fault view, the parentheses
would be cumbersome in
such contexts. Neverthe-
less, we do not abbreviate
(fx)y into fxy – as is cus-
tomary – in this discussion.

writing f@ x instead of f x – this becomes

f(a, b, c) ≡ ((f@ a) @ b) @ c ,

and thus we see that definition 8.4 actually translates function application, as
its execution to the above yields back the original term f(a, b, c). Since function
application – and therefore the extension operator – is by definition a binary
operation, this suggests a new binary encoding, targeting the binary alphabet
A@ = {σ/0 | σ ∈ A }] {@/2}. We take

[·]@ : U(A)→ T(A@) and [·]−1@ : T(A@)→ U(A) ,

8.3. Queries, Path Expressions, and Their Automata 155

and the transformation is defined as

[σ(u1, . . . , un)]@ = @(σ(u1, . . . , un−1), un) and [a]@ = a ,

its inverse being[
@(t, t ′)

]−1
@ = t@ t ′ and [a]−1@ = a .

On the same example term as earlier, we have the new encoding

f

bg

dc

a

→TC @

b@

@

d@

cg

@

af

. (8.5)

Again it is easy to see that [[u]@]
−1
@ = u, ∀u ∈ U(A), and therefore this establishes a

bijection between unranked trees and their curried binary encoding. Note that this
is in contrast to FCNS, which only provided a one-to-one correspondence between
the binary encoding and hedges; more precisely, any FCNS encoding e such that
e(2) , # does not correspond to an unranked tree. There is no such problem with
TC.

A stepwise automaton (SA) is simply a BUTA running on a TC-encoding alphabet A@ stepwise automaton

SA– though there are other equivalent characterisations. By dint of the above, the same
automaton can also be considered to run on the curried version of unranked trees,
and in that sense it accepts two languages, one ranked, and the other unranked.
This establishes once again the closure and decision properties of unranked tree
languages. Furthermore, SA directly inherit the nice minimisation properties and
the Myhill-Nerode theorem of ranked tree automata.

We shall see in section 8.4.1 that binarisation works very well for tree-walking
automata as well.

8.3 Queries, Path Expressions, and Their Automata

The problems which we have seen so far have been rather global in scope: an entire
document – a tree – or a DTD – an automaton – is validated or manipulated in
some way. In this section, we look into a slightly different kind of operations which,
instead of yielding a clear-cut answer to a polar question, selects nodes or subtrees.
Such an operation is called a query. More precisely, a query q is a mapping from a query

tree t to a subset of its nodes, or more generally to a set of tuples of nodes. That is
to say

q : T(A)→ ℘(P(t)n) ,

156 Part IV. Chapter 8. Tree Automata for XML

for some n ∈ N1. The usual vocabulary of adicity applies to queries: for instance

If n = 0, one can assimilate
the singleton containing the
empty tuple with true, and
the empty set with false. . .

if n = 1 we speak of a unary or monadic query – and we shall see this is the
most commonly used kind. There are of course many ways to define queries; we
start off with declarative, logic-based queries, and move on progressively to more
procedural, automata-focused methods.

8.3.1 Logic-based Queries

Recall the discussion of predicate logic formulæ as word and tree acceptors, at
the end of section 2.4[p30]. The example formula ϕ given there is a sentence – it
has no free variables – and this is why, given a tree, it has a fixed truth value, and
therefore defines an acceptor. Consider now the formula

ψ = a(α) =⇒ ∃β : S(α,β) ∧ b(β) ,

which, unlike ϕ, has a free variable α. In order to obtain a fixed truth value

Reminder: S(α,β) holds
if the position β is the im-
mediate successor ofα, and
a(α) if w(α) = a.

for ψ, one needs to interpret it both in reference to a tree, and according to an
assignment of its free variable. Thus, if the word or tree t is fixed, the formula
can be interpreted as defining a subset ψ(t) of nodes of t such that the formula is
satisfied:

ψ(t) = {α ∈ P(t) | |= ψ[α] } .

For instance, considering the wordw = abracadabra, and numbering the positions
from 1 to 11, we have ψ(w) = { 1, 8 }. Of course, there may be more than one free
variable, in which case we let

ψ(t) = { (α1, . . . , αn) ∈ P(t)
n
| |= ψ[α1, . . . , αn] } .

Thus predicate logic is a natural tool to define queries; unfortunately it is almost
too good a tool for its own sake, as the model-checking problem is known to
be PSpace-complete for both first-order and monadic second-order logic, and of
course, actually exhibiting a variable assignment that satisfies the formula is at
least as hard as determining whether it is satisfied by a given assignment. This
in itself does not not necessarily entail intractability, however. For instance LTL
model-checking – equivalently, model-checking of monadic first-order logic of
order on words, by Kamp’s theorem – is PSpace-complete as well, and yet it is has
proven itself invaluable for practical applications.

In order to understand how that can be, one must look at the parametrised complex-
ity instead of the combined complexity. In the case of LTL, it is roughly O(2k · n),
where n is the size of the structure and k that of the formula. Therefore, if the for-
mula is fixed and small enough, the evaluation will be tractable, and scale linearly
with the size of the input. Typically, it can be assumed that a query is relatively
small, and that the document or database on which it runs may be very large.
The question of whether a logic defines tractable queries is therefore generally
considered equivalent to asking whether the complexity of the model-checking
problem can be expressed as O(f(k) · p(n)), where p is polynomial and f is some
not-too-explosive computable function. This question was investigated in [Frick &
Grohe, 2002], which found the answer to be negative with f elementary, for both
first- and monadic second-order logics on words, under reasonable and widely held

8.3. Queries, Path Expressions, and Their Automata 157

complexity-theoretic assumptions, such as P , NP. Thus the combined complexity
cannot even be bounded by something of the form

22
···2k · p(n) .

This can be somewhat mitigated by bounding the width of the trees, as the com-
plexity becomes linear in the size of the structure, i.e. p is linear; this was shown on
graphs in [Courcelle, 1990]. Nevertheless, the non-elementary overhead is generally
considered prohibitive. Thus, while the predicate logics are often used as yardsticks
for the expressive powers of other query languages, they are deemed a smidgen
too powerful to be used directly in practical settings. One approach to alleviate
that problem has been explored in [Neven & Schwentick, 2000], where a fragment
of monadic second-order logic appropriately dubbed efficient tree logic (ETL) is
introduced. ETL has the same expressive power as monadic second-order logic for
unary queries, but its model-checking problem is in O(2k

2 · n), and even O(2k · n)
for another equally expressive fragment. Similarly, µ-calculus – on ranked trees –
and monadic datalog share the same expressive power but sport good complexities.
The latter admits model-checking tests in time linear in both the size of the query
and that of the tree, provided a suitable representation of the tree. Furthermore,
most practical queries are succinctly expressed in this language, so that the lesser
conciseness – with regards to monadic second-order logic – is not too serious a
drawback [Gottlob & Koch, 2004].

8.3.2 (Core) XPath: a Navigational Language

Another approach to query languages is navigation, that is to say the specification
of the path which one must follow and the tests which must be taken in order
to reach the nodes of interest. Incidentally, this should remind the reader of the
modus operandi of the tree-walking automata introduced in section 8.1[p144].

The most ubiquitous navigational language is certainly the W3C standard XPath
[Consortium, 1999, 2010], which is used as the node-selecting sub-language of a
number of other highly successful W3C tools, such as the XSLT transformation lan-
guage, the XQuery query language and its update facility, the XPointer addressing
language, and the standard schema language XML Schema. We shall not present
the full syntax of XPath, but instead offer a simple example. The path expression

.//starship[/captain/species/human]/crew (8.6)

selects all crew nodes which are descendants (//) of the current node (.) and sons
of starship nodes which are descendants of the current node as well, and which
have a captain child (/) itself with a species child with a human child ([] is a
test). In more prosaic terms, this query yields the set of all crews of all starships
defined below the current node whose captain is human.

Note that this is a unary query if the starting point is assumed to be the root node,
but if not, it defines a binary relation between starting nodes and end nodes, and is
therefore a binary query. Hence the term “navigational language” as opposed to
the more restrictive “selection language”.

The full specification of XPath is quite large – about 30 pages for XPath 1.0 [Con-
sortium, 1999] and 90 pages for XPath 2.0 [Consortium, 2010] – and it contains

158 Part IV. Chapter 8. Tree Automata for XML

a lot of features which add to the overall difficulty of evaluation, such as an
arithmetic component. This complexity renders it difficult to study, which is why
cleaner fragments of XPath have been isolated and examined independently of the
whole specification. In particular the navigational core of XPath 1.0, singled out
in [Gottlob, Koch & Pichler, 2002, 2005], only manipulates sets of nodes, and is
referred to as Core XPath, or Navigational XPath. As its names suggest, it captures
the navigational capabilities of full XPath, and discards the other features. It was
shown in [Gottlob et al., 2005] that the combined complexity of query evaluation
is linear for this fragment, while it is polynomial for the full language – and em-
pirically exponential in most popular XSLT engines (Apache’s XALAN, XT) and
implementations within web browsers (Microsoft’s Internet Explorer 6).

Core XPath 1.0 is a two-sorted language, where we distinguish path expressions πCore XPath 1.0

and node expressions ν. These are defined by the following grammar:

π := . | ↑ | ↓ |→ |← | ↑+ | ↓+ |→+ |←+ | π/π | π ∪ π | π[ν]

ν := σ | 〈π〉 | ¬ν | ν ∧ ν | ν ∨ ν σ ∈ A .

The semantics are interpreted over a tree t, for which a path expression π defines a
binary relation JπKt ⊆ P(t)2, and a node expression ν a set of nodes JνKt ⊆ P(t).
First come the axes:

Caveat lector: the seman-
tics of → and ← are in-
verted compared to that of
[ten Cate & Segoufin, 2010].

J.Kt = { (α,α) | α ∈ P(t) } self

J↑Kt = { (α.k, α) | α.k ∈ P(t) } parent

J↓Kt = { (α,α.k) | α.k ∈ P(t) } child

J→Kt = { (α.k, α.(k+ 1)) | α.(k+ 1) ∈ P(t) } next-sibling

J←Kt = { (α.(k+ 1), α.k) | α.(k+ 1) ∈ P(t) } previous-sibling

The remaining axes are defined as the transitive closure of the above, and are called
ancestor, descendant, following-sibling and preceding-sibling.

q
"+

y
t
= J"K+t " ∈ { ↑, ↓,→,← }

Then we have the composite path expressions:

Jπ1/π2Kt = { (α, γ) | ∃β ∈ P(t) : (α,β) ∈ Jπ1Kt ∧ (β, γ) ∈ Jπ2Kt }

Jπ[ν]Kt = { (α,β) ∈ JπKt | β ∈ JνKt }

Jπ1 ∪ π2Kt = Jπ1Kt ∪ Jπ2Kt

And finally, the node expressions:

JσKt = {α ∈ P(t) | t(α) = σ }

J〈π〉Kt = {α ∈ P(t) | ∃β ∈ P(t) : (α,β) ∈ JπKt }

J¬νKt = P(t) \ JνKt
Jν1 ∧ ν2Kt = Jν1Kt ∩ Jν2Kt
Jν1 ∨ ν2Kt = Jν1Kt ∪ Jν2Kt .

For instance, ¬〈↓〉 selects the leaves, ¬〈↑〉 the root, ¬〈←〉 all the first children, and
¬〈→〉 selects all the last children; as for the crew query (8.6), it is expressed by

(. ∪ ↓+)
[
starship ∧ 〈↓ [captain]/ ↓ [species]/ ↓ [human]〉

]
/ ↓ [crew] .

8.3. Queries, Path Expressions, and Their Automata 159

Beyond the results of the original paper, the definition of Core XPath 1.0 has been a
very successful endeavour, which kindled interest in the theoretical study of XPath.
A similar approach was taken in [ten Cate & Marx, 2007, 2009] for the second
version of XPath which, unlike the first, was designed to be a full-fledged n-ary
query language, expressively complete for first-order queries with descendant and
following-sibling relations. This implies that model-checking is PSpace-complete
for XPath 2.0, and thus a polynomial time evaluation algorithm is unlikely, as its
existence is contingent on P = PSpace, which is widely assumed not to hold.

Among the interesting results stemming from the clean semantics of the Core
XPaths, let us mention the complete axiomatisation of query equivalence for both
versions 1.0 [ten Cate, Litak & Marx, 2007] and 2.0 [ten Cate & Marx, 2007, 2009].
The Core XPaths have also been compared with a large amount of fragments of
predicate logics. For instance [Marx & de Rijke, 2005] shows that Core XPath
1.0 is equivalent to first-order logic with two variables and equipped with child,
descendant and following-sibling relations. Later, [ten Cate & Segoufin, 2010]
develops the natural extension to Regular Core XPath with subtree relativisation
(RXPathW), obtained simply by adding the productions RXPathW

π := π∗ ν := Wν ,

with the semantics

Jπ∗Kt = JπK
∗
t and JWνKt =

{
α ∈ P(t)

∣∣ ε ∈ JνKt|α } .

The relativisation operator W permits to focus on a specific subtree for the purpose

Caveat lector: the semantics
in [ten Cate & Segoufin,
2010] is written JWνKt ={
α ∈ P(t)

∣∣ α ∈ JνKt|α }.
Their notion of subtree
appears to be defined as
rooted in α, while our
subtrees are rooted in ε.

of evaluating a sub-query; it is unknown whether it actually increases the expressive
power of Regular Core XPath. Moreover, the authors show this extension to be
equivalent to first-order logic with monadic transitive closure (FOT), a logic strictly FOT

more expressive than basic first-order, but at most as powerful as MSO. FOT is
then characterised by nested tree-walking automata – see section 8.4.2 below – and
is thus shown to actually be strictly less expressive than MSO.

As we shall come back to this logic in the next section, it is worth defining more
precisely what it is; FOT is first-order logic extended with a + operator for taking
the transitive closure of any first-order–definable binary relation. More specifically,
if ϕ(x, y) is a first-order formula, potentially with other free variables besides x
and y, the transitive closure of ϕ with respect to x and y is the formula +x,y(ϕ),
defined as being equivalent to the infinitary disjunction

∨
k∈N2

∃z1, . . . , zk : (x, y) = (z1, zk) ∧ ∀i ∈ J1, k− 1K, ϕ(zi, zi+1) ,

which is not definable as a bare first-order formula [Fagin, 1975] – but would be in
the second order. Transitive closure allows, for instance, to define the descendant
relation, given the child relation.

A reader interested in a very comprehensive survey of XPath fragments and their
characterisations will find that in [Benedikt & Koch, 2008], at least for results up to
2005.

160 Part IV. Chapter 8. Tree Automata for XML

8.3.3 Caterpillar Expressions

XPath is not the only approach to navigation and queries. Regular path queries
[Abiteboul, Buneman & Suciu, 1999] and caterpillar expressions (CE) [Brüggemann-caterpillar expressions

CE Klein & Wood, 2000] are other takes on that problem, independently developed
although equivalent on unranked trees. They also coincide exactly with the ex-
pressive power of tree-walking automata [Bojańczyk, 2008; Salomaa, Yu & Zan,
2007, 2009, Thms. 11 & 3.1]. While [Brüggemann-Klein & Wood, 2000] introduced
caterpillar expressions directly on unranked trees, we give a definition directly on
binary trees, and more precisely, on the binary FCNS encoding of some unranked
tree, in the style of [Hosoya, 2010, Sec. 12.1.2]. We therefore consider A# as our
working alphabet, and use words of { 0, 1 }∗ for positions.

A biologist’s caterpillar is of course a colourful and hairy lepidopteran tree-crawler;
it inches along from leaf to leaf, performing simple tests along the way to ascertain
that it is not going to fall off. Back in computer science, a caterpillar expression
captures similar sequences of actions. More specifically, it is a regular expression
over a set of caterpillar atoms, consisting of moves and tests which are precisely the
same as those introduced for TWA in section 8.1[p144], and for which we shall use
the same notations, as well as tests for determining the label of the current node.
The set C of caterpillar atoms is therefore given by

C = { ↑,↙,↘, ?, 0, 1 }] A# .

A finite word c1 · · · cn ∈ C∗ is called a caterpillar path, and is said to describe a
sequence of nodes s = α1 · · ·αn ∈ P(t)∗ on a tree t ∈ T(A#) if the following holds
for all k ∈ J1, n− 1K:

ck = ↑ ⇒ ∃i ∈ { 0, 1 } : αk+1.i = αk
ck =↙ ⇒ αk+1 = αk.0

ck =↘ ⇒ αk+1 = αk.1

ck = σ ∈ A# ⇒ αk+1 = α ∧ t(α) = σ

ck = ? ⇒ αk+1 = αk = ε

ck = 0 ⇒ ∃β ∈ P(t) : αk+1 = αk = β.0
ck = 1 ⇒ ∃β ∈ P(t) : αk+1 = αk = β.1 .

A sequence of nodes s is described by a caterpillar expression e if there exists a
caterpillar path c ∈ L(e) such that c describes s. Furthermore, e encodes a binary
query in the sense that it selects all couples of nodes (α,β) such that some sequence
α = γ1 · · ·γn = β is described by e. We write JeKt the set of couples selected by e.
It should be noted that one could say exactly the same of tree-walking automata,
and define them as selecting couples of nodes, although in that case one would
prefer the alternative – and equivalent – definition of final states as accepting the
current term immediately, without needing to go back to the root.

While the expressive powers of XPath and caterpillar expressions are incomparable,
some XPath expressions can be expressed as CE. Recall that we are working on
FCNS binarised trees; keeping in mind that the right child is the next sibling, we

8.3. Queries, Path Expressions, and Their Automata 161

can define expressions equivalent to all the standard XPath axes, as follows:

↑ = (1 ↑)∗0 ↑ ↓ =↙↘∗ → =↘ ← = 1 ↑
↑+ = ((1 ↑)∗0 ↑)+ ↓+ = (↙↘∗)+ →+ =↘+ ←+ = (1 ↑)+ .

To quickly see how that works, it is best to run those expressions on an example

Note that, in ↑ = (1 ↑)∗0 ↑
for instance, the ↑ on the
left is an XPath axis, while
the ↑ on the right is a cater-
pillar atom.

binarised tree, for instance (8.2)[p153]. With ↑, the head of the automaton – or the
metaphorical caterpillar – goes up so long as it is on a right child, which corresponds
to moving leftwards from sibling to previous sibling in the unranked tree; then,
when it is a first child, it moves up, which also translates into moving up in the
unranked tree. The caterpillar has therefore moved from some child to its parent.
This is inverted with ↓, which, in the unranked tree, moves nondeterministically
to any child of the current position. The remaining expressions are simpler, and
should be self-explanatory at this point. Another classic example – borrowed from
[Hosoya, 2010] – is a caterpillar expression which, starting at the root, explores all
the nodes of the binary trees, starting with the left-most leaf:

(↙∗ # (1 ↑)∗ 0 ↑ ↘)∗ # (1 ↑)∗ . (8.7)

It has been mentioned that tree-walking automata, and therefore caterpillar expres-
sions, are strictly less powerful than branching automata, or equivalently, monadic
second order logic. How do they compare to lesser – but still powerful – yardsticks
of expressive power, such as XPath, first-order logic, and its transitive closure
extension? Queries are given in [Goris & Marx, 2005, Prp. 2.6], which separate Core
XPath 1.0 from caterpillar expressions and vice versa: the two are incomparable.
The proof of [Bojańczyk & Colcombet, 2005] that L(TWA) ⊂ L(BUTA), as it turns
out, also provides half the proof that first-order logic and caterpillar expressions
have incomparable expressive powers, as they show the separation language which
they exhibit to be definable in first-order logic. The other direction is much easier
[Bojańczyk, 2008, Thm. 13], as some languages easily recognised by TWA are not
expressible in first-order logic, such as the language of trees whose left-most path
is of even length, or the language of true boolean expressions, for which we have
explicitly built a TWA at the end of section 8.1[p144]. That these languages are not
expressible in first-order logic is shown by Ehrenfeucht–Fraïsse games, which are a Ehrenfeucht–Fraïsse games

well-know technique for proving that kind of negative results. In particular, it is
folklore that first-order logic, although sufficient to define any finite structure, can
only express local properties, and that even expressing simple global notions such
as “the domain has even cardinality” is beyond it.

This leaves caterpillar expressions in about the same place as Core XPath 1.0.
On the one hand, they are sufficiently expressive for many applications; indeed
[Brüggemann-Klein & Wood, 2000] points out that caterpillar automata – i.e. tree-
walking automata – are strictly more expressive than needed to express tree-local tree-local tree languages

tree languages [Takahashi, 1975], that is to say, the tree languages which are the
set of derivation trees of some (extended) context-free grammar. This is quite
useful, since many document grammar mechanisms define tree-local languages.
On the other hand, not supporting all of first-order logic is a bit problematic, as
that is often considered to be the least common denominator of respectable query
languages; hence the various extensions to caterpillar expressions, of which we
shall now present a few.

162 Part IV. Chapter 8. Tree Automata for XML

Following [Bojańczyk, 2008], we define cutting caterpillars as caterpillar expressionscutting caterpillars

with three additional caterpillar atoms. The first and second are the positive and
negative nesting tests 〈e〉 and 〈¬e〉, where e is some caterpillar expression:

ck = 〈e〉 ⇒ αk+1 = αk ∧ ∃β : (αk, β) ∈ JeKt
ck = 〈¬e〉 ⇒ αk+1 = αk ∧ @β : (αk, β) ∈ JeKt .

The third is the cutting command, or subtree relativisation command, which we
shall denote by W by analogy to RXPathW; it is semi-formally defined as:

ck = W ⇒ αk+1 = αk ∧ αk is root, i > k⇒ αi E αk .

To clarify, the cutting command applies only within the scope of the current nesting
level, and by “is root”, we mean that within that level, the ? test is redefined
to report αk as the root instead of ε. In essence, it causes all nodes beyond the
subtree under αk to disappear. The similarity of purpose to [ten Cate & Segoufin,
2010]’s relativisation operator is not coincidental, as cutting caterpillars are exactly
as expressive as first-order logic with monadic transitive closure, itself exactly as
powerful as Regular XPath with subtree relativisation, and nested tree-walking
automata.

Another interesting subclass is that of the slightly less powerful positive cutting
caterpillars, which are cutting caterpillars forbidden from using negative nesting
commands. They capture exactly the expressive power of first-order logic with

Positive Cutting

Caveat lector: [Bojańczyk,
2008, Thm. 12] defines only
the first nesting test, and
states that the positive frag-
ment forbids “nesting com-
mands under the scope of
a negation”, while there is
no negation in CE. We have
contacted the author to clar-
ify that, and the definition
given in this page is based
upon his answer.

positive monadic transitive closure (FOT+) [Bojańczyk, 2008, Thms. 12 & 14], thatFOT+

is to say FOT where the transitive closure operator may not appear under the
scope of a negation, and are thus equivalent to pebble automata, which we shall
examine briefly in section 11.2.1[p196], in the appendix to this thesis. They are also
equivalent to [Goris & Marx, 2005, Sec. 4]’s caterpillar expressions with variable
binders, which are described as syntactic analogues of pebbles.

Lastly, let us mention the looping caterpillars of [Goris & Marx, 2005, Sec. 2.3], whichlooping caterpillars

extend basic caterpillar expressions with a looping operation [e] defined as

ck = [e] ⇒ αk+1 = αk ∧ (αk, αk) ∈ JeKt .

This simple extension suffices for looping caterpillars to capture at least the expres-
sive power of first-order logic – thereby making them more powerful than Core
XPath 1.0 – while still keeping a polynomial-time combined complexity for query
evaluation. The same paper also proposes an extension of caterpillar expressions
with monadic datalog tests, which characterises MSO-definable binary queries.

8.4 The Families of Tree-Walking Automata

While discussing the expressive capabilities of the various formalisms presented
above, a lot has been said already about various kinds of tree-walking automata,
which we shall not repeat in this short section. Instead the focus is on providing
short definitions and historical and bibliographic references for the various models.
We also tersely summarise the relationships between the main query languages,
logics and automata appearing this chapter.

8.4. The Families of Tree-Walking Automata 163

8.4.1 Basic Tree-Walking Automata

The technical definition of this model, as well as a few examples, have already been
given in section 8.1[p144]. Tree-walking automata have originally been introduced
more than four decades ago, in [Aho & Ullman, 1969]. However, it should be noted
that the original definition is not quite the same as that which we use in this thesis
and which appears in the majority of the literature since then. As [Hosoya, 2010,
Sec. 12.3] remarks, the 1969 definition does not include tests for the kind of the
current node, which results in a much weaker model, incapable for instance of
visiting all the nodes of a tree; a feat which comes easily to a model where such tests
are available, as demonstrated by the caterpillar expression (8.7). It was shown in
[Kamimura & Slutzki, 1981] that the weaker model was properly less powerful than
BUTA. It should be said that the automata of [Aho & Ullman, 1969] were working
in a specific context, as they were modelling syntax-directed string rewriting, and
to do so they were provided with an underlying context-free grammar and an
output tape; the reason why they did not test the kind of the nodes was that it
would have been redundant for them to do so, as this information could already
be encoded into the non-terminals of the grammar. The question for the stronger –
and unarguably, standard – model remained open for quite some time, although
the consensus was that the stronger model was probably still strictly weaker than
BUTA; this was finally proven in [Bojańczyk & Colcombet, 2005]. The same authors
went on the next year to close another long-standing open question, previously
approached in a weaker context [Bojańczyk, 2003]: TWA cannot be determinised
[Bojańczyk & Colcombet, 2006].

The initial context of research for TWA was tree transformations and attribute
grammars [Aho & Ullman, 1969; Deransart, Jourdan & Lorho, 1988; Bloem &
Engelfriet, 2000]. Currently, they owe a great deal of the renewed research interest
directed towards them to the ever-growing popularity of XML. The first tangible
connexion between TWA and XML was probably the development of caterpillar
expressions – see the previous section – originally introduced in [Brüggemann-Klein
& Wood, 2000], along with caterpillar automata which are actually almost exactly the
same as – and exactly as expressive as – tree-walking automata. They are then used
in the context of the validation of streaming XML documents, [Segoufin & Vianu,
2002], and in [Milo, Suciu & Vianu, 2003], a model extended with pebbles is central
to the study of the decidability of type-checking for some XML transformation
languages, including XML-QL and a fragment of XSLT.

The expressive power of TWA is incomparable with that of first-order logic, which
we have already argued above, about the equivalent caterpillar expressions. They
are also at least expressive enough to capture tree-local tree languages. It is shown
in [Engelfriet & Hoogeboom, 1999, Sec. 3] that they capture all tree languages
definable in locally first-order logic, meaning that the formulæ may speak about
the parent-child relation, but not the more general ancestor relation.

Although deterministic TWA are not terribly powerful, they have the interesting
property that, unlike the general, non-deterministic model, they are closed under
complementation, which follows from the – potentially unintuitive – fact that every
DTWA can be simulated by another DTWA that halts on all inputs [Sipser, 1978;
Muscholl, Samuelides & Segoufin, 2006].

164 Part IV. Chapter 8. Tree Automata for XML

Membership is testable in polynomial time – linear for deterministic TWA – while
the emptiness, containment and equivalence problems for tree-walking automata
are shown to be ExpTime-complete in [Neven, 1999, Sec. 5], in the context of
unranked trees. This carries over to ranked trees; note that we have, by [Neven,
2002, Prp. 4], an even better correspondence to the FCNS binary encoding than for
branching automata:

(1) for every unranked (D)TWA Au, there exists a ranked (D)TWA Ar such that
L(Ar) = [L(Au)]# and ‖Ar‖ = O(‖Au‖),

(2) for every ranked (D)TWA Ar, there exists an unranked (D)TWA Au such that
L(Au) = [L(Ar)]

−1
and ‖Au‖ = O(‖Ar‖).

Let us note a critical difference between the ranked and unranked models, however:
a ranked TWA can go up to check the label of the parent, and go back where it was.
An unranked TWA cannot, because there is no bound on its current position – it
may be at the third child, or the 3333-rd – and that position can therefore not be
remembered with finite memory. This is even clearer when considering a binary
TWA running on a FCNS encoding: the head would get lost. This can be solved
with just one pebble, using the terminology of section 11.2.1[p196].

TWA can be converted into branching automata, with an exponential blowup in
the number of states. We conduct a detailed study of this transformation in our
own contributions, presented in the next chapter.

8.4.2 Nested Tree-Walking Automata

Nested tree-walking automata have been introduced in [ten Cate & Segoufin, 2010],
the results of which have already been discussed multiple times in this chapter. In
particular, they characterise exactly first-order logic with monadic transitive closure,
and RXPathW, as well as cutting caterpillars.

Quick Tips

Back-references to each cita-
tion are included at the end
of the thesis. PDF: follow
the hyperlinks.

For the sake of self-containedness, we just give a brief informal definition of nested
TWA. Basic TWA – using the variant where a run is accepting as soon as a final
state is used – are considered to be 0-nested. For k > 1, a k-nested TWA A is a
TWA that contains a finite collection of (k− 1)-nested TWA Bi, and such that each
transition of A may be contingent upon a number of conditions on the Bi, each
of which may be required to have (resp. not to have) an accepting run starting in
the current node, without restrictions (resp. contained in the subtree rooted in the
current node).

This model does not seem to have been used outside of [ten Cate & Segoufin, 2010],
at the time of writing.

Chapter 9
Loops and Overloops: Effects on Complexity

Contents
9.1 Introduction . 166
9.2 Loops, Overloops and the Membership Problem 167

9.2.1 Defining, Classifying and Computing Loops 167

9.2.2 A Direct Application of Loops to Membership Testing . . 170

9.2.3 From Loops to Overloops 172

9.3 Transforming TWA into equivalent BUTA 174
9.3.1 Two Variants: Loops and Overloops 175

9.3.2 Overloops: Deterministic Size Upper-Bound 177

9.4 A Polynomial Over-Approximation for Emptiness 179
9.5 Experimental Results . 181

9.5.1 Evaluating the Approximation’s Effectiveness 181

9.5.2 Overloops Yield Smaller BUTA 182

9.5.3 Demonstration Software . 183

9.6 Conclusions . 184

—Where tree-walking automata save time by jumping off trees.

A
s we have seen in the previous chapter, tree-walking automata (TWA) and

their many relatives have lately been the object of renewed research interest,
thanks to their tight connexions to XML. In this chapter, we focus on

an important algorithm on TWA: the transformation into an equivalent
branching automaton – more specifically, into a bottom-up tree automaton (BUTA)
– which is classically based on the somewhat folklore notion of “tree loop”.

We give a formal treatment of tree loops, introduce the closely related notion of tree
overloops, and investigate the use of both for the following common operations on
TWA: deciding membership efficiently, building equivalent BUTA, and deciding
or positively approximating emptiness. Notably, we argue that the transformation
into a BUTA is slightly less straightforward than was previously assumed in the
literature, show that using overloops yields much smaller BUTA in the deterministic
case, and provide a polynomial over-approximation of this construction, capable
of detecting emptiness with surprising accuracy – given that emptiness is an
ExpTime-complete problem – against randomly generated TWA.

The results appearing in this chapter have been published in [Héam, Hugot &
Kouchnarenko, 2011, 2012b].

If this was not already done, the reader is invited to consult section 8.1, and in
particular definition 8.1[p145] and what follows, where the technical and notational
prerequisites for this chapter are introduced.

165

166 Part IV. Chapter 9. Loops and Overloops: Effects on Complexity

9.1 Introduction

In light of the applications of TWA to XML, it becomes crucial to have reasonably
efficient algorithms for essential operations on TWA such as deciding membership
and emptiness, as well as the transformation into a BUTA. Until now, research
has been mainly focused on closing fundamental open problems concerning the
expressive power of TWA, in particular their relationship with regular languages,
whether they are determinisable, etcetera; refer to section 8.4.1[p163] for a survey
of such work. While algorithms for the above operations are known, they appear
in print mostly as proof sketches, and there has been no focus on finding tighter
complexity bounds. In contrast, this chapter provides explicit algorithms for these
tasks and deals with complexity issues. The common thread of our contributions is
the notion of tree loop, which is pervasive to the algorithms we give. This notion is
closely related to Knuth’s construction for testing circularity of attribute grammars
[Knuth, 1968], and is a generalisation to trees of a similar construction for two-way
word automata [Shepherdson, 1959]. The contributions are organised as follows:

� Section 9.2.1 gives a thorough introduction to tree loops – the basic idea of
which is more or less folklore – and lays the groundwork for a new notion of
tree overloop which we then introduce in Sec. 9.2.3[p172]. Simple algorithms for
testing membership follow naturally from this work; beyond the immediate
application of the recursive definitions of loops and overloops, a more efficient
method based on a boolean matrix encoding of loops is given in Sec. 9.2.2[p170].
To the best of our knowledge, no such algorithm existed in the literature.

� Section 9.3[p174] deals with the transformation from TWA to BUTA, based on
the proof sketches in [Bojańczyk, 2008] and [Samuelides, 2007, p143]. Two
variants are given in Sec. 9.3.1: one using loops and another using overloops.
Section 9.3.2 proceeds to show that, in the deterministic case, the overloops-
based construction admits a much smaller upper bound on the number of
generated states.

� The emptiness problem is known to be ExpTime-complete for TWA, and is
traditionally tested by first transforming the TWA into a BUTA, and then
invoking the usual linear emptiness test on the latter. Section 9.4[p179] provides
a polynomial-time algorithm which computes an “over-approximation” of this
BUTA, and thus may decide emptiness positively. Should it prove inefficient
against some families of TWA, then the approximation can be refined as much
as needed.

� Section 9.5[p181] presents random experiments performed to confirm our
theoretical results. They involve both an ad-hoc random generation scheme for
non-deterministic TWA, and a more interesting one, based on the results of
[Héam, Nicaud & Schmitz, 2009], that yields complete and deterministic TWA
according to the uniform probability distribution – which imparts statistical
significance to our results. The dependability of the approximation method
developed in Sec. 9.4 is tested in Sec. 9.5.1 – it is shown to be astonishingly
accurate against both schemes. Section 9.5.2 compares the respective sizes of
the BUTA obtained from the loops and overloops-based transformations, and

9.2. Loops, Overloops and the Membership Problem 167

shows that overloops yield much smaller BUTA than loops in average. It is
also shown that this size gain is independent of – and cumulates with – post-
processing cleanup (cf. [Héam, Hugot & Kouchnarenko, 2010a]) of the BUTA.
The ideas of these tests are illustrated on our running example, the small
TWA X given in Sec. 8.1[p144], then validated against the above-mentioned
uniform random generation scheme.

9.2 Loops, Overloops and the Membership Problem

9.2.1 Defining, Classifying and Computing Loops

The notion of loop turned out to be very useful to deal with TWA. Informally, loops
arise naturally as a generalisation of the definition of an accepting run, where the
automaton enters the root in a given initial state pin, moves along the tree, and then
comes back to the root in a certain final state pout. In practice, the details of the
moves which form the loop itself are largely irrelevant and are discarded: the most
useful information is the pair of states (pin, pout).

pin · pout

··

.

tree loop

Ó Definition 9.1: Tree Loops

Let A be a TWA, t a tree and α ∈ P(t). A pair of states (p, q) ∈ Q2 is a loop of
A on the subtree t|α if there exist n > 0 and a run

(α, p), (β1, s1), . . . , (βn, sn), (α, q)

such that βk E α for all k ∈ J1, nK. Such a run is a looping run, and we say that
it forms the loop (p, q).

Example: The looping run (0, q`), (0.0, q`), (0.0, qu), (0, qu) of X on the sub-
tree g(f(a, b), c)|0 = f(a, b) forms the loop (q`, qu):

g

cf[q`]

ba

� g

cf

ba[q`]

� g

cf

ba[qu]

� g

cf[qu]

ba

.

♦

168 Part IV. Chapter 9. Loops and Overloops: Effects on Complexity

Notice that loops are not only defined on whole trees, but on subtrees as well, with
the restriction that the automaton cannot leave the subtree during the looping run.

·

pin · pout·

.

It is in fact this restriction which grants loops their usefulness. TWA, unlike their
branching cousins, whose runs are defined inductively, do not naturally lend
themselves to inductive reasoning; and yet, thanks to the above restriction, loops
are easily computed by induction. Thus loops and their variants can be thought
of as convenient devices which hide the sequential, stateful aspect of TWA runs
beneath a much more “user-friendly” layer of induction.

In the next few paragraphs we compute the loops of a TWA A on a subtree t|α.

trivial loop

simple loop

non-trivial loop

Ó Definition 9.2: Kinds of Loops

Clearly for all p ∈ Q, (p, p) is a loop; we call such loops trivial. A looping run
of A on t|α is simple if it reaches α exactly twice, which is to say that there are
two configurations in the run that are at position α. It is non-trivial if it reaches
α at least twice. A loop is simple (resp. non-trivial) if there exists a simple (resp.
non-trivial) looping run forming it.

Example: The loop (q`, qu) in the above example is simple, because (0, q`),

(0.0, q`), (0.0, qu), (0, qu) only reaches α = 0 twice, on the first and last config-
uration. The TWA X forms only trivial and simple loops, but suppose that we
alter and extend it so that it also checks that the right-most leaf is b. During
an accepting run it would go down and left in q`, back up to the root in qu,
down and right in qr, and back up to the root again, in a final state qf. Thus
all accepting runs would be non-trivial and non-simple, reaching – or staying
at – the root at least three times, and exactly four if we use the same style of
stationary transitions as before:

f[q`]

ba

� f

ba[q`]

� f

ba[qu]

� f[qu]

ba

�

f[qr]

ba

� f

b[qr]a

� f

b[qf]a

� f[qf]

ba

. (9.1)

♦

Fortunately, we only ever need to compute simple loops, as all other loops can be
computed from them, thanks to the next lemma. It should be noted that, in this
chapter, we depart from the conventions for closures made explicit in section 2.1[p23],
which otherwise globally apply in this thesis. More specifically, in the context of

9.2. Loops, Overloops and the Membership Problem 169

sets of loops, which can be seen as binary relations on Q, reflexive closures are
always implicitly taken on Q. Thus, if L ⊆ Q2 is a set of loops, L∗ ⊇ { (p, p) | p ∈ Q },
which does not hold in general for ordinary binary relations. This provides a
simple shortcut to include all trivial loops in one fell swoop.

Nitpicking on Relations

There are two ways to
define a n-ary relation R
on sets S1, . . . , Sn: (1)
as a subset R ⊆

∏n
k=1 Sk,

or (2) as a structure
〈S1, . . . , Sn,R ′〉, with
R ′ ⊆

∏n
k=1 Sk. We take the

first viewpoint throughout
this thesis, except for loops.

Ñ Lemma 9.3: Loop Decomposition

If S ⊆ Q2 is the set of all simple loops of A on a given subtree u = t|α, then
the closure S∗ is the set of all loops of A on u.

Proof. Every looping run is either trivial or non-trivial. All trivial loops are
in S∗ by our conventions regarding the reflexive closure of sets of loops.
Furthermore, every non-trivial looping run can easily be decomposed into one
or more simple runs. Indeed, any non-trivial looping run ` has the following
general form:

` = (α, p0),
[
(βk1 , s

k
1), . . . , (β

k
nk
, sknk), (α, p

k)
]k∈J1,mK

,

where βki C α for all k, i, and the notation [xk]
k∈J1,mK designates the run

obtained by concatenating the runs x1, . . . , xm. This is the composition of m
simple looping runs `k, for k ∈ J1,mK, forming the simple loops (pk−1, pk).
The remaining loops are obtained by transitive closure:{

(pk−1, pk)
∣∣ k ∈ J1,mK}+ = { (pk−1, pl) ∣∣ k, l ∈ J1,mK, k 6 l} .

Let us denote by fτ(u) the set of all loops of A on a subtree u, where τ is the fτ(u): loops on u, type τ

type of the root of u; if u is the subtree t|α then τ = tyα. Note that thanks to the
above-mentioned restriction in the definition of loops, the type of the subtree’s root
is the only information which is actually needed from the context.

Let a ∈ A0 be a leaf of type τ. We compute the loops on a. By definition of a
looping run, A cannot move up; nor can it move down since leaves have no children.
So the only transitions which can be activated are	-transitions. As we are solely
interested in simple loops, we can only activate one of these transitions once, thus
creating runs of the form (α, p)� (α, q), and the corresponding loops (p, q). Let
us have a general notation for this:

Hτσ: simple here-loops

Ó Definition 9.4: Simple Here-Loops

Hτσ = { (p, q) | 〈σ, p, τ→	, q〉 ∈ ∆ } .

Thus the simple loops on a are Hτa. By Lemma 9.3 we have fτ(a) = (Hτa)
∗. We

now deal with inner nodes. Let f ∈ A2, and u = f(u0, u1); again, τ denotes the type
of the root of u. Clearly the elements of Hτf are loops on u, as above, but this time
A can move down as well. It cannot move up on the first move – that would mean
leaving the subtree – but it will obviously need to move up to rejoin the root if it
ever moves down.

To clarify all that, let us reason on what the first move of a simple looping run can
be. It cannot be ↑ and all simple loops whose first move is	 are already computed
in Hτf . Say the first move is↙: then the run can do whatever it wants in the left
subtree u0, after which it has to move back up to the root to complete the loop.

170 Part IV. Chapter 9. Loops and Overloops: Effects on Complexity

Again, we only consider simple loops, so no move can be made past this point, as
the root has been reached twice already. Thus the general form of such a run is

(ε, p), (0, p0), (β1, s1), . . . , (βn, sn), (0, q0), (ε, q) ,

with all βk E 0. But by definition, this means that (p0, q0) is a loop on u0,
i.e. (p0, q0) ∈ f0(u0). Needless to say, the same applies (with 1 instead of 0) if the
first move is↘. It follows that to determine whether (p, q) forms a simple loop on
u, we need only check three things:

(1) A can move down (left or right) from state p into a state pθ,

(2) there is a loop (pθ, qθ) on this subtree, and

(3) in state qθ, A can move up from this subtree and into the state q.

Then there only remains to take the transitive and reflexive closure to obtain all
loops. Formally, this describes the following computation:

fτ(u) =

(
Hτf ∪

{
(p, q)

∣∣∣∣∣ ∃θ ∈ S :

∃(pθ, qθ) ∈ f
θ(uθ)

:
〈f, p, τ→ χ(θ), pθ〉 ∈ ∆
〈uθ(ε), qθ, θ→ ↑, q〉 ∈ ∆

})∗
.

Ò Theorem 9.5: Loops

Let A be a TWA and t ∈ T(A). Then for all α ∈ P(t), ftyα(t|α), as defined
above, is the set of all loops of A on t|α.

Example: For the TWA X, f0(a) = { (q`, qu) }
∗ = { (q`, q`), (qu, qu), (q`, qu) },

and f?(f(a, b)) = (∅ ∪ {(q`, qu)})
∗ (no simple here-loop, and one loop built on

the left child). On the other hand, f?(f(b, a)) = ∅∗, because f1(a) = f0(b) =

∅∗. ♦

9.2.2 A Direct Application of Loops to Membership Testing

Note that a reasonably efficient algorithm for testing membership is straightfor-
wardly derived from the above computation of loops:

Ò Corollary 9.6: TWA Membership

Let A be a TWA and t ∈ T(A). Then we have t ∈ L(A) if and only if f?(t) ∩
(I× F) , ∅.

Proof. There is a loop (qi, qf) ∈ I× F of A on t if and only if there is a run of
the form (ε, qi), . . . , (ε, qf). The first configuration is initial, and the last is final.
Therefore it is an accepting run, and t ∈ L(A).

Ò Corollary 9.7

The complexity of TWA membership is O
(
|∆|+ ‖t‖ · |Q|

3).

9.2. Loops, Overloops and the Membership Problem 171

Proof. A naïve computation of f?(t) would be done in

O
(
‖t‖ · (|Q|

3 + |Q|
2 · |∆|)

)
.

The following algorithm, while still simple, runs in O
(
|∆|+ ‖t‖ · |Q|

3), at the
cost of a O(‖t‖ · |Q|

2) space complexity.

Preliminaries. Transitions and loops will be represented by relations from
Q to Q, coded as matrices of M|Q|(B) within the classical boolean algebra
(B,+, ·). The states of Q are numbered and assimilated to their indices J1, nK
for the sake of denotational simplicity. A relation R ⊆ Q2 is represented by the
matrix M[R] = (M[R]ij), such that

M[R]ij = 1 ⇐⇒ jRi .

The sum and product of matrices are defined as usual. With those conventions
we have the expected result regarding composition: let R, R ′ ⊆ Q2 and P =
M[R ′]×M[R]; then

Pij =
n∑
k=1

M[R ′]ikM[R]kj .

Thus Pij = 1 if and only if there exists k such that jRk and kR ′i, that is to say,
j(R ′ ◦ R)i. In other words M[R ′ ◦ R] =M[R ′]×M[R].

Input & Variables. A TWA A and a tree t form the input. The core of the
algorithm is the sub-function f, which takes as input α (a position in P (t)). Its
call defines a matrix Lα, representing the loops at position α.

Algorithm.

Initialisation.
For each σ ∈ A, τ ∈ T, µ ∈ M, a matrix Tσ,τ,µ is built such that Tσ,τ,µqp = 1 if and
only if 〈σ, p, τ → µ, q〉 ∈ ∆. The positions of P (t) are topologically ordered
with respect to the partial order E, resulting in the sequence α1, . . . , αm = ε.

Body.
For k = 1 to m, f(αk) is called. Then Lε is returned. On a call to f(α):

(1) Populate the matrix

Lα = Tt(α),tyα,	 +
∑
θ∈S

[
Tt(α.θ),ty(α.θ),↑ × Lα.θ × Tt(α),tyα,χ(θ)

]
.

(2) Compute the reflexive and transitive closure of Lα in place.

Complexity. The initial topological sorting is done in O(‖t‖), and the con-
struction of the Tσ,τ,µ matrices is done in O(|Σ| · |Q|

2 + |∆|). Within each call
of f we have the following complexities:

(1) O(|Q|
2.3727) using the latest version of the Coppersmith–Winograd algo-

rithm [Coppersmith & Winograd, 1990; Stothers, 2010; Williams, 2011] –
or simply O(|Q|

3) with the conventional product.

172 Part IV. Chapter 9. Loops and Overloops: Effects on Complexity

(2) Θ(|Q|
3) using the Roy–Floyd–Warshall algorithm [Roy, 1959; Warshall,

1962; Floyd, 1962].

The complexity of any call to f is therefore O(|Q|
3); there are ‖t‖ calls to f.

Hence the announced total complexity of O
(
|∆|+ ‖t‖ · |Q|

3).
Correctness. After the call to f(α), it is plain that Lα encodes ftyα(t|α), as the
computation of (1) and (2) is a straight-forward reformulation of the formula of
Thm. 9.5[p170] in terms of a boolean matrix representation. The recursive nature
of that formula has been unwound in this algorithm by the prior topological
sorting of the positions.

9.2.3 From Loops to Overloops

We now introduce a new notion related to tree loops: tree overloops. An overloop
is formed by a looping run followed by a move up; this apparently minor change
has a number of positive consequences which we discuss in the next sections. In
particular, this notion has a great advantage over loops in the deterministic case.
Schematically, an overloop (pin, pout) based on a loop (pin, q) looks like this:

pout

pin · q·

.

Of course, this immediately raises the pressing question of what is supposed to
happen if the overloop starts – in pin – at the root of the tree. In order for overloops
to be defined for all starting positions, we need to make moving up from the root
legal.

P(t) : extended positions of t

ε: overroot: ε C ε

Ó Definition 9.8: Over-Root, Extended Positions and Transitions

The extended positions P(t) of a tree t ∈ T(A) are the set P(t) ∪ {ε}, where ε is
called the overroot. The parent function parent(·) is extended over P(t) into
the extended parent function parent(·), such that parent(ε) = ε and ε C ε. The
notion of configuration is extended as well, so that the transitions of 〈A, Q, ?
→ ↑, Q〉 become valid. Their application yields configurations of the form
(ε, q).

tree overloop

Ó Definition 9.9: Tree Over-Loops

Let A be a TWA and t a tree. A pair of states (p, q) ∈ Q2 forms an overloop of
A on t|α if there exists a run

(α, p), (β1, s1), . . . , (βn, sn), (parent(α), q)

such that βk E α for all k ∈ J1, nK.

9.2. Loops, Overloops and the Membership Problem 173

A way to compute overloops is to compute loops, then check for ↑-transitions:

Uτσ[L]: up-closure of loops L

Ó Definition 9.10: Up-Closure

Let L ⊆ Q2, τ ∈ T and σ ∈ A:

Uτσ[L] =
{
(p, q) ∈ Q2

∣∣ ∃p ′ ∈ Q : (p, p ′) ∈ L and 〈σ, p ′, τ→ ↑, q〉 ∈ ∆
}

.

Ñ Lemma 9.11: Up-Closure

Let A be a TWA. If L is the set of all loops of A on a subtree u = t|α, then
U
tyα
t(α)

[L] is the set of all overloops of A on u.

Proof. Immediate from Def. 9.9, as we have necessarily βn = α. Thus any
overloop is a loop followed by a move up, and conversely.

Similarly to loops, we denote by f↑ τ(u) the set of all overloops of A on a subtree u, f↑ τ(u): overloops on u, type τ

where τ is the type of the root of u. By Lem. 9.11 we have f↑ τ(u) = Uτu(ε)[f
τ(u)],

and in the case of leaves this yields f↑ τ(a) = Uτa[(H
τ
a)
∗]. However, in the case of

inner nodes – e.g. u = f(u0, u1) – in order to have an inductive computation of
overloops instead of one based on loops, we need to compute the overloops of the
father, knowing the overloops of the children. The simplest way is to compute
the loops of the father and take the up-closure. We start by computing the simple
loops, for which one only needs to check whether

(1) the automaton can go down and left (resp. right) from p to a state pθ, and

(2) there is a left (resp. right) overloop (pθ, qθ): this forms a loop (p, qθ).

The reflexive and transitive closure yields all the loops, and then the up-closure
yields all overloops. Formally, the above describes the computation:

f↑ τ(u) = Uτf

[(
Hτf ∪

{
(p, qθ)

∣∣∣∣∣ ∃θ ∈ S :

∃pθ ∈ Q
st.
〈f, p, τ→ χ(θ), pθ〉 ∈ ∆
and (pθ, qθ) ∈ f↑θ(uθ)

})∗]
.

Ò Theorem 9.12: Overloops

Let A be a TWA and t ∈ T(A). Then for all α ∈ P(t), f↑ tyα(t|α), as defined
above, is the set of all overloops of A on t|α.

Example: For the TWA X, f↑ 0(a) = U0
a[f

0(a)] = {(qu, qu), (q`, qu)}. However
f?(f(a, b)) is the empty set. Thus a small adjustment is needed to test mem-
bership using overloops, as standard TWA – such as X – never admit any
overloop at the root of a tree, for the lack of ↑-transitions. ♦

X: overfinal state

escaped TWA

Ó Definition 9.13: Overfinal State & Escaped TWA

Let A = 〈A, Q, I, F, ∆〉 be a TWA; it can be transformed into an escaped TWA

A ′ =
〈
A, Q] {X}, I, F, ∆] 〈A, F, ?→ ↑,X〉

〉
,

174 Part IV. Chapter 9. Loops and Overloops: Effects on Complexity

where X < Q is a fresh state, called overfinal state. Clearly L(A) = L(A ′).

Example: Once X is escaped, we have f↑ ?(f(a, b)) = { (qu,X), (q`,X) }. ♦

Ò Corollary 9.14: TWA Membership Redux

Let A be an escaped TWA and t ∈ T(A). Then t ∈ L(A) if and only if
f↑ ?(t) ∩ (I× {X}) , ∅.

Proof. The couple (qi,X) ∈ I × {X} is an overloop if and only if there is a
run (ε, qi), . . . , (ε, qf), (ε,X). By Def. 9.13, we must have qf ∈ F; therefore, by
Cor. 9.6 we have immediately t ∈ L(A).

9.3 Transforming TWA into equivalent BUTA

Data: A TWA A = 〈A, Q, I, F, ∆〉
Input: 〈Pinit〉, 〈P0〉, 〈P1〉, 〈Pindu〉, 〈F〉
Result: A BUTA B

initialise States and Rules to ∅
foreach a ∈ A0, τ ∈ T do

A add a→ 〈Pinit〉 to Rules and 〈Pinit〉 to States

repeat
foreach f ∈ A2, τ ∈ T do

B add every f(〈P0〉, 〈P1〉)→ 〈Pindu〉 to Rules and 〈Pindu〉 to States

where 〈P0〉, 〈P1〉 ∈ States
until Rules remains unchanged
return B = 〈A, States, 〈F〉,Rules〉

Algorithm 1: Meta-Transformation into BUTA

Data: A TWA A = 〈A, Q, I, F, ∆〉
Result: A BUTA B such that L(B) = L(A)

Meta-Algorithm 1 where

〈Pinit〉 ≡ (a, τ,Hτa
∗) 〈Pindu〉 ≡ (f, τ, (Hτf ∪ S)∗)

〈P0〉 ≡ (σ0, 0, S0) 〈P1〉 ≡ (σ1, 1, S1)

〈F〉 ≡ { (σ, ?, L) ∈ States | L ∩ (I× F) , ∅ }

S =

{
(p, q)

∣∣∣∣∣ ∃θ ∈ S, (pθ, qθ) ∈ Sθ :

∣∣∣∣∣ 〈f, p, τ→ χ(θ), pθ〉 ∈ ∆ and
〈σθ, qθ, θ→ ↑, q〉 ∈ ∆

}

Algorithm 2: Transformation into BUTA, with loops

It is well-known that every TWA is equivalent to a BUTA; a more general version
of this result has been proven in [Cosmadakis, Gaifman, Kanellakis & Vardi, 1988] –

9.3. Transforming TWA into equivalent BUTA 175

Data: An escaped TWA A = 〈A, Q, I, F, ∆〉 (see Def. 9.13)
Result: A BUTA B such that L(B) = L(A)

Meta-Algorithm 1 where

〈Pinit〉 ≡ (τ,Uτa[H
τ
a
∗]) 〈Pindu〉 ≡ (τ,Uτf [(H

τ
f ∪ S)∗])

〈P0〉 ≡ (σ0, S0) 〈P1〉 ≡ (σ1, S1)

〈F〉 ≡ { (?, O) ∈ States | O ∩ (I× {X}) , ∅ }

S =

{
(p, qθ)

∣∣∣∣∣ ∃θ ∈ S, pθ ∈ Q :

∣∣∣∣∣ 〈f, p, τ→ χ(θ), pθ〉 ∈ ∆
and (pθ, qθ) ∈ Sθ

}

Algorithm 3: Transformation into BUTA, with overloops

using game-theoretic arguments – and the main idea of a loop-based transformation
from TWA into BUTA is outlined in [Bojańczyk, 2008] and [Samuelides, 2007, p143].

In this section we present two versions of it: the classical, loop-based construction
is presented as Algo. 2, and an overloop-based variant is described in Algo. 3. Since
those algorithms share a strong common structure, they are given as instantiations
of Meta-Algorithm 1, whose inputs – between angle brackets 〈·〉 – are syntactically
substituted into its body. We go on to show that, in the case of deterministic TWA,
the overloop-based construction results in much smaller equivalent BUTA than the
classical one.

9.3.1 Two Variants: Loops and Overloops

Ñ Lemma 9.15: Loop-Based Algorithm

Let A be a TWA, B the BUTA constructed by Algorithm 2, t ∈ T(A) and a
position α ∈ P(t). Then for every type τ ∈ T there is a unique run ρ of B on
t|α, which is such that ρ(ε) = (t(α), τ,fτ(t|α)).

Proof. By structural induction on u = t|α.

Base Case: u = a ∈ A0. By line A in Algorithm 2, ρ(ε) = P = (a, τ,Hτa
∗) =

(t(α), τ,Hτa
∗). This is the only possible run, as only one transition a → P is

generated for each couple a, τ. By Theorem 9.5 we have Hτa
∗ = fτ(a).

Inductive Case: u = f(u0, u1). By induction hypothesis the run ρ0 on u0 is
such that ρ0(ε) = P0 = (u0(ε), 0,f0(u0)), and the run ρ1 on u1 is such that
ρ1(ε) = P1 = (u1(ε), 1,f1(u1)). By line B in Algo. 2 we use the rule f(P0, P1)→
P to build a run ρ such that ρ(ε) = P = (f, τ, (Hτf ∪ S)∗) = (u(ε), τ, (Hτf ∪ S)∗),
ρ|0 = ρ0 and ρ|1 = ρ1. Since ρ0 and ρ1 are unique, so is ρ. By Theorem 9.5,
(Hτf ∪ S)∗ = fτ(u).

Ò Theorem 9.16

Algorithm 2 is correct; that is, L(A) = L(B).

176 Part IV. Chapter 9. Loops and Overloops: Effects on Complexity

Proof. The following statements are equivalent by Lem. 9.15 and Cor. 9.6:

(1) t ∈ L(A).
(2) there is a loop (qi, qf) ∈ I× F of A on t.
(3) the run ρ of B on t is such that ρ(ε) = (t(ε), ?,f?(t)), with (qi, qf) ∈

f?(t).
(4) ρ(ε) is a final state for B.
(5) t ∈ L(B).

Two short but important remarks are in order.

(1) It might seem strange that our states are in A×T× 2Q2 , and not more simply
in T× 2Q2 , as suggested in [Samuelides, 2007]. In [Bojańczyk, 2008] a similar
construction – albeit deterministic, see the second remark – is proposed,
which does not include A either. However, it is not clear how loops could be
considered independently from the root symbol of the subtree that bears them.
Consider for instance a, b ∈ A0 with only the transitions 〈{a, b }, p, τ→	, q〉
and 〈b, q, τ → ↑, s ′〉 ∈ ∆. Then the loops on a and b are exactly the same
– {(p, q)}∗ – and yet, from their father’s point of view, they behave very
differently. If A can go down from a state s to p, it can form a loop (s, s ′) if
the child is b, but not if it is a. In contrast to the loop-based construction, the
overloop-based algorithm – Algo. 3 – suppresses this problem completely.

(2) The observation made in Lemma 9.15 that the run of B is unique, given a
subtree and a type, makes it easy to adapt the algorithm to yield a deter-
ministic BUTA. Indeed, every tree in T(A) is non-deterministically evaluated
by B into one of exactly three possible states, each corresponding to a type;
the correct one is chosen according to the context during the run. Recall
that rules f(P0, P1)→ P are built such that the “type” component of Pθ is θ,
and final states bear the root type ?. Hence, it suffices to group those three
possible states into one element of A× (2Q

2
)|T| to achieve determinism which

brings us back to the states suggested in [Bojańczyk, 2008]. Of course, if one
does that, there are a number of optimisations which can be performed. For
instance, since the star-component is only ever useful at the root, it suffices
to replace it with a boolean indicating whether it contains a loop in I × F,
i.e. whether it is a final state. Then we get states in A× (2Q

2
)|S| × {0, 1}.

Ñ Lemma 9.17: Overloop-Based Algorithm

Let A be a TWA, B the BUTA constructed by Algorithm 3, t ∈ T(Σ) and a
position α ∈ P(t). Then for every type τ ∈ T there is a unique run ρ of B on
t|α, which is such that ρ(ε) = (τ,f↑ τ(t|α)).

Proof. See proof of Lemma 9.15. The only change is that this time, we build the
loops, then deduce the overloops from them (Lem. 9.11[p173], Thm. 9.12).

Ò Theorem 9.18

Algorithm 3 is correct; that is, L(A) = L(B).

9.3. Transforming TWA into equivalent BUTA 177

Proof. By construction (i,X) ∈ I× {X} is an overloop if and only if there exists
f ∈ F such that (i, f) is a loop. Same proof as Theorem 9.16.

Note that this construction can be adapted to yield deterministic BUTA in exactly
the same way as for Algo. 2.

9.3.2 Overloops: Deterministic Size Upper-Bound

Ó Definition 9.19: Deterministic TWA

A TWA A = 〈A, Q, I, F, ∆〉 is deterministic – ie. is a DTWA – if

|〈σ, p, τ→ M, Q〉 ∩ ∆| 6 1 ,

for all σ ∈ A, p ∈ Q, τ ∈ T.

For our purposes, we do not need to add to that the usual condition that I must be
a singleton.

Example: The running example TWA X happens to be a deterministic tree-
walking automaton. ♦

Let us be reminded that a relation R ⊆ Q2 is functional (or right-unique, or a partial
function) if, for all p, q, q ′ ∈ Q, pRq and pRq ′ =⇒ q = q ′.

This was previously de-
fined in section 2.1[p23].

Ñ Remark 9.20

There are 2|Q|2 binary relations on Q, of which |Q+ 1||Q| are partial functions,
of which |Q|

|Q| are total functions.

Ñ Remark 9.21

If a relation R is functional, then so is Rk, for any k ∈ N.

By construction, a BUTA built by Algo. 2 (loop-based) has at most |A| · |T| · 2|Q|2

states, while one built by Algo. 3 (overloop-based) has at most |T| · 2|Q|2 . We shall
see in this section that, in the deterministic case, this upper bound is in fact much
lower for the overloop-based algorithm than for the traditional loop-based one.
More specifically, we show that the following holds:

Ò Theorem 9.22: Deterministic Upper-Bound

Let A be a deterministic TWA and B its equivalent BUTA built by an applica-
tion of Algorithm 3. Then B has at most |T| · 2|Q| log2(|Q|+1) states.

The idea is that every state which we build corresponds exactly to the set L of all
loops (resp. overloops) of the automaton A on a certain subtree u. Since L ⊆ Q2,
we can see it as a binary relation on the states. The intuition here is that, if A is
deterministic, and enters the root of u in one given state p, then there “should be”
only one possible outcome. More formally:

178 Part IV. Chapter 9. Loops and Overloops: Effects on Complexity

Ñ Lemma 9.23

If A is a deterministic TWA, then�A is functional.

Proof. In a given configuration (α, p), over a tree t, |〈t(α), p, tyα→ M, Q〉 ∩ ∆|
6 1. Therefore, (α, p) has at most one successor.

However, in the case of loops, this does not suffice to make L functional because,
determinism notwithstanding, a single (non-trivial) loop may reach the root several
times, and in different states, before exiting the subtree. Indeed, we have seen such
a behaviour above, in the run (9.1)[p168]. Thus there is nothing to prevent us from
having both pLq and pLq ′, for q , q ′; we show next that in that case, one of these
loops is simply an extension of the other.

Ñ Lemma 9.24: Hidden Loops

Let (p, q) and (p, q ′) be loops of the TWA A on a given subtree t|α, such that
q , q ′. Then if A is deterministic, either (q, q ′) or (q ′, q) must be a loop of A
on t|α.

Proof. By Definition 9.1, there exist two runs c0, . . . , cn and d0, . . . , dm such
that c0 = d0 = (α, p), cn = (α, q) and dm = (α, q ′). If n = m then c0 �n cn
and c0 �n dn and by Lemma 9.23 and Remark 9.21, it follows that cn = dm.
But this contradicts q , q ′, so we must have n , m. Say that n < m. Then
cn = dn, and (α, q) = dn, . . . , dm = (α, q ′) forms a run. Therefore (q, q ′) is a
loop. Similarly, if n > m, then by the same arguments (q ′, q) is a loop.

Contrariwise, two overloops cannot be combined to form another overloop on the
same subtree, which satisfies the above intuition of a “single outcome”:

Ñ Lemma 9.25

Let p, q, q ′ ∈ Q, such that (p, q) and (p, q ′) are overloops of the TWA A on a
given subtree t|α. Then if A is deterministic, q = q ′.

Proof. By Def. 9.9, there exist s, s ′ ∈ Q such that (α, p), . . . , (α, s), (parent(α), q)
and (α, p), . . . , (α, s ′), (parent(α), q ′) are runs; thus (p, s) and (p, s ′) are loops.
If s , s ′, then by Lem. 9.24, say, (s, s ′), is a loop. So there exist s1, . . . , sn ∈
Q,β1 E α, . . . , βn E α such that (α, s), (β1, s1), . . . , (βn, sn), (α, s

′) is a run.
Thus we have in particular (α, s) � (parent(α), q) and (α, s) � (β1, s1). It
follows that parent(α) = β1 E α, which is contradictory. Hence s = s ′. We
have both (α, s) � (parent(α), q) and (α, s) � (parent(α), q ′). Since � is
functional (Lem. 9.23), we have finally q = q ′.

With this, we can conclude the proof of Theorem 9.22.

Proof of Theorem 9.22. By construction, for every state P = (τ, L) generated
for B by Algorithm 3, there exists at least a subtree t such that L is the set
of overloops of A on t. Thus, by Lemma 9.25, L is functional. Therefore,
by Remark 9.20, there are at most |T| · |Q+ 1||Q| states – or, equivalently,
|T| · 2|Q| log2(|Q|+1).

9.4. A Polynomial Over-Approximation for Emptiness 179

Note that the same bound – with a |A| factor – might be achievable using loops, if
special provisions are made to determine which of the two loops (p, q) and (p, q ′)

subsumes the other, and to remove the superfluous loops from the states as they
are built. However, such provisions would be invalid if A is not deterministic,
unlike the overloops method, which is applicable in all generality.

9.4 A Polynomial Over-Approximation for Emptiness

Data: An escaped TWA A = 〈A, Q, I, F, ∆〉 (see Def. 9.13)
Result: Empty (only if L(A) = ∅) or Unknown

initialise L0, L1, L? to ∅; foreach a ∈ A0, τ ∈ T do Lτ ← Lτ ∪ Uτa[H
τ
a
∗]

repeat
foreach f ∈ A2, τ ∈ T do Lτ ← Lτ ∪ Uτf

[
(Hτf ∪ S)

∗]
where S =

{
(p, qθ)

∣∣∣∣∣ ∃θ ∈ S, pθ ∈ Q :

∣∣∣∣∣ 〈f, p, τ→ χ(θ), pθ〉 ∈ ∆
and (pθ, qθ) ∈ Lθ

}
until L0,L1,L? remain unchanged
return Empty if L? ∩ (I× {X}) = ∅, else Unknown

Algorithm 4: Approximation for emptiness, with overloops

Testing emptiness of a TWA A is an ExpTime-complete problem [Bojańczyk, 2008].
This is rather unfortunate, as there are practical questions – as sketched in the
previous chapter – which reduce to the emptiness of the language of a TWA, or
of closely related variants in the tree-walking family. We present in this section a
crude but astonishingly accurate and very expeditious overloops-based algorithm
capable of detecting emptiness in a number of cases. Algorithm 4 is a variant of
Algorithm 3 with the following properties:

Ñ Lemma 9.26: Overloops Over-Approximation

Let A be a TWA; when the execution of Algorithm 4 ends, then for any τ ∈ T,

Lτ ⊇
⋃

t∈T(Σ)

f↑ τ(t) .

Proof. This result is fairly clear when comparing Algorithms 3 and 4. Let
us consider a tree t and a subtree u = t|α, with τ = tyα. We show that
f↑ τ(u) ⊆ Lτ.

Base case:. u = a ∈ A0. Then by the first line of Algo. 4, we have f↑ τ(a) =
Uτa[H

τ
a
∗] ⊆ Lτ.

Inductive case:. If u = f(u0, u1), f ∈ A2, then by induction hypothesis we
have f↑ 0(u0) ⊆ L0 and f↑ 1(u1) ⊆ L1. The expression computed in the main
loop is almost the same as that of Thm. 9.12 for f↑ τ(u), the only difference
being that Lθ is used instead of f↑θ(uθ). Since we have f↑θ(uθ) ⊆ Lθ for all
θ ∈ S, the expression in Algo. 4 computes at least all overloops of f↑ τ(u) — and
adds them to Lτ. Thus f↑ τ(u) ⊆ Lτ.

180 Part IV. Chapter 9. Loops and Overloops: Effects on Complexity

Ò Theorem 9.27

Algorithm 4 is correct; that is, it yields Empty only if L(A) = ∅.

Proof. Suppose that Algo. 4 yields Empty. By definition, this is the case if and
only if L? ∩ (I× {X}) = ∅. By Lemma 9.26, we have

⋃
t∈T(Σ)f

↑ τ(t) ⊆ Lτ for all
types τ, and it follows that in particular⋃

t∈T(Σ)

f↑ ?(t) ∩ (I× {X}) = ∅ .

This can be equivalently rephrased as ∀t ∈ T(Σ), f↑ ?(t) ∩ (I × {X}) = ∅. By
Corollary 9.14, this translates into: for all t ∈ T(Σ), t < L(A), that is to say,
L(A) = ∅.

Ò Corollary 9.28: Complexity of the Approximation

The execution of Algorithm 4 is done in time polynomial in the size of A —
more precisely: O(|Σ| · |T|2 · |Q|

5).

Proof. For all types τ, all operations in Algo. 4 which alter Lτ add elements to
it. The first loop executes a fixed number of times: |Σ0|× |T|. The main loop
contains only an inner loop which executes a fixed number of times as well –
|Σ2|× |T| – and the main loop itself executes until no element is added to L0,
L1 or L? during the iteration. Since an iteration can only add elements, and
each iteration adds at least one, there can be at most∑

τ∈T

|Lτ| =
∑
τ∈T

|Q|
2 = |T|× |Q|

2

iterations of the main loop. Each iteration of both the first loop and the
main inner loop computes a set of overloops, based on two sets of previously-
computed (potential) overloops. This operation executes in a time which is
bound as O(|Q|

2 · |∆|) for the initial computation and O(|Q|
3) for the computa-

tion of the transitive closure. It is executed in total

|Σ0| · |T|+ |T| · |Q|
2 · (|Σ2| · |T|)

times. Overall, the number of executions is in O(|Σ| · |T|2 · |Q|
2). Globally, the

execution time of Algo. 4 is in O(|Σ| · |T|2 · |Q|
5).

This is of course a very loose bound, which could be improved drastically; the
important point is that it is in PTime. Note that Algorithm 4 can easily be made
just as coarse or as fine as the need dictates. At the coarse end of that gamut we
have a variant of Algorithm 4 which forgoes type information, thus hoarding up all
overloops in a single set L instead of three, and at the fine end we find something
equivalent to Algorithm 3.

9.5. Experimental Results 181

9.5 Experimental Results

As always when confronted to an approximation, one must take care that it is good
enough for practical use; an algorithm may answer “Unknown” systematically,
and still be a very efficient approximation stricto sensu, but that does not make it
interesting. The final arbiter of whether an approximation is of any use is of course
how it performs the “real world”, which is hard to formalise a priori. However,
random tests can serve to sort the wheat from the chaff, especially if the test cases
are generated according to a precise distribution.

In this section, we present experimental results for an ad-hoc generation scheme –
very briefly – and for a uniform scheme over deterministic TWA.

9.5.1 Evaluating the Approximation’s Effectiveness

Tests have been conducted against two different sets of randomly generated TWA.
The first set comprised roughly twenty thousand random automata of various
sizes – 2 6 |Q| 6 20 – with a small number of rules – |∆| ≈ 3× |Q| – and the same
alphabet as for our running example X. The random generation scheme which
produced them was ad hoc and did not have any pertinent statistical grounds. The
approximation yielded astonishingly good results on this set: about 75% of the
automata had empty languages, yet the approximation failed to detect emptiness

The gritty details of the
first, ad hoc generation
scheme are available in the
source code of our testing
tool; cf. the end of the sec-
tion. More specifically, in
twa.ml, module Gene, func-
tions make and gene.

in only two cases.

To confirm those encouraging results, we generated a second set of – complete and
deterministic (a) – TWA, this time according to a uniform probability distribution
[Héam et al., 2009]. The REGAL library [Bassino, David & Nicaud, 2007] was used
as back-end to generate the underlying finite-state automata. More specifically,
2 000 TWA were uniformly generated for each |Q| within the range 2 6 |Q| 6 25.
Figure 9.1 summarises the performance of the approximation on this set. The first
curve presents the percentage of TWA whose language is detected to be empty by
the approximation among the whole 2 000 TWA, for each |Q|. The second curve
presents the same results, but only for the first 200 TWA (b) for each |Q| 6 10; the
third curve presents the exact results for the same data as the second. It is visible
that the approximation performs very well again, as the second and third curves
are almost indistinguishable.

Out of the 1 724 TWA for which both the approximation and an exact algorithm
were run, of which 398 had empty languages, only four failures of the approxima-
tion were observed. Furthermore, the first curve shows that the approximation
continues to catch cases of emptiness even for sizes completely intractable with
exact algorithms.

(a) Note that |Q| is therefore proportional to the size of the generated TWA.
(b)With the exception of the last data point (namely, |Q| = 10), for which only the first 124 TWA were

tested; this is due to both time constraints and memory limitations of the computer used for the exact
tests. The idea is of course to compare comparable things, and to show the exact and approximate
methods competing on the same automata. The exact method is obviously the bottleneck in such an
experiment.

182 Part IV. Chapter 9. Loops and Overloops: Effects on Complexity

0

5

10

15

20

25

30

35

40

45

50

55

2 4 6 8 10 12 14 16 18 20 22 24

∅
%

|Q|

Approximation – 2000 samples
Approximation – 200 samples

Exact – 200 samples

Figure 9.1: Uniform random TWA: emptiness tests.

Those results, though statistically sound, are probably much better than what can
be expected in practical applications; it is likely that random instances are in some
sense trivial wrt. emptiness. In the absence of substantial testbeds from real-world
applications of TWA, a study similar to [Héam, Hugot & Kouchnarenko, 2010a]
could be conducted to flesh out the properties which would make an instance
“difficult” wrt. emptiness.

9.5.2 Overloops Yield Smaller BUTA

Comparing the output of Algos. 2 & 3, we noted that the latter generates smaller
automata. By way of example, if Bl is the equivalent BUTA obtained from X by
Algo. 2, and Bo by Algo. 3, then we have ‖Bl‖ = 1986 and ‖Bo‖ = 95, where the
size of a BUTA B = 〈A, Q, F, ∆〉 is defined – in the usual way, as seen in section
2.6[p37] and in [Comon et al., 2008] – as:

‖B‖ = |Q|+
∑

f(p1,...,pn)→q∈∆

(
n+ 2

)
.

Note that the resulting automata are quite large, even for such a trivial TWA as X!
For comparison, consider the manually constructed (deterministic) minimal BUTA
Bm, and the (c) smallest possible non-deterministic BUTA Bs equivalent to the TWA
X: we have ‖Bm‖ = 56 and ‖Bs‖ = 34. In other words, the overloop and loop-based
constructions are about three and sixty times larger than the optimal, respectively.

More important than the size of the final BUTA is the computation time; it just
happens in practice to be roughly proportional to the size of the result, as far as
our two transformations are concerned. Using a deterministic variant of either
transformation and minimising the result would yield Bm, but at the cost of a
considerable increase of the worst-case complexity and average computation time.

Another important point is that the huge size discrepancy between Bl and Bo

cannot be reduced “in post-processing” using the standard BUTA reduction, that is
(c) It happens to be unique (up to homomorphism) in this particular case.

9.5. Experimental Results 183

1

2

3

2 3 4 5 6 7

‖ B
‖/ 10

5

|QA|

‖Bl‖
‖B′

l‖ (clean)
‖Bo‖
‖B′

o‖ (clean)

2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

R
atio

|QA|

‖Bl‖/‖Bo‖
‖B′

l‖/‖B
′
o‖

‖Bl‖/‖B′
l‖

‖Bo‖/‖B′
o‖

Figure 9.2: Uniform random TWA: size results.

to say the elimination of unreachable states [Comon et al., 2008]: it would have no
effect whatsoever, because Algorithms 2 and 3 yield reduced BUTA by construction.
A more powerful operation such as the cleanupmethod described in [Héam, Hugot
& Kouchnarenko, 2010a] for TAGE, that, among other things, removes states which
are not co-accessible as well as unreachable states, can bring down the sizes of
Bl and Bo, but does in no way bridge the gap between them. Case in point, the
automata after cleanup B ′l and B ′o are of sizes (d)

∥∥B ′l∥∥ = 1617 and ‖B ′o‖ = 78, which
yield the following ratios:

‖Bl‖
‖Bo‖

≈ 20.9 and

∥∥B ′l∥∥
‖B ′o‖

≈ 20.7 and
‖Bl‖∥∥B ′l∥∥ ≈ ‖Bo‖

‖B ′o‖
≈ 1.2 .

These figures suggest that the – substantial – size gains originating from the switch
from loops to overloops-based algorithms are completely unrelated to, and do
not interfere with, the relatively modest size gains from post-processing. The
observations drawn from this single example have been substantiated by more
thorough experiments conducted on the same uniformly generated random TWA
as in Fig. 9.1, the results of which are summarised in Fig. 9.2. The legend uses the
same notations as above. Two hundred TWA have been used to construct each data
point. (e)

9.5.3 Demonstration Software

Readers interested in experimenting with this chapter’s algorithms will find online
a proof of concept, meaning both executable binaries – at least for Linux and
Windows – and, for souls undaunted by the prospect of confronting twisty, user-
unfriendly code, the complete OCaml source. The dedicated web page also provides
comprehensive instructions for using the executables.

http://lifc.univ-fcomte.fr/~vhugot/TWA

(d) In this trivial example, the sizes of the TWA X, of the “optimal” equivalent BUTA Bm and Bs,
and of the post-cleanup overloops-based BUTA B ′o happen to be quite close. This observation should
of course not be generalised.

(e)The same remark as for Fig. 9.1 applies: Fig. 9.2[p183] uses only 156 TWA for its last data point
(|Q| = 7).

http://lifc.univ-fcomte.fr/~vhugot/TWA

184 Part IV. Chapter 9. Loops and Overloops: Effects on Complexity

The appendix to the conference version of the paper, available at the above address,
also shows the outputs of the two transformations of X by Algo. 2, and Algo. 3,
which are a bit too large – especially for Algo. 2 – to be reproduced in this thesis.

9.6 Conclusions

In this chapter we have introduced tree overloops, and applied both loops and
overloops to common operations on TWA: deciding membership, transforming a
TWA into a BUTA, and inexpensively testing emptiness. We have shown that the
use of overloops simplifies the transformation into BUTA, and substantially lowers
the upper bound in the deterministic case.

We intend to pursue this further by using overloops to characterise useful classes
of TWA and perform significant simplifications on the automata, hopefully leading
to applications to XPath.

Furthermore, while our theoretical results and experiments show that the overloops-
based transformation yields much smaller BUTA than the loops-based one, both
asymptotically and in average – and yields them proportionally faster, – it is clear
that further advances remain possible in that respect. On-the-fly variants enabling
to test emptiness (for instance) while forgoing the computation of the whole BUTA
would also be of interest.

Acknowledgements. We would like to thank the members of the INRIA ARC
ACCESS for interesting discussions on this topic. Our thanks go as well to the
anonymous reviewers of the published papers – for both the conference version
[Héam, Hugot & Kouchnarenko, 2011] and the journal version [Héam, Hugot &
Kouchnarenko, 2012b] – who provided the tighter complexity bound for Cor. 9.7,
and whose careful proofreading improved the readability of both papers.

9.6. Conclusions 185

— Part V —

Summary and Perspectives

186

Chapter 10
Summary and Future Works

T
he common thread of our contributions is the use of various strains of
tree automata in validation and verification problems, with a particular
emphasis on the use of constraints, as a means of achieving the expressive
power necessary to carry out the task at hand, and approximated methods,

as a tool to palliate the unavoidable increase in algorithmic complexity. The main
focus of this thesis is the verification of temporal specifications for infinite state
systems, and it is that line of inquiry which motivates our study of tree automata
with global constraints. While this strain of automata was originally developed in
the context of queries on semi-structured documents, their interesting properties
with respect to rewriting make them a central component of the tree regular
model-checking framework which we develop. Or more accurately, tree “not quite
regular” model-checking, as the point of using these automata is precisely to obtain
exact representations of non-regular languages which would otherwise require
approximation techniques. Other verification problems of interest to us include the
validation and querying of semi-structured documents, which impelled our work
on tree-walking automata.

10.1 Summary of Contributions

In Part II, we have generalised the previous work of [Courbis et al., 2009] into a full
verification chain on a fragment of LTL sufficient to express a large range of safety
properties for term rewriting systems. There are two aspects to this process: the
translation of temporal formulæ into rewrite propositions, which is a completely
abstract operation, although one may perform optimisations even at that point, and
the instrumentation of the rewrite proposition into an automata-based procedure.
This second step is tied to the properties of the underlying models, namely tree
automata with or without global equality constraints. To solve the first step, we
have introduced the notion of signatures, which captures a temporally flattened
view of a fragment of LTL, that we use to keep track of the generated tree languages

187

188 Part V. Chapter 10. Summary and Future Works

at different points in time. Then the construction and deconstruction of signatures
acts as a central part of the set of translation rules which we define to effect an
automatic translation into rewrite propositions. The second step is characterised
by other sets of transformations – this time called generation rules – which we
introduce to automatically keep track of the expressive power required to represent
the languages involved, and apply approximated methods when necessary. This
yields a set of theorems, each corresponding to different, incomparable ways in
which the approximations could be invoked, and therefore to different positive
approximated procedures.

In Part III, we focus on tree automata with global equality constraints; in particular,
we investigate the effects of bounds on the number of constraints, from the point of
view of algorithmic complexity and expressive power. In particular, we show that
membership becomes testable in polynomial time given any fixed bound, while
emptiness and finiteness reach full complexity – ExpTime-complete – with as few as
two constraints. We also propose a SAT encoding of the unbounded membership
problem, with encouraging experimental results.

In Part IV, we have introduced the notion of overloops and thereby improved the
transformation of tree-walking automata into equivalent BUTA – very significantly
in the deterministic case, from the order of 2x

2
to 2x logx – and developed an

efficient positive approximated procedure for emptiness testing, which boasts great
accuracy on randomly generated samples.

10.2 Future Works & Perspectives

In our model-checking framework, the first translation step may still be improved in
several ways. For one thing, a formal proof – within a formal proof system such as
Coq [Castéran, Herbelin, Kirchner, Monate & Narboux, 2012] or Isabelle [Paulson,
1989] – would be a boon. We have provided complete and detailed manual proofs
for the translation and, in retrospect, it seems to us that it would not have been that
much harder to write them directly in a formal system. The mathematics involved
are occasionally tedious, but always confined within relatively simple arithmetic
theories. Apart from the increased confidence in the correctness of the proofs
which a full formalisation would bring, this would also provide guaranteed-correct
implementations, through code generation. Since performance is not a concern in
this first step – the runtime of the automata-based procedure will always dwarf
that of the translation into rewrite propositions, – and given the sensitivity of the
algorithm to even small bookkeeping mistakes, it is our contention that the proper
way of implementing this step is by mechanical derivation from a formal proof,
rather than directly.

Currently, the main limitation of this translation is its inability to deal with even-
tuality. To an extent, this seems to be an intrinsic feature of rewrite propositions,
as the languages which are computed are the product of indistinct bulks of traces.
To escape this limitation, it seems advisable to go beyond the language-centred
definition of rewrite propositions, and to include properties of the rewrite system
itself and of the starting language. For instance, given a rule r = f(x)→ x and

10.2. Future Works & Perspectives 189

any starting language such that the height of terms containing f is bounded, it
is clear that ^¬{r} holds. A systematic investigation of the classes of languages
and systems for which such arguments hold may yield sufficient information to
approximate useful liveness properties. Of course, a drawback of going in that
direction is the need to extend the underlying algorithmic toolbox beyond automata.
Another related limitation is the handling of those disjunctions and negations that
cannot be coerced into a translatable form through manipulations of the formula.

This being said, there are a number of obvious extensions to the system, even
without changing its expressive power stricto sensu. For instance, one could add
past-time modalities to the supported language, as they can be handled in the same
way as their future-time counterparts, simply by substituting R−1 for R. While past
operators do not bring any additional expressive power to LTL [Gabbay, Pnueli,
Shelah & Stavi, 1980; Gabbay, 1987], they do bring greater succinctness [Laroussinie,
Markey & Schnoebelen, 2002], and furthermore their pure-future translations are
heavy on until operators, and thus untranslatable by our methods. Thence past
modalities do extend the range of properties which we can check, at no cost at all
whether on the theoretical or computational front – though the desirable linearity
properties are mirrored.

If one is willing to leave the confines of LTL and step into CTL* territory, then one
may add π := ¬π to the grammar of rewrite propositions – cf. section 4.1.3[p58] –
and thus trivially add support for a fragment of existential LTL corresponding to
the negation of the currently supported, implicitly universal, fragment. This is of
limited interest for verification, however. More generally, it would be interesting
to characterise the full expressive power of rewrite propositions within the larger
contexts of CTL*, µ-calculus, and beyond.

It would also be very interesting to extend the scheme to support both state-based
and transitions-based properties at the same time. In both cases, the verification
boils down to tests on languages, and it is thus a natural extension, which would
increase the practical applicability of the method.

As for the second step, that is to say translation into automata-based procedures,
looking at existing encodings of systems by means of term rewriting, some domains
tend to exhibit good linearity properties, which are portents of good precision and
tractable complexities – for instance byte-code semantics or CCS. Other domains,
such as protocol verification, appear trickier, as non-linearity is integral to the
operations involved; what to do then? The crux of the matter is to achieve a repre-
sentation of the languages involved, using either a tractable number of constraints
– an aspect studied in Part III, – diagonal constraints, or any other mixture of
constraints with sufficient expressive power and good decision procedures.

In particular, we intend to investigate a new class of tree automata with constraints,
where constraints are not allowed to nest in a run, and such that every class of
the togetherness relation (6.2)[p123] on the active constrained states (6.5)[p126] of any
run is of a cardinality bounded by some integer m. Let us call them tree automata
with flat equality constraints (TAFE). Such automata are strictly more expressive than
TA=1 , and incomparable with TA=k, for k > 1, because they accept the languages
`k of the general form (6.3)[p126], for any k, and not the language of Fig. 6.1[p120],
for any n > m. Intuitively, emptiness for TAFE must be decidable in polynomial

190 Part V. Chapter 10. Summary and Future Works

time – O(‖A‖m) – by straightforward generalisation of the Rigidification Lemma
(6.2[p119]). Thus they seem to strike a good compromise between expressive power
and algorithmic complexity.

There remain many important open questions for TA=k, the most prominent of
which is whether there is any k > 0 such that containment is decidable; it would
certainly be extremely convenient for us if there were. In any case, finding good
positive approximated procedures for containment, at least for RTA, is necessary
to implement our framework. Furthermore, the overarching question is to find
the “best” strains of automata. That is to say, amongst all possible automata
with good properties with respect to rewriting – better than BUTA – as well as
efficient emptiness decision – let us say PTime – and, if at all possible, decidable
containment, we want to find those with maximal expressive powers.

It is possible that capabilities could be added to some variants of automata with
equality constraints without making them harder to handle. For instance, what
happens if disequality constraints are added to the mix? And for that matter, what
is the complexity of the emptiness problem for TAGD with one constraint? Is
containment decidable for TAGD, and if not, for up to how many constraints might
it be decidable? On a different front, what happens if we add constraints between
brothers, à la NParikh+EDB (cf. section 5.2.1[p112])? Or rather – as it is clear that just
adding even a single transition with one equality constraint between brothers to
TA=1 entails ExpTime-hardness again – how might we restrict them so as to increase
expressive power while preserving the desired complexities?

Another open question, of great practical interest to our model-checking framework,
is that of finding a class of automata closed through one-step rewriting, and
therefore through any finite number of rewriting steps. As it turns out, while
TAGE do capture one step of rewriting from a regular language, they are not closed
in that sense. That is to say, given a TAGE-accepted language Π=, it is not the
case in general that R(Π=) is also TAGE-recognisable – simple counter-examples
can be built by pumping arguments, similarly to the proof of Prop. 6.8[p128]. If
a class closed by one-step rewriting exists, and is reasonably tractable, it might
eventually replace TAGE in our verification scheme. In the meantime, an easier
question would be whether R(Π) is TAFE-recognisable, where Π is regular. If so,
they are a drop-in replacement for TAGE, with polynomial emptiness tests, instead
of ExpTime-complete.

With regards to Part IV and tree-walking automata, there remains to see how the
overloops-based construction would fare with extended tree-walking models, for
instance with pebbles, registers or stacks. It is also possible that, by a kind of
converse of Lemma 9.25[p178], an analysis of TWA in terms of their overloops might
yield a procedure to determinise them whenever it is possible to do so, or at least
in a number of cases. Furthermore, it seems that a number of immediate questions
regarding their binary encodings have yet to be studied; for instance, as seen at the
end of section 8.4.1[p163], the first-child next-sibling encoding works well for TWA,
but what of the tree-currying encoding (cf. example (8.5)[p155])? Would a variant
model of TWA whose transitions depend on the symbol at the parent position
be an appropriate solution to the problem of checking the parent on unranked
trees? Wouldn’t it be simpler to use a “first-child, next-sibling, and parent-symbol“
ternary encoding?

Chapter 11
Appendix

Contents
11.1 More Relatives of Automata With Constraints 191

11.1.1 Directed Acyclic Ordered Graph Automata 191

11.1.2 Tree Automata With One Memory 193

11.2 More Relatives of Tree-Walking Automata 196

11.2.1 Tree-Walking Pebble Automata 196

11.2.2 Tree-Walking Invisible Pebble Automata 197

11.2.3 Tree-Walking Marbles Automata 198

11.2.4 Tree-Walking Set-Pebble Automata 199

11.2.5 Alternating Tree-Walking Automata 199

—Where we visit some relatives of our favourite automata.

S
ome interesting classes of automata were omitted from the surveys of
Chapters 5[p107] and 8[p143] because, while related to our interests, they do
not have any direct bearing on the questions asked in this thesis. For the
sakes of curiosity and exhaustiveness, we say a few words about them in

the present appendix.

11.1 More Relatives of Automata With Constraints

11.1.1 Directed Acyclic Ordered Graph Automata

While automata with constraints were not studied as such before 2008, there
are closely related classes which were known well before then. One such class
is that of automata on directed acyclic ordered graph (DAG) representations of
terms with maximal sharing of structure, or more simply DAG automata (DAGA) DAG automata

DAGA[Charatonik, 1999]. Instead or running directly on terms, those automata run
on their DAG representations, where the maximal sharing property ensures that
the DAG corresponding to a term is unique, up to isomorphism on labelling
and structure. That property states – informally – that no two isomorphic closed
subgraphs may be rooted in different positions in the DAG. Let us take the – typical
– example of the term t = g

(
f(a, f(a, a)), f(a, a), f(f(a, a), a)

)
, writing t ≡ d for “t

191

192 Part V. Chapter 11. Appendix

has the DAG representation with maximal sharing property d”:

t = g

f

af

aa

f

aa

f

f

aa

a

≡ g

f f

f

a

.

This is to be put in contrast with the following counterexample, whose DAG
violates maximal sharing by duplicating f(f(a, a), f(a, a)), and is therefore not a
valid representation of the term t ′ = g

(
f
(
f(a, a), f(a, a)

)
, f(a, a), f

(
f(a, a), f(a, a)

))
:

t ′ = g

f

f

aa

f

aa

f

aa

f

f

aa

f

aa

. g

f f

f

a

.

Since this property ensures uniqueness of the DAG representation, the expressive
powers of DAGA and those of tree automata may be compared by considering the
tree language accepted by a DAGA to be the set of terms whose DAG representation
is accepted by the DAGA. Under this interpretation, DAGA are strictly more
expressive than BUTA. DAGA are closed by union and intersection, but not by
complementation – as most of the classes in this chapter, they are not determinisable.
Membership is testable in linear non-deterministic time, and emptiness is NP-
complete.

We mentioned earlier that DAGA are closely related to tree automata with global
constraints; let us now explain in what sense. The key is in the maximal sharing
property: since equal subterms will, by definition, be rooted in the same position
of the DAG, and a run of the DAGA being a relabelling of the DAG, it follows that
those subterms will be evaluated in the same state. Therefore, should one want to
ensure that two subterms are different, it suffices to arrange for them to be taken in
two different states by the run. Recall the language L, (2.5)[p35]; it is accepted by a
DAGA with Q = {p, q, qf }, F = {qf}, and transitions

∆ = {a, b→ p, q; f(p, p)→ p, q; f(p, q)→ qf } .

Thus it seems that DAGA are capable of simulating disequality constraints. What

We abbreviate multiple
rules in the obvious way:
the first rule stands for
a → p, b → p, a → q,
b → q. There are seven
rules in total.

about equality constraints? That two nodes are evaluated into the same state says
nothing about whether the subterms are the same – no more so for DAG than for
trees. DAGA are actually incapable of simulating equality constraints. The gist of
the argument relies on the pumping lemma, which carries over to DAGA. All in all,
DAGA have exactly the same expressive power as TAGD. It is in fact easy to define

11.1. More Relatives of Automata With Constraints 193

a TAGD equivalent to a DAGA, as it suffices to define p6q for all distinct states
p , q. The reciprocal construction is more involved, and incurs an exponential
blow-up [Vacher, 2010, Thm. 4.1].

11.1.2 Tree Automata With One Memory

Another way in which automata may hold the capability to test equalities is exem-
plified by tree automata with one memory (TA1M) [Comon & Cortier, 2005; Comon, tree automata with one memory

TA1MJacquemard & Perrin, 2008] and their subclasses. They generalise pushdown tree au-
tomata (PDTA) [Guessarian, 1981, 1983] – which themselves generalise pushdown PDTA

word automata (PDA) as well as BUTA, and accept context-free tree languages. PDA

TA1M carry an unbounded memory in the form of a tree structure, instead of the
stack of PDTA. They are capable of testing equality between parts of their currently
stored memory, in which respect they generalise TABB – with a number of caveats
which we shall come to shortly. The exact formulation of the definition of TA1M
varies from one paper to another; here we define their capabilities in terms of
rewrite rules, as in [Vacher, 2010; Comon et al., 2008], while allowing the full range
of operations from both these sources and the original definition of [Comon &
Cortier, 2005]. This synthesis is summarised in Fig. 11.1 and discussed below.

Note that the tree automata
with memory (TAM) of
[Comon et al., 2008] are
a more general class, and
as powerful as Turing ma-
chines, since there is no
restriction whatsoever on
memory operations.

A TA1M is a quintuple 〈A,M, Q, F, ∆〉, where M is a ranked alphabet, called the
memory signature, which serves to encode memories as ground terms of T(M).
Memories are stored in the states, which are taken as unary symbols for this
purpose. Each transition of a TA1M is of one of three specific forms, all of which
are specialisations of the general pattern

σ
(
p1(m1), . . . , pn(mn)

)
[C]→ q(m) ,

with q, p1, . . . , pn ∈ Q, m,m1, . . . ,mn ∈ T(M,X), and C ⊆ X2 a set of constraints
of the form xi u xj, whose operands must appear in the left-hand-side of the rule.
The three kinds of transitions correspond to a generalisation to trees of the usual
pushdown operations push and pop, as well as an internal operation. Using
x1, . . . , xn, y1, . . . , yn ∈ X,M, k ∈ J1, nK, h ∈ Mk, N ∈ J1, kK, and ρ a permutation on
J1, nK, they are:

σ
(
p1(x1), . . . , pn(xn)

)
[C]→ q

(
h(xρ1, . . . , xρk)

)
(push)

σ
(
p1(x1), . . . , pi(h(y1, . . . , yk)), . . . , pn(xn)

)
[C]→ q(yN) (pop)

σ
(
p1(x1), . . . , pn(xn)

)
[C]→ q(xM) , (int)

where each transition may only be applied if, for every xi u xj ∈ C, it holds that
ti = tj, where ti and tj are the subterms matched by xi and xj, respectively. The
stored memory is irrelevant to the acceptance or rejection of a term: the language
accepted by a TA1M A in state q is defined as

Lq(A) = { t ∈ T(A) | ∃m ∈ T(M) : t→∗∆ q(m) } ,

where the notion of rewriting is extended with the satisfaction of constraints. As
mentioned above, this characterisation is a synthesis of the definitions in the existing
literature. Figure 11.1 offers a high-level summary of the differences between the
definitions of the transition rules in our sources. The comparison considers the
following points:

194 Part V. Chapter 11. Appendix

[C
om

on
&

Corti
er

, 2
0
0
5
]

[C
om

on
et

al.
, 2

0
0
8
]

[V
ac

her
, 2

0
1
0
]

Our ve
rsi

on

Permutations yes no no yes
Partial push yes no no yes

Tests everywhere yes no no yes
Duplicates in push no ∅ ∅ yes

Multiple tests yes no no yes

Figure 11.1: TA1M: capabilities of transitions in the literature.

(1) Permutations: in a push operation, is it possible to change the order in which
the variables appear? While this seems permissible in [Comon & Cortier,
2005], push transitions are defined as

σ
(
p1(x1), . . . , pn(xn)

)
→ q

(
h(x1, . . . , xn)

)
(11.1)

in [Comon et al., 2008; Vacher, 2010], and thus the variables cannot be re-
ordered in memory. This probably does not have any effect on complexity or
decidability.

(2) Partial push: For the same reason, it is not possible to drop memories in a
push with the definition of [Comon et al., 2008]: the right-hand side of (11.1)
is q(h(x1, . . . , xn)), and could not be q(h(x1, . . . , xn−1)), for instance. This
seems to be allowed in [Comon & Cortier, 2005], although the wording does
not make that explicit.

(3) Tests everywhere: [Comon & Cortier, 2005] allows to perform equality tests
on any transition, while [Comon et al., 2008] restricts tests to internal transi-
tions; their purpose in doing so is to allow for a sufficient characterisation of
constraints for which emptiness is decidable.

(4) Duplicates in push: The original definition of [Comon & Cortier, 2005] re-
quires to group the matched terms into C-equivalence classes and choose –
at most – one representative per class to be stored in memory. This does not
match (push), and even less (11.1), which does not have any constraints. We
allow duplicates in our own synthesis – with unknown effects on complex-
ity – because it is quite convenient to use that feature to simulate equality
constraints.

(5) Multiple tests: The original definition permits several equalities to be tested
simultaneously on a single transition. The other definitions are of the form

σ
(
p1(x1), . . . , pn(xn)

)
[xi u xj]→ q(xM) ,

with only one equality on each – internal – transition.

Let us use this model to accept L= once again. We take M = A, as we are simply
going to memorise the tree as we evaluate it, along with the usual states Q =

11.1. More Relatives of Automata With Constraints 195

{p, q, qf }, F = {qf}, and the following transitions:

a→ p(a) f(p(x), p(y))→ p(f(x, y))

b→ p(b) f(p(x), p(y))[xuy]→ qf(f(x, y)) .

Note that if our definition did not allow duplicates, the transition rule

f(p(x), p(y))[xuy]→ qf(f(x, y))

would not be legal. However in that case, we could still replace it by

f(p(x), p(y))[xuy]→ qf(f
′(x)) ,

with M = A] {f ′/1}, and achieve the desired result, although the automaton no
longer memorises the exact visited tree. However, this trick may not work in all
circumstances; within a run, the same subterm may be stored in two different forms
– primed and unprimed – depending on whether an equality test was performed.

Nevertheless, it is clear that by this method – allowing duplicates – we can simulate
equality constraints between brothers in the style of TABB, although the constraints
may only be taken conjunctively. To our knowledge, the class of TA1M with
propositional constraints has not been studied in the literature. Such as defined in
[Comon & Cortier, 2005], TA1M are closed by union, but not by intersection nor
complementation, and emptiness decision is ExpTime-complete. Subclasses with
better closure properties have been defined in [Comon et al., 2008], in particular
visibly tree automata with memory (VTAM), which sport PTime-complete emptiness visibly tree automata with memory

VTAMdecision, PTime membership tests, ExpTime-complete universality and inclusion
problems, and are closed under all boolean operations. VTAM restrict TA1M by
adding a visibility requirement, in that the type of a transition – push, pop or
internal – is determined by the symbol in which it is rooted. They remain strictly
more general than BUTA, however, since the type of rules only influences what
becomes of the memory, and all three types subsume the standard bottom-up
transitions. Over and above the visibility condition, the basic version of VTAM
does not allow equality tests either.

However, the authors of [Comon et al., 2008] went further, and studied classes –
arguably even meta-classes – of VTAM with constraints. The particular nature of the
constraints is abstracted into any equivalence relation R ⊆ T(M)2 on memories, and
sufficient conditions are found for emptiness to be decidable for VTAM equipped
with positive and negative R-constraints, under the restriction that only internal
transition may effect R-tests. It is found that equality of terms satisfies those
conditions and that therefore, for VTAM with equality and disequality constraints,
emptiness is ExpTime-complete and membership is NP-complete, but universality
is undecidable, and they are not determinisable nor closed by complementation.
The class of VTAM with positive and negative structural equivalence tests —
u � v ⇔ P(u) = P(v) — have even better properties, as they are closed under
boolean operations with the same complexities as for BUTA, and universality and
inclusion are decidable. That subclass has even been extended with the ability
to test equality and disequalities between brother positions for the input term,
as opposed to the memory. This superclass (VTAMSB) is closed under boolean VTAMSB

operations, and has decidable emptiness, although with a high complexity.

196 Part V. Chapter 11. Appendix

TA1M and their relatives are difficult to put in relation with the other strains of
automata seen in this thesis. It is not at all clear how they compare with TAGC, from
the viewpoint of expressive power. Their memory brings some degree of global
reach to the constraints which they can test, which enables TA1M – as defined
above – to capture TAGE-languages which TABB cannot express [Vacher, 2010, Ex.
2.21], but it is unknown whether they can actually simulate global constraints in
general. It is conjectured [Vacher, 2010, Cj. 2.25] that they cannot. On the front
of positional constraints, memory can be used simply to duplicate the input tree,
and thus a version of TA1M with disequality constraints should easily be able to
simulate the conjunctive variety of TABB. As defined, they should simulate the
conjunctive and positive subclass. Note our use of the conditional above; we could
not find any clear statement of this in the literature. The same constructions do
not necessarily apply for the VTAM variety extended with equality and disequality
tests, because they are defined such that only internal rules have access to tests.
Since internal rules cannot push, this means that effecting a test would instantly
destroy the synchronisation of the memory with the visited term: it would hereafter
be missing a symbol. This does not seem to have been explicitly studied in the
literature.

11.2 More Relatives of Tree-Walking Automata

There are many classes of extended tree automata; invariably with increased
expressive power. The following should be close to an exhaustive survey – albeit a
superficial one.

11.2.1 Tree-Walking Pebble Automata

[Engelfriet & Hoogeboom, 1999] introduces tree-walking pebble automata (TWPA) astree-walking pebble automata

TWPA a remedy against the unfortunate tendency of TWA to get lost in trees; as they put
it, in a binary tree of which all internal nodes have the same label, all nodes look
pretty much the same. A well-researched means of palliating such problems is
to use pebbles, so as to identify places which have already been visited [Thumb,
1697; Gretel & Hänsel, 1812]. Slightly more recently, this has been applied to
mazes, which are shown to be solvable in general by maze-walking finite automata
equipped with two pebbles [Blum & Kozen, 1978].

TWPA follow the same basic principles. A TWPA is a tree-walking automaton
which is equipped with a fixed finite set { 1, . . . , n } of pebbles, and supports two
new commands and a new test:

Test: is pebble k on the current node?
Command: drop pebble k on the current node.
Command: remove pebble k from the current node.

Of course, the behaviour follows the metaphor of pebbles closely: you can only
drop a pebble once in a row; to drop the same pebble again, it must be retrieved
first. Furthermore, and less obviously, there is a stack discipline imposed on the
pebbles, so that – numbering pebbles from 1 – any pebble k can only be dropped

11.2. More Relatives of Tree-Walking Automata 197

if k − 1 is on the tree (or it is 1), and k can only be lifted if k + 1 is not on the
tree. Without this stack discipline, the expressive power of pebble automata would
jump far beyond that of regular tree language, to NSpace(logn), and the emptiness
problem would become undecidable, even for just two pebbles on words.

With this stack discipline, the expressive power of TWPA is confined to regular
languages – in fact, regardless of the number of pebbles, they only recognise
a proper subset of them, as shown in [Bojanczyk, Samuelides, Schwentick &
Segoufin, 2006; Samuelides, 2007]. The results shown in these papers actually go
further; to present them, let us keep track of the number of pebbles available by
writing TWPAn for TWPA with n pebbles, and DTWPAn for their deterministic
counterparts – cf. Def. 9.19[p177]. It was shown that L(TWPAk) ⊂ L(TWPAk+1),
and L(DTWPAk) ⊂ L(DTWPAk+1), for k > 0, and furthermore, for every k, there
is a TWA-definable language – i.e. TWPA0-definable – which is not DTWPAk-
definable – this strengthens the known non-determinisability results for TWA. It is
also shown that, although the number of states may explode, it does not change the
expressive power of TWPAk – nor that of DTWPAk – if one allows the “lift pebble”
command to remove the current pebble regardless of the current position of the
head – a policy known as the strong model of TWPA. Moreover, for all k, DTWPAk
are closed under complementation; this is also presented in [Muscholl et al., 2006].
It is also known [Engelfriet & Hoogeboom, 1999, Sec. 4] that the expressive power
of deterministic top-down tree automata is captured by TWPA1.

It should be pointed out that, although every TWPA may be transformed into an
equivalent BUTA, the transformation is necessarily non-elementary [Samuelides
& Segoufin, 2007; Samuelides, 2007]. More specifically, there is an unavoidable
exponential blowup each time a pebble is added.

In [Engelfriet & Hoogeboom, 2007], it is shown that TWPA characterise first-order
logic with positive monadic transitive closure – see section 8.3.3 – and DTWPA
characterise first-order logic with deterministic transitive closure – which we shall
not define here; see [Neven, 2002, Sec. 5.3]. This result is even more general,
as it applies to automata with any number of heads, and any adicity for the
transitive closure relation. More specifically, recall the transitive closure operator
+x,y presented at the end of section 8.3.2, but extend it so that x and y are not
single variables, but sequences of variables of length k; then this defines the k-ary
transitive closure. [Engelfriet & Hoogeboom, 2007] shows, in all generality, that
first-order logic with positive k-ary transitive closure characterises TWPA with k
heads, and the same generalisation for the deterministic variants.

Whether TWPA are closed under complementation is an open problem, equivalent
to the problem of whether first-order logic with positive monadic transitive closure
is properly included in FOT [ten Cate & Segoufin, 2010, Sec. 8.4].

11.2.2 Tree-Walking Invisible Pebble Automata

This variant was introduced in [Engelfriet, Hoogeboom & Samwel, 2007], although
it used both visible and invisible pebbles. It is also discussed in [Bojańczyk, 2008],
where it uses only invisible pebbles, and it is this definition which we are going to
use.

198 Part V. Chapter 11. Appendix

A tree-walking automaton with invisible pebbles is the same as a TWPA, except for
two important differences:

(1) It has an unbounded number of pebbles, each bearing a colour taken from a
finite set C. The same colour may be taken any number of times.

(2) At any given time, only the last dropped pebble can be tested for or lifted.
The colour, as well as the presence of the pebble, can be tested.

The second restriction is quite important: without it, emptiness would be undecid-
able. In essence, all pebbles but the last one are invisible to the automaton – hence
the name. This definition assumes the weak model of pebble removal, whereby a
pebble may only be removed when the head is on its position.

This model captures exactly the regular languages: the intuitive idea is that a
branching automaton A can be simulated as follows, using a colour for each state:
C = A :Q. The algorithm is recursive, and starts by evaluating the right subtree.
When it is done, it drops a pebble with the colour of the resulting state q1 at the
root of the subtree. Then it does the same for the left subtree, and drops the pebble
q0. After that, it can visit two children, reading the pebbles, and the root, reading
its label σ, and choose the resulting pebble q accordingly, for a rule σ(q0, q1)→ q.
The converse is also sketched in [Bojańczyk, 2008, Thm. 10], and rests on alternating
tree-walking automata, which are the object of section 11.2.5.

11.2.3 Tree-Walking Marbles Automata

A related, but older model was presented in [Engelfriet, Hoogeboom & Best, 1999].
Instead of using coloured pebbles, as above, this variety uses shiny marbles. There
again, there is an infinite supply of marbles, each in one of a fixed and finite set
of distinct colours. There is no particular stack discipline, and marbles are all
visible and may be dropped, tested for and lifted on the current node, with the
restriction that only one marble of a given colour may mark any given node. The
important restriction which replaces the stack discipline of the other models is that
the automaton may not move to the parent of a node which is marked by a marble.
In other words, dropping a marble closes off the context of the current node α, at
least until every single marble is lifted from α. A consequence of this is that, at any
given time, all dropped marbles are along the path from the current node to the
root.

This model is equivalent to the tree-walking automata (actually DAG-walking)
with synchronised pushdown which appear in [Engelfriet, Rozenberg & Slutzki,
1980; Kamimura & Slutzki, 1981]. There the automaton has a stack, to which it
pushes each time it goes down to a child, and from which it pops every time it
goes up to a parent. It is clear that this is equally powerful as the marble model –
but less convenient if the run might begin at any node, and not necessarily at the
root, hence the creation of the marbles strain.

Both marble and synchronised pushdown tree-walking automata, whether deter-
ministic or not, accept exactly the regular tree languages. The proof is very similar
to that for invisible pebbles.

11.2. More Relatives of Tree-Walking Automata 199

11.2.4 Tree-Walking Set-Pebble Automata

We are not quite done yet with pebbles. [Engelfriet & Hoogeboom, 1999, Sec. 6]
proposes a variant of TWPA which, instead of merely marking a single node with
a pebble, marks an arbitrary set of nodes – hence the name “set-pebbles”. The
motivation stems from the capability of pebble automata to simulate first-order
logic formulæ by using pebbles to encode node quantification. It is therefore natural
to lift pebbles from single-node markers to markers for sets of nodes in order to
deal with second-order monadic quantification, that is to say set quantification,
and thereby capture the regular languages. Note that in this model, dropping and
lifting are independent from the current position of the head, lifting means lifting
from all the marked nodes simultaneously, and the usual stack discipline applies.

As expected, this variant captures exactly the regular tree languages.

11.2.5 Alternating Tree-Walking Automata

Alternation can be added to tree-walking automata (cf. section 8.1[p144]) in the
classical way, by partitioning the states into universal states Q∀ and existential
states Q∃, and branching when a transition starts from a universal state. A run
then becomes a tree instead of a sequence of configurations, and it is accepting if
all the leaves are accepting configurations.

Alternation can be used to simulate branching. For instance, it is easy to simulate a
non-deterministic top-down tree automaton [Hosoya, 2010, Sec. 12.2.3]. Consider a
transition rule q→ σ(q0, q1); an alternating TWA can simulate that rule by having
q as a universal state, and the transitions

〈σ, q, τ→↙, q0〉 and 〈σ, q, τ→↘, q1〉 ,

with appropriate type τ. The reciprocal inclusion was shown to hold in [Slutzki,
1985]. Therefore alternating TWA recognise exactly the regular tree languages.

Alternating TWA can be converted into branching automata, with an exponential
blowup in the number of states, following the same kind of transformation as basic
TWA.

Chapter 12
[FR] Résumé en français

—Où l’on se répète dans la langue patriotique de rigueur et avec entrain.

L
e tronc commun de cette thèse est l’utilisation des automates d’arbres
– dans leurs diverses incarnations – non seulement pour la vérification
de systèmes, mais aussi pour les requêtes et autres tâches relatives aux
documents et bases de données semi-structurés.

Notre principal soucis et l’objet central de nos recherches est la vérification de
systèmes à états infinis. Plus précisément, l’objectif final est de développer une
chaîne de vérification complète et fonctionnelle sur la base d’une méthode de
model-checking située à la confluence du model-checking d’arbres régulier, de
l’analyse d’accessibilité, et de la logique de réécriture.

L’idée générale de cette méthode a été originellement présentée au moyen de
preuves manuelles sur des exemples dans [Courbis et al., 2009]. Elle associe des
aspects de model-checking régulier et d’analyse d’accessibilité à la vérification de
propriétés exprimées en logique temporelle. Notre objectif est la généralisation de
ce processus à un fragment de la logique temporelle linéaire, et afin de l’accomplir
nous avons recours aux automates d’arbres avec contraintes globales d’égalité, un
modèle au grand pouvoir d’expression développé à l’origine dans le contexte des
logiques pour les requêtes XML. Ceci nous amène également à étudier le modèle
pour lui-même.

Un objectif secondaire de la thèse est l’amélioration des méthodes algorithmiques
pour les automates d’arbres cheminants, un modèle de calcul présentant de fortes
connexions avec les documents semi-structurés et, en particulier, leurs langages de
navigation.

La partie II constitue le cœur de nos contributions, car elle couvre la méthode
de model-checking elle-même, et offre un réponse positive à la question posée:
l’idée de [Courbis et al., 2009] peut être généralisée et étendue à une plateforme de
vérification automatique pour un fragment de la logique temporelle linéaire. Ceci
est réalisé au moyen de deux étapes de traduction distinctes, pour lesquelles nous
présentons des ensembles de règles de traduction automatique. La spécification
temporelle est dans un premier temps convertie en une forme intermédiaire – une
formule de logique propositionnelle dont les atomes sont des comparaisons de
langages obtenus par réécriture, que nous appelons une proposition de réécriture – en
ignorant toutes les propriétés propres du système. Ensuite, la forme intermédiaire
est transformée en une procédure (peut-être) approximée – le problème général

Procédure Approximée

Une procédure approximée
positive est une procédure
– elle termine toujours –
qui répond soit “oui”, soit
“peut-être” à la question
d’un problème de décision.

est indécidable – fondée sur les automates d’arbres à contraintes globales d’égalité; les
propriétés propres du systèmes sont prises en compte dans cette étape, et affectent
la qualité de la procédure approximée résultante. Afin de résoudre le problème

200

201

– assez corsé – de la traduction mécanique d’une spécification temporelle en une
proposition de réécriture équivalente, nous introduisons la notion de signature, qui
nous donne un modèle linéaire de certaines formules temporelles. Cette partie
se termine sur une discussion du fragment de logique temporelle couvert par
nos méthodes, en termes de la popularité – à en croire les études – des classes
de propriétés que la méthode automatique est capable de traiter. Nous écumons
également la littérature à la recherche de systèmes intéressants modélisés au moyen
de systèmes de réécriture, et nous examinons leur propriétés du point de vue de la
seconde étape. Une fraction du contenu de cette partie a été publié dans [Héam,
Hugot & Kouchnarenko, 2012a], et la plupart du reste est actuellement en cours de
soumission [Héam, Hugot & Kouchnarenko, 2013].

Les auteurs des publica-
tions sont cités par ordre al-
phabétique.

L’utilisation des automates d’arbres à contraintes globales d’egalité (TAGE), dont
le pouvoir d’expression est supérieur à celui du modèle standard d’automates
d’arbres ascendants, améliore la précision des approximations générées par la
plateforme de vérification. Cependant, ce pouvoir d’expression accru vient au prix
de hautes complexités algorithmiques pour de nombreux problèmes de décision
importants. De plus, il s’agit là d’une classe d’automates relativement récente et,
bien qu’elle ait de riches connexions théoriques et de multiples applications à XML
et au model-checking, il n’existe à notre connaissance aucune étude – en dehors
des nôtres – portant sur l’obtention de procédures de décisions efficaces pour cette
classe.

La partie III se concentre sur les TAGE et leurs problèmes de décision; le but est
d’obtenir des algorithmes efficaces pour certains problèmes des décision utiles
et courants, tels que les tests d’appartenance et de vacuité, ainsi que d’améliorer
notre compréhension générale de ce qui rend ces problèmes complexes. Nous
présentons un codage SAT du test d’appartenance (un problème NP-complet) et
étudions les effets de bornes sur le nombre de contraintes, en montrant que le test
d’appartenance est polynomial pour toute borne, et que les tests de vacuité et de
finitude sont déjà à pleine complexité avec seulement deux contraintes. Cette étude
des bornes a été publiée dans [Héam, Hugot & Kouchnarenko, 2012c], et le codage
SAT dans [Héam, Hugot & Kouchnarenko, 2010b]. Nous montrons également
que le pouvoir d’expression augmente strictement avec la borne. Dans le même
domaine, nous avons aussi travaillé à la réalisation d’heuristiques et de procédés de
génération aléatoire pour le test de vacuité (ExpTime-complet); bien que ce travail
n’apparaisse pas dans cette thèse, une partie en est disponible sous la forme d’un
rapport de recherche [Héam, Hugot & Kouchnarenko, 2010a].

La partie IV est liée à une autre forme de vérification utilisant les automates
d’arbres, en relation avec les documents semi-structurés. L’objet de cette partie est
l’étude des automates cheminants (TWA), en particulier sous l’aspect de leur con-
version en automates d’arbres ascendants. L’introduction de la notion de surboucle
d’arbre nous permet de réduire considérablement la taille de l’automate généré
dans le cas déterministe, environ de 2x

2
à 2x logx. De plus, nous proposons des

algorithmes efficaces pour la décision d’appartenance, et une procédure approx-
imée positive – généralisable à une classe de telles procédures de plus en plus
précises – pour le test de vacuité, qui est un problème ExpTime-complet. Ce procédé
est testé dans le cadre d’une génération aléatoire uniforme de TWA, et se révèle
étonnamment précis. Ce travail est apparu dans les procès-verbaux de conférence

202 Part V. Chapter 12. [FR] Résumé en français

[Héam, Hugot & Kouchnarenko, 2011] et une version étendue a paru dans la revue
[Héam, Hugot & Kouchnarenko, 2012b].

Ce résumé en français offre un survol plus détaillé des travaux présentés dans ces
trois parties. Le but est d’obtenir une intuituion quant à la structure générale de la
thèse, mais en aucun cas d’expliciter les développements techniques, auxquels nous
ferons simplement référence. Certaines notations seront employées afin d’éviter
d’excessives paraphrases, mais leur définition ne sera qu’esquissée en langue
naturelle ou laissée intuitive; là encore, le lecteur avide de rigueur mathématique
ou d’exhaustivité devra se référer au corps de texte. Les vocabulaires de base des
automates d’arbres, de la réécriture et de la logique temporelle sont des prérequis.

12.1 Approximation de LTL sur réécriture

Grâce aux méthodes symboliques, les techniques de model-checking ne sont en
aucun cas limitées au systèmes à espaces d’états finis. Le procédé que nous
développons dans la partie II, et plus particulièrement le chapitre 4[p53], emploie la
réécriture comme paradigme central, et se rapproche à la fois du model-checking
d’arbres régulier, de l’analyse d’accessibilité, et de la logique de réécriture. Dans
cette section, nous commençons par résumer le problème à résoudre, offrir quelques
éléments de contexte à propos de travaux proches dans ce domaine, et mettre
l’accent sur quelques résultats et concepts particulièrement pertinents pour la suite.

L’énoncé précis du problème est donné dans la section 4.1.3[p58]. Le but est de
vérifier les propriétés temporelles d’un système – que l’on entende par là un
programme, un circuit, ou une machine à billets – dont les états sont représentés
par des arbres et le comportement est encodé par un système de réécriture R.
Les propriétés ne portent pas sur les évolutions des états du système, mais sur
l’enchaînement de ses actions. Il est présupposé dans ce contexte que les règles
de réécriture de R correspondent à des évènements pertinents du système. Ces
séquences de règles de réécriture qui capturent l’exécution du système, et qui sont
définies formellement et appelées mots de réécriture maximaux dans le chapitre 4[p53],
fournissent donc la fondation sur laquelle la sémantique temporelle repose.

Considérons par exemple un langage régulier d’arbres initial Π ⊆ T(A), un système
de réécriture R, et la propriété LTL �(X ⇒ •Y), où X, Y ⊆ R; c’est-à-dire que

• versus ◦

Dans la formule
�(X ⇒ •Y), • est
l’opérateur “next” de la
logique temporelle. Dans
ce cas, il s’agit en réalité
d’un opérateur next fort,
par opposition à un next
faible, qui se note ◦. Ceci
est expliqué en détail en
section 4.1.2[p57], mais
n’est pas d’une grande
importance dans ce résumé.

X and Y sont des ensembles de règles de réécriture, ou actions, du système à
vérifier. Cette propriété signifie que lorsqu’un terme accessible est transformé par
quelque règle de réécriture de X, l’arbre résultant peut à son tour être transformé
par une règle de Y, et pas par une règle n’appartenant pas à Y. Ceci est illustré
au moyen de la figure 12.1. Plus concrètement, si R modélise une machine à
billets, et X = { demander_PIN } et Y = { auth1, auth2, annuler }, alors cette propriété
peut être lue comme “chaque fois que l’utilisateur entre son code PIN, quelque-
chose se passe immédiatement après, et cela ne peut être que l’authentification de
l’utilisateur – par le biais de l’une des deux méthodes disponibles – ou l’annulation
de la transaction; ceci exclut toutes autres actions possibles mais indésirables, telles
que l’envoi du PIN sur le réseau”. Notons que demander_PIN etcetera sont, dans ce
contexte, des règles de réécriture sur les arbres représentant les états de la machine.

12.1. Approximation de LTL sur réécriture 203

t0 ∈ Π

ti

tj

. . .

tn

ui

uj

. . .

un

vi

vj

. . .

vn

|

|

|

|

R∗

R∗

R∗

R∗

ri ∈ X

rj ∈ X

rk ∈ X

rn ∈ X

r ′i ∈ Y

r ′j ∈ Y

r ′k ∈ Y

r ′n ∈ Y

Figure 12.1: [3.1[p42]] Exécutions d’un système de réécriture satisfaisant �(X⇒ •Y).

Comme nous allons le voir dans ce qui suit, et en plus de détails dans le chapitre
4[p53], le procédé que nous étudions afin de répondre à de tels problèmes de
vérification repose sur le calcul d’automates correspondant aux langages d’arbres
atteints après certains nombres d’étapes de réécriture. En ce sens, il est un proche
parent de la méthode d’analyse d’accessibilité pour systèmes de réécriture de
termes, qu’il généralise sous certains aspects. Là où l’analyse d’accessibilité se
ramène à une équation de la forme R∗(Π) ∩ B = ∅, la vérification de propriétés
temporelles requiert la décision – ou tout au moins l’approximation – d’équations
de langages plus complexes – appelées propositions de réécriture dans le chapitre 4 –
telles que, pour l’exemple de la formule �(X⇒ •Y),

[R \ Y](X(R∗(Π))) = ∅ ∧ X(R∗(Π)) ⊆ Y−1(T) . (12.1)

La majeure partie de notre travail consiste à générer de telles équations mécanique-
ment à partir de la propriété temporelle considérée, ce qui étend les travaux
précédents de [Courbis et al., 2009].

La section 3.2[p44] traite des résultats connus en analyse d’accessibilité pour les
systèmes de réécriture de termes, qui permettent de traiter des formules telles
que (12.1), une fois qu’elles sont obtenues. Ces résultats comprennent entre autres
les classes de systèmes de réécriture qui préservent la régularité, i.e. R∗(Π) est
régulier si Π l’est, les algorithmes de complétion, et leurs modes de gestion de
la non-linéarité – à gauche en particulier. Cette section comporte également une
discussion de la complétion pour une étape de réécriture, sujet très peu étudié
dans la littérature mais pertinent à notre développement technique, et un rappel
de résultats concernant le pouvoir d’expression des TAGE dans ce contexte, qui
justifie notre intérêt pour cette classe d’automates. En effet, pour tout système de
réécriture R, langage d’arbres régulier Π, et tout langage Π= reconnaissable par un
TAGE, les résultats suivants sont connus [Courbis et al., 2009, Prp. 5, 7 & 6] :

(1) R−1(T) est reconnu par un TAGE – et est régulier si R is linéaire à gauche,

(2) R(Π) est reconnu par un TAGE, and

(3) tester si R(Π=) = ∅ est faisable en ExpTime.

Notons que (1)⇒ (3):
R(Π=) = ∅⇔
Π= ∩R−1(T) = ∅.

204 Part V. Chapter 12. [FR] Résumé en français

On peut donc calculer une étape de réécriture exactement, et tester la vacuité
du langage obtenu après deux étapes, même sans suppositions supplémentaires
concernant la linéarité du système de réécriture.

Revenons maintenant à la question de la provenance de formules telles que (12.1),
et au procédé général de vérification. Comme mentionné précédemment, la plate-
forme de vérification est fondée sur deux étapes de calcul: d’une propriété tem-
porelle à une proposition de réécriture, et de celle-ci à une procédure approximée
positive. De manière schématique, l’on commence avec trois entrées: le système
de réécriture R, le language d’arbres initial Π, que l’on suppose régulier, et la
propriété temporelle ϕ qui doit être vérifiée. Dans la première étape, la correction
du système par rapport à la spécification ϕ est reformulée en une proposition de
réécriture π qui est, au cours de la seconde étape, transformée en une procédure ap-
proximée positive δ fondée sur les automates d’arbres avec ou sans contraintes – ou
potentiellement plusieurs telles procédures δ1, . . . , δn, car il peut y avoir plusieurs
manières différentes et incomparables d’effectuer les approximations nécessaires.

R Π ϕ

Vers Prop. Réec. Vers Proc. Approx. Pos. R,Π |= ϕ ?π δ1, . . . , δn

.

Cette approche, inspirée par la méthode de [Genet & Klay, 2000] pour l’analyse de
protocoles cryptographiques, a été proposée initialement dans [Courbis et al., 2009],
où les deux étapes de traduction sont effectuées et prouvées manuellement sur trois
formules spécifiques de logique temporelle linéaire, choisies pour le pertinence en
model-checking, en particulier par rapport à la sécurité de MIDLets Java et dans le
contexte du projet français ANR RAVAJ. Notre objectif est de généraliser ce travail
à un fragment de LTL, c’est-à-dire que les deux étapes de la traduction doivent être

Projet ANR RAVAJ

http://www.irisa.fr/

celtique/genet/RAVAJ

mécanisées afin d’obtenir une plateforme de vérification automatique fonctionnelle.

La seconde étape demande de jongler avec le pouvoir d’expression requis pour
exprimer les langages, et de choisir les lieux d’application des approximations – en
particulier les sur-approximations de R∗(Π), mais pas seulement. Nous ne traitons
pas cette étape dans ce résumé; le lecteur est invité à consulter la section 4.4[p87]

pour plus d’informations. La première étape est nettement plus difficile: il n’est
pas clair a priori comment générer les propositions de réécriture. Ceci est visible en
résumant les résultats de [Courbis et al., 2009], soit le trio de traductions suivant:

R, Π |= �(X⇒ •Y)
⇔ [R \ Y](X(R∗(Π))) = ∅ ∧ X(R∗(Π)) ⊆ Y−1(T) , (12.2)

R, Π |= ¬Y ∧ �(•Y ⇒ X)

⇔ Y(Π) = ∅ ∧ Y([R \ X](R∗(Π))) = ∅ , (12.3)

R, Π |= �(X⇒ ◦ �¬Y)
⇔ Y(R∗(X(R∗(Π)))) = ∅ . (12.4)

Visiblement, la forme générale de la formule temporelle en se reflète pas dans
celle de la proposition de réécriture. Ce n’est pas inattendu, car ce n’est après tout
pas la syntaxe de la formule qui est traduite, mais la sémantique du fait que le
système satisfasse la propriété temporelle exprimée par la formule. De ce fait, on

http://www.irisa.fr/celtique/genet/RAVAJ
http://www.irisa.fr/celtique/genet/RAVAJ

12.1. Approximation de LTL sur réécriture 205

ne peut discuter de la traduction qu’après avoir clairement défini la sémantique
de LTL. Certains choix sont à faire dans ce cas, car les propriétés portent à la fois
sur des exécutions finies et infinies, et, contrairement au cas des mots infinis, il y a
plusieurs manières de définir la sémantique de LTL sur mots finis. Ceci est traité
en section 4.1, qui offre une définition rigoureuse du problème de traduction.

Une fois le problème posé, la section 4.2[p59] offre une idée générale du procédé de
traduction que nous développons, ainsi que de ses limites. La principale idée qui
nous guide peut être résumée par la comparaison de ces trois traductions:

R, Π |= Y ⇐⇒ [R \ Y](Π) = ∅ ∧ Π ⊆ Y−1(T)

R, Π |= X⇒ •Y ⇐⇒ [R \ Y](X(Π)) = ∅ ∧ X(Π) ⊆ Y−1(T)

R, Π |= �(X⇒ •Y) ⇐⇒ [R \ Y](X(R∗(Π))) = ∅ ∧ X(R∗(Π)) ⊆ Y−1(T) ,

Malgré la grande différence syntactique entre ces trois formules – différence qui
inclut la présence ou absence de deux opérateurs temporels – il s’agit essentielle-
ment de la même traduction. En effet, les seconde et troisième propositions de
réécriture sont obtenues à partir de la première par de simples substitutions: il
suffit de remplacer Π par X(Π) et X(R∗(Π)), respectivement. Cela fonctionne car
Y est, d’un certain point de vue, toujours dans la futur par rapport au reste de la
formule. La substitution peut donc être vue comme l’accumulation de données
concernant le passé – données stockées dans le langage “de départ” Π – qui sont
restituées lors de la traduction de l’atome Y, ou plus généralement du conséquent
de l’implication à traduire.

Bien entendu, cette intuition n’est en elle-même pas suffisante pour réaliser la
traduction; elle échoue lorsque, par exemple, le conséquent Y est dans le passé
par rapport à l’antécédent, comme dans �(•X ⇒ Y). Pourtant cette formule est
traduisible: voir l’équation (12.3)[p204], à la notation près. Les moyens techniques
que nous introduisons afin de gérer le stockage d’informations ne sont donc
pas restreints à une substitution sur Π; nous utilisons également les signatures,
développées en section 4.2.3 sur un fragment de LTL suffisant pour l’usage que nous
en faisons. Elles peuvent être vues comme stockant des informations concernant le
futur. La méthode de traduction automatique développée en section 4.3[p73] est un
ensemble de règles de traduction reposant sur les signatures; l’essentiel du travail
est effectué au moment de la traduction des atomes, pour lesquels les informations
sur passé et futur sont extraites du langage et de la signature courants. Une
discussion technique des signature ou des règles dépasse la portée de ce résumé;
nous en donnons simplement une idée générale par l’exemple, en exhibant une
règle de traduction simple mais utile, et un exemple de dérivation – de traduction
mécanique – mettant cette règle en œuvre.

l
〈Π # σ
 �ϕ〉 σ est stable〈

σ[ω]∗(Π) # ?σ
 ϕ
〉 (� ∗[p81])

Cette règle se lit du haut en bas et signifie que, étant donné un passé – i.e. un
langage initial – Π et une signature σ, la formule �ϕ se traduit, sous réserve d’une
certaine condition simplificatrice sur ϕ que nous ignorons dans ce résumé, en la
traduction de ϕ effectuée avec un nouveau langage initial de la forme X∗(Π), pour
un certain X utilisant des informations de σ, et une certaine modification sur la
signature. Dans le cas où la signature est vide – elle est alors notée ε – la règle
s’applique et l’on a X = R:

La règle (� ∗)[p81] est
un cas particulier de la
règle (� h)[p84] qui gère
l’opérateur temporel � de
manière plus générale.

206 Part V. Chapter 12. [FR] Résumé en français

l
〈Π # ε
 �ϕ〉
〈R∗(Π) # ?ε
 ϕ〉

Cette règle simplifiée nous dit donc que – nonobstant un détail technique sur
la signature – traduire � revient à remplacer Π par R∗(Π). Notons que c’est
exactement cette opération que l’on observe entre les traductions de X ⇒ •Y et
�(X⇒ •Y) vues ci-dessus. Étant donné que cette dernière formule commence par
�, la dérivation de sa traduction au moyen des règles commence donc par invoquer
(� ∗); elle est reproduite ici:

l
〈
Π # ε
 �(X⇒ •1Y)

〉
(� ∗)[p81]

l
〈
R∗(Π) # ?ε
 X⇒ •1Y

〉
(⇒Σ)[p76]

l
〈
R∗(Π) # PX # R | N1Q
 •1Y

〉
(•m)[p80]

l
〈
R∗(Π) # PX # R | N1Q
 ◦1Y

〉
(◦m)[p79]

l
〈X(R∗(Π)) # ?ε
 Y〉(X?

ε)[p85]

[R \ Y](X(R∗(Π))) = ∅

∧ X(R∗(Π)) ⊆ R−1(T) .

Le résultat final est lu le long des feuilles de l’arbre de dérivation; R−1(T) est
optimisé en Y−1(T) dans une phase subséquente. Là encore, sans rentrer dans les
détails et essayer de décrypter toute l’opération, notons simplement la substitution
sur Π dans la première étape, et le stockage de l’information X dans la signature lors
de la seconde étape, information restituée lors de l’avant-dernière étape; notons
enfin que la dernière étape est bien la traduction de l’atome Y, avec X(R∗(Π))
remplaçant Π. D’autres exemples de traductions apparaissent en section 4.5[p97].

Écrire ce genre de dérivation à la main n’est pas nécessairement plus agréable que
de deviner la traduction et la prouver a posteriori, mais ce procédé a l’avantage
d’être entièrement mécanique et programmable, ce qui était notre objectif. De
plus il est efficace: dans la plateforme de vérification, le coût algorithmique de
la traduction en proposition de réécriture restera négligeable devant celui des
algorithmes sur les automates d’arbres avec ou même sans contraintes. La dernière
question porte donc sur le fragment de LTL traduisible par ce procédé: est-il
suffisant pour les applications ? Ceci est traité en section 4.5[p97], avec des résultats
encourageants.

12.2 Problèmes de décisions pour automates à contraintes

Les automates d’arbres à contraintes globales d’égalité (TAGE) sont un composant
essentiel de notre plateforme de vérification, car ils permettent d’en étendre net-
tement la précision. Un TAGE est un automate d’arbres capable d’exprimer des
contraintes de la forme puq, où p et q sont des états, qui imposent qu’au cours
de l’exécution de l’automate, les états p et q ne puissent reconnaître que des sous-
termes égaux. Il est bien connu et facile de voir que le problème d’appartenance
des TAGE est NP-complet. Rappelons qu’il est trivial d’encoder les règles de la
logique propositionnelle sans variables dans un automate d’arbres classique, en
utilisant un état par valeur de vérité. Par exemple, si q1 – le sous-terme est évalué

12.2. Problèmes de décisions pour automates à contraintes 207

à “vrai” – est l’état final,

t = ∧

∨

¬

⊥

⊥

¬

∧

>⊥

est accepté par l’exécution ∧ q1

∨ q1

¬ q1

⊥ q0

⊥ q0

¬ q1

∧ q0

> q1⊥ q0

.

Mais les automates classiques ne peuvent pas encoder les variables proposition-
nelles: les sous-termes sont évalués indépendamment les uns des autres, et il
n’est donc pas possible de s’assurer qu’une même variable x soit évaluée de façon
non-déterministe de la même manière en ses multiples occurrences. Les contraintes
globales permettent justement de réaliser ce genre de codage; considérons l’arbre
suivant, représentant (x ∧ y) ∨ ¬x:

∨

¬

x

>⊥

∧

y

>⊥

x

>⊥

.

Avec les règles suivantes pour chaque variables x, où vx est un état soumis à la
contrainte vx u vx, l’automate à contraintes assure que chaque sous-arbre x(⊥,>)
soit évalué de la même manière:

>→ vx, ⊥→ vx, x(q0, vx)→ q1, x(vx, q1)→ q0 .

Une formule de logique propositionnelle est donc satisfaisable si et seulement s’il
existe une exécution acceptante de cet automate. Comme il est également facile
de vérifier qu’une exécution satisfait les contraintes, le problème d’appartenance
des TAGE est NP-complet. D’une façon générale, les problèmes de décision pour
les TAGE ont des complexités très élevées: les tests de vacuité et de finitude sont
ExpTime-complets, par exemple.

Dans la partie III[p107], après un survol assez exhaustif de l’histoire et la taxonomie
des automates à contraintes – car les TAGE ne sont pas les seuls membres de cette
famille, – nous étudions ces problèmes de décision dans l’optique de raffiner les
résultats de complexité ou d’obtenir des procédures de décision efficaces en pra-
tique. Le problème d’appartenance étant NP-complet, une façon viable d’aborder
sa décision est de le réduire au problème SAT, car les algorithmes de résolution
de ce problème – ainsi d’ailleurs que leurs implémentations – sont maintenant
extrêmement optimisés et efficaces. Nous effectuons donc un tel codage en chapitre
7[p129], que nous implémentons et testons avec le processus suivant:

A t

Prototype BAT SAT t ∈ L(A) ?
ΘA(t) CNF(ΘA(t)) résolution

.

208 Part V. Chapter 12. [FR] Résumé en français

Étant donné un TAGE et un arbre, notre prototype produit la formule proposi-
tionnelle ΘA(t), qui est mise en forme normale conjonctive par un outil externe
(BAT) qui évite l’explosion d’une transformation naïve utilisant les lois de De
Morgan. La satisfaisabilité de la formule résultante est enfin testée en utilisant
deux programmes différents. Les résultats expérimentaux montrent une résolution
SAT rapide malgré la taille des formules; le goulet d’étranglement dans nos tests
était la conversion en CNF avec l’outil externe, non optimisé.

Nous attaquons également les problèmes de décision d’un autre point de vue, qui
est celui du nombre de contraintes que l’automate peut exprimer simultanément.
Il est connu que se restreindre à certains types de contraintes peut influencer la
complexité algorithmique; en particulier, les contraintes dites d’états rigides, c’est-
à-dire de la forme quq offrent le même pouvoir d’expression que les contraintes
générales mais le problème de vacuité devient décidable en temps linéaire. Bien
entendu, cela est au prix d’une perte de concision exponentielle, mais en pratique
beaucoup de problèmes s’expriment directement et naturellement au moyen d’états
rigides – c’est par exemple le cas de l’exemple de SAT vu plus haut.

La question que nous nous posons en chapitre 6[p117] est orthogonale à la restriction
du type des contraintes: que se passe-t-il si l’on borne le nombre de contraintes,
c’est à dire le nombre de couples puq ? Nous montrons que chaque contrainte
ajoute du pouvoir d’expression – strictement. En d’autres termes, la classe des
TAGE restreints à k contraintes permet toujours de reconnaître des langages inex-
primables avec k− 1 contraintes. Du point de vue de la complexité, nous montrons
que deux contraintes suffisent pour rendre les problèmes de finitude et vacuité
ExpTime-complets. En revanche, le problème d’appartenance devient polynômial
dès lors que la borne k est considérée constante, et ce quel que soit k. Ceci
suggère la pertinence d’une étude de la complexité paramétrée du problème, et
l’espoir d’obtenir des méthodes de décision très efficaces pour de petits nombres
de contraintes.

12.3 Problèmes de décision pour les automates cheminants

La partie IV[p143] s’ouvre sur un survol des automates d’arbres et de leurs ap-
plications à XML; en particulier, les familles d’automates d’arbres cheminants
(TWA) et leurs connexions avec les langages de navigation et de requêtes dans les
bases de données semi-structurées sont mises en avant. Brièvement, les automates
d’arbres cheminants peuvent être vus comme une tête de lecture parcourant les
nœuds du graphe d’un arbre binaire de proche en proche, et prenant ses décisions
– mouvement et changement d’état – en fonction de l’étiquette du noeud courant
et de son type – racine, fils gauche ou fils droit. Une exécution est acceptante si
l’automate commence à la racine en un état initial et y retourne en un état final.
Par exemple, voici l’exécution d’un TWA dont l’état initial q` descend toujours à
gauche et, s’il atteint une feuille étiquetée par a, passe dans l’état final qu, qui ne

12.3. Problèmes de décision pour les automates cheminants 209

fait que remonter:

f[q`]

ch

ba

� f

ch[q`]

ba

� f

ch

ba[q`]

� f

ch

ba[qu]

� f

ch[qu]

ba

� f[qu]

ch

ba

.

Cette exécution est acceptante, et les règles énoncées ci-dessus décrivent un auto-
mate qui accepte exactement les arbres dont la feuille la plus à gauche est étiquetée
par a – si ce n’est pas le cas, l’exécution s’arrête en q` sur la feuille. Les TWA sont
connus comme étant strictement moins puissants que les automates ascendants,
mais plus compacts sur certains langages, en particulier lorsqu’il n’est pas besoin
de parcourir tous les nœuds de l’arbre afin de décider s’il doit être accepté.

Nos contributions – chapitre 9[p165] – sont centrées autour de l’algorithme qui
transforme un TWA en un automate ascendant équivalent. L’idée générale de cet
algorithme est connue et repose sur le concept de boucle d’arbre, c’est à dire de
couples d’états (pin, pout) dans lesquels l’automate entre, puis sort d’un sous-arbre
donné.

·

pin · pout·

.

Les états résultant de la transformation sont – entre autres – des ensembles de
tels couples d’états. Cet algorithme n’était pas explicite dans la littérature, et
les complexités annoncées omettaient en particulier un facteur |A|, la taille de
l’alphabet, qui peut être considérable dans les applications. Après une étude
formelle des boucles – qui offre au passage des algorithmes efficaces pour le test
d’appartenance – nous introduisons la notion de surboucle, qui permet d’éliminer
ce facteur entièrement. Nous montrons également que la transformation fondée sur
les surboucles a une bien meilleure complexité que celle fondée sur les boucles dans
le cas où le TWA est déterministe: x étant le nombre d’états, le gain correspond au
passage de 2x

2
à 2x logx.

En utilisant ces notions, nous proposons également un algorithme polynomial de
test approximé – répondant oui ou peut-être – de la vacuité du langage accepté
par un TWA, qui est un problème ExpTime-complet. Tous ces algorithmes ont
été testés au moyen d’une génération aléatoire de TWA déterministes complets,
montrant un très clair avantage pour la transformation par surboucles, et une
précision remarquable pour la procédure approximée de décision du vide.

Bibliography

Abdulla, P. A., Jonsson, B., Mahata, P., & d’Orso, J. (2002). Regular tree model
checking. In [Brinksma & Larsen, 2002], (pp. 555–568).
† Cited page 16.

Abdulla, P. A., Jonsson, B., Nilsson, M., & Saksena, M. (2004). A survey of regular
model checking. In Gardner, P. & Yoshida, N. (Eds.), CONCUR, volume 3170 of
Lecture Notes in Computer Science, (pp. 35–48). Springer.
† Cited page 15.

Abiteboul, S., Buneman, P., & Suciu, D. (1999). Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann.
† Cited page 160.

Aggarwal, S., Kurshan, R. P., & Sabnani, K. K. (1983). A calculus for protocol
specification and validation. In Protocol Specification, Testing, and Verification, (pp.
19–34).
† Cited page 12.

Aho, A. & Ullman, J. (1969). Translations on a context free grammar. Information
and Control, 19(5), 439–475.
† Cited 4 times, page 163.

Apt, K. & Kozen, D. (1986). Limits for automatic verification of finite-state concur-
rent systems. Information Processing Letters, 22, 307–309.
† Cited page 14.

Armando, A., Basin, D. A., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J.,
Drielsma, P. H., Héam, P.-C., Kouchnarenko, O., Mantovani, J., Mödersheim,
S., von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., &
Vigneron, L. (2005). The avispa tool for the automated validation of internet
security protocols and applications. In Etessami, K. & Rajamani, S. K. (Eds.),
CAV, volume 3576 of Lecture Notes in Computer Science, (pp. 281–285). Springer.
† Cited page 43.

Baader, F. (Ed.). (2007). Term Rewriting and Applications, volume 4533 of Lecture
Notes in Computer Science.
† Cited twice, pages 211 and 216.

Baader, F. & Nipkow, T. (1998). Term rewriting and all that. Cambridge University
Press.
† Cited twice, pages 22 and 30.

Bae, K. & Meseguer, J. (2010). The linear temporal logic of rewriting Maude model
checker. In [Ölveczky, 2010], (pp. 208–225).
† Cited twice, pages 43 and 44.

210

BIBLIOGRAPHY 211

Barguñó, L., Creus, C., Godoy, G., Jacquemard, F., & Vacher, C. (2010). The
emptiness problem for tree automata with global constraints. In Proceedings
of the 25th Annual IEEE Symposium on Logic in Computer Science (LICS’10), (pp.
263–272)., Edinburgh, Scotland, UK. IEEE Computer Society Press.
† Cited thrice, pages 112 and 113.

Barré, N., Hubert, L., Roux, L. L., & Genet, T. (2009). Copster homepage. http:
//www.irisa.fr/celtique/genet/copster.
† Cited twice, pages 43 and 103.

Bassino, F., David, J., & Nicaud, C. (2007). REGAL : A library to randomly and
exhaustively generate automata. In CIAA, LNCS 4783, (pp. 303–305).
† Cited page 181.

Benedikt, M. & Koch, C. (2008). XPath leashed. ACM Comput. Surv., 41(1).
† Cited page 159.

Biere, A. (2008). Picosat essentials. JSAT, 4(2-4), 75–97.
† Cited page 129.

Biere, A., Cimatti, A., Clarke, E. M., & Zhu, Y. (1999). Symbolic model checking
without BDDs. In Cleaveland, R. (Ed.), TACAS, volume 1579 of Lecture Notes in
Computer Science, (pp. 193–207). Springer.
† Cited page 13.

Bloem, R. & Engelfriet, J. (2000). A comparison of tree transductions defined by
monadic second order logic and by attribute grammars. J. Comput. Syst. Sci.,
61(1), 1–50.
† Cited page 163.

Blum, M. & Kozen, D. (1978). On the power of the compass (or, why mazes are
easier to search than graphs). In [Unknown, 1978], (pp. 132–142).
† Cited page 196.

Bogaert, B. & Tison, S. (1992). Equality and disequality constraints on direct
subterms in tree automata. In Finkel, A. & Jantzen, M. (Eds.), STACS, volume
577 of Lecture Notes in Computer Science, (pp. 161–171). Springer.
† Cited page 109.

Boichut, Y., Courbis, R., Héam, P.-C., & Kouchnarenko, O. (2009). Handling non
left-linear rules when completing tree automata. Int. J. Found. Comput. Sci., 20(5),
837–849.
† Cited page 50.

Boichut, Y., Genet, T., Jensen, T. P., & Roux, L. L. (2007). Rewriting approximations
for fast prototyping of static analyzers. In [Baader, 2007], (pp. 48–62).
† Cited 4 times, pages 43, 97, 103, and 104.

Boichut, Y., Héam, P.-C., & Kouchnarenko, O. (2006). Handling algebraic properties
in automatic analysis of security protocols. In Barkaoui, K., Cavalcanti, A., &
Cerone, A. (Eds.), ICTAC, volume 4281 of Lecture Notes in Computer Science, (pp.
153–167). Springer.
† Cited page 50.

http://www.irisa.fr/celtique/genet/copster
http://www.irisa.fr/celtique/genet/copster

212 BIBLIOGRAPHY

Boichut, Y., Héam, P.-C., & Kouchnarenko, O. (2008). Approximation-based tree
regular model-checking. Nord. J. Comput., 14(3), 216–241.
† Cited thrice, pages 46 and 50.

Bojańczyk, M. (2003). 1-bounded TWA cannot be determinized. FSTTCS’03, LNCS,
2914, 62–73.
† Cited page 163.

Bojańczyk, M. (2008). Tree-Walking Automata. LATA’08 (tutorial), LNCS, 5196.
† Cited 15 times, pages 143, 144, 148, 160, 161, 162, 166, 175, 176, 179, 197,
and 198.

Bojańczyk, M. & Colcombet, T. (2005). Tree-walking automata do not recognize all
regular languages. STOC ’05, (pp. 234–243). ACM.
† Cited twice, pages 161 and 163.

Bojańczyk, M. & Colcombet, T. (2006). Tree-walking automata cannot be deter-
minized. Theoretical Computer Science, 350(2-3), 164–173.
† Cited page 163.

Bojanczyk, M., Muscholl, A., Schwentick, T., & Segoufin, L. (2009). Two-variable
logic on data trees and XML reasoning. J. ACM, 56(3).
† Cited page 112.

Bojanczyk, M., Samuelides, M., Schwentick, T., & Segoufin, L. (2006). Expressive
power of pebble automata. In Bugliesi, M., Preneel, B., Sassone, V., & Wegener, I.
(Eds.), ICALP (1), volume 4051 of Lecture Notes in Computer Science, (pp. 157–168).
Springer.
† Cited page 197.

Boronat, A., Heckel, R., & Meseguer, J. (2009). Rewriting logic semantics and
verification of model transformations. In FASE, volume 5503 of Lecture Notes in
Computer Science, (pp. 18–33). Springer.
† Cited page 43.

Bouajjani, A. & Touili, T. (2002). Extrapolating tree transformations. In Brinksma,
E. & Larsen, K. G. (Eds.), Computer Aided Verification, CAV’02, volume 2404 of
Lecture Notes in Computer Science, (pp. 539–554). Springer-Verlag.
† Cited page 45.

Boyer, B. & Genet, T. (2009). Verifying Temporal Regular Properties of Abstractions
of Term Rewriting Systems. In RULE, volume 21 of EPTCS, (pp. 99–108).
† Cited twice, page 43.

Brainerd, W. S. (1969). Tree generating regular systems. Information and Control,
14(2), 217–231.
† Cited page 45.

Brinksma, E. & Larsen, K. G. (Eds.). (2002). Computer Aided Verification, 14th Inter-
national Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings,
volume 2404 of Lecture Notes in Computer Science. Springer.
† Cited twice, pages 210 and 213.

BIBLIOGRAPHY 213

Bruggemann-Klein, A., Murata, M., & Wood, D. (2001). Regular tree and regular
hedge languages over unranked alphabets. Technical report.
† Cited page 149.

Brüggemann-Klein, A. & Wood, D. (2000). Caterpillars: A context specification
technique. Markup Languages, 2(1), 81–106.
† Cited 4 times, pages 160, 161, and 163.

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., & Hwang, L. J. (1992).
Symbolic model checking: 1020 states and beyond. Inf. Comput., 98(2), 142–170.
† Cited page 12.

Carme, J., Niehren, J., & Tommasi, M. (2004). Querying unranked trees with
stepwise tree automata. In [van Oostrom, 2004], (pp. 105–118).
† Cited page 154.

Caron, A.-C., Comon, H., Coquidé, J.-L., Dauchet, M., & Jacquemard, F. (1994).
Pumping, cleaning and symbolic constraints solving. In Abiteboul, S. & Shamir,
E. (Eds.), ICALP, volume 820 of Lecture Notes in Computer Science, (pp. 436–449).
Springer.
† Cited page 111.

Castéran, P., Herbelin, H., Kirchner, F., Monate, B., & Narboux, J. (2012). Coq
version 8.4 for the clueless. http://coq.inria.fr/faq.
† Cited page 188.

Chambers, B., Manolios, P., & Vroon, D. (2009). Faster sat solving with better cnf
generation. In DATE, (pp. 1590–1595). IEEE.
† Cited page 137.

Charatonik, W. (1999). Automata on DAG representations of finite trees. Tech.
Report, (-).
† Cited page 191.

Chevalier, Y. & Vigneron, L. (2002). Automated unbounded verification of security
protocols. In [Brinksma & Larsen, 2002], (pp. 324–337).
† Cited page 43.

Clarke, E. M. (2008). The birth of model checking. In Grumberg, O. & Veith,
H. (Eds.), 25 Years of Model Checking, volume 5000 of Lecture Notes in Computer
Science, (pp. 1–26). Springer.
† Cited page 13.

Clarke, E. M., Biere, A., Raimi, R., & Zhu, Y. (2001). Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1), 7–34.
† Cited page 130.

Clarke, E. M. & Emerson, E. A. (1981). Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Kozen, D. (Ed.), Logic of
Programs, volume 131 of Lecture Notes in Computer Science, (pp. 52–71). Springer.
† Cited 4 times, page 11.

Clavel, M., Palomino, M., & Riesco, A. (2006). Introducing the itp tool: a tutorial. J.
Univ. Comp. Sci., 12(11), 1618–1650.
† Cited page 43.

http://coq.inria.fr/faq

214 BIBLIOGRAPHY

Comon, H. & Cortier, V. (2005). Tree automata with one memory set constraints
and cryptographic protocols. Theoretical Computer Science, 331(1), 143–214.
† Cited 8 times, pages 193, 194, and 195.

Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison,
S., & Tommasi, M. (2008). Tree Automata Techniques and Applications. release
November 18, 2008.
† Cited 16 times, pages 22, 35, 38, 48, 50, 107, 108, 109, 110, 111, 143, 150, 182,
and 183.

Comon, H., Jacquemard, F., & Perrin, N. (2008). Visibly tree automata with memory
and constraints. Logical Methods in Computer Science, 4(2).
† Cited 9 times, pages 193, 194, and 195.

Consortium, W. W. W. (1999). XML path language. http://www.w3.org/TR/
xpath/.
† Cited twice, page 157.

Consortium, W. W. W. (2010). XML path language 2.0. http://www.w3.org/TR/
xpath20/.
† Cited twice, page 157.

Coppersmith, D. & Winograd, S. (1990). Matrix multiplication via arithmetic
progressions. Journal of symbolic computation, 9(3), 251–280.
† Cited page 171.

Coquidé, J.-L., Dauchet, M., Gilleron, R., & Vágvölgyi, S. (1991). Bottom-up tree
pushdown automata and rewrite systems. In Book, R. V. (Ed.), RTA, volume 488

of Lecture Notes in Computer Science, (pp. 287–298). Springer.
† Cited page 45.

Cosmadakis, S., Gaifman, H., Kanellakis, P., & Vardi, M. (1988). Decidable opti-
mization problems for database logic programs. STOC ’88, (pp. 477–490). ACM.
† Cited page 174.

Courbis, R. (2011). Contributions à l’analyse de systèmes par approximation d’ensembles
réguliers. Thèse de Doctorat, LIFC, Université de Franche-Comté.
† Cited 4 times, pages 43, 97, and 104.

Courbis, R., Héam, P.-C., & Kouchnarenko, O. (2009). TAGED Approximations for
Temporal Properties Model-Checking. In [Maneth, 2009], (pp. 135–144).
† Cited 26 times, pages 19, 41, 42, 43, 51, 53, 54, 57, 88, 89, 91, 94, 97, 187, 200,
203, and 204.

Courcelle, B. (1990). Graph rewriting: An algebraic and logic approach. In Handbook
of Theoretical Computer Science, Volume B: Formal Models and Sematics (B) (pp. 193–
242).
† Cited page 157.

Cousot, P. (2002). Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. Theoretical Computer Science, 277(1-2), 47–103.
† Cited page 57.

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/

BIBLIOGRAPHY 215

Dauchet, M., Caron, A.-C., & Coquidé, J.-L. (1995). Automata for reduction proper-
ties solving. J. Symb. Comput., 20(2), 215–233.
† Cited thrice, page 110.

Dauchet, M. & Tison, S. (1990). The theory of ground rewrite systems is decidable.
In LICS, (pp. 242–248). IEEE Computer Society.
† Cited page 45.

Deransart, P., Jourdan, M., & Lorho, B. (1988). Attribute Grammars: Definitions, Sys-
tems, and Bibliography, volume 323 of Lecture Notes in Computer Science. Springer.
† Cited page 163.

Dershowitz, N. & Jouannaud, J.-P. (1990). Rewrite Systems. In Handbook of Theoreti-
cal Computer Science, Volume B: Formal Models and Sematics (B) (pp. 243–320).
† Cited twice, pages 22 and 30.

Dwyer, M., Avrunin, G., & Corbett, J. (1998). Property specification patterns for
finite-state verification. In FMSP’98, (pp. 7–15). ACM.
† Cited page 101.

Dwyer, M., Avrunin, G., & Corbett, J. (1999). Patterns in property specifications for
finite-state verification. In ICSE’99, (pp. 411–420). IEEE.
† Cited 5 times, pages 6, 97, 101, and 102.

Eén, N. & Sörensson, N. (2003). An extensible sat-solver. In Giunchiglia, E. &
Tacchella, A. (Eds.), SAT, volume 2919 of Lecture Notes in Computer Science, (pp.
502–518). Springer.
† Cited page 129.

Eker, S., Meseguer, J., & Sridharanarayanan, A. (2003). The Maude LTL model
checker and its implementation. In Ball, T. & Rajamani, S. K. (Eds.), SPIN, volume
2648 of Lecture Notes in Computer Science, (pp. 230–234). Springer.
† Cited twice, page 43.

Emerson, E. A. & Clarke, E. M. (1980). Characterizing correctness properties of
parallel programs using fixpoints. In de Bakker, J. W. & van Leeuwen, J. (Eds.),
ICALP, volume 85 of Lecture Notes in Computer Science, (pp. 169–181). Springer.
† Cited page 11.

Engelfriet, J. & Hoogeboom, H. J. (1999). Tree-walking pebble automata. In
Karhumäki, J., Maurer, H. A., Păun, G., & Rozenberg, G. (Eds.), Jewels are Forever,
(pp. 72–83). Springer.
† Cited 4 times, pages 163, 196, 197, and 199.

Engelfriet, J. & Hoogeboom, H. J. (2007). Automata with nested pebbles capture
first-order logic with transitive closure. Logical Methods in Computer Science, 3(2).
† Cited twice, page 197.

Engelfriet, J., Hoogeboom, H. J., & Best, J.-P. V. (1999). Trips on trees. Acta Cybern.,
14(1), 51–64.
† Cited page 198.

Engelfriet, J., Hoogeboom, H. J., & Samwel, B. (2007). XML transformation by
tree-walking transducers with invisible pebbles. In Libkin, L. (Ed.), PODS, (pp.

216 BIBLIOGRAPHY

63–72). ACM.
† Cited page 197.

Engelfriet, J., Rozenberg, G., & Slutzki, G. (1980). Tree transducers, L systems, and
two-way machines. J. Comput. Syst. Sci., 20(2), 150–202.
† Cited page 198.

Escobar, S. & Meseguer, J. (2007). Symbolic model checking of infinite-state systems
using narrowing. In [Baader, 2007], (pp. 153–168).
† Cited twice, pages 43 and 44.

Fagin, R. (1975). Monadic generalized spectra. Mathematical Logic Quarterly, 21(1),
89–96.
† Cited page 159.

Feuillade, G., Genet, T., & Tong, V. V. T. (2004). Reachability analysis over term
rewriting systems. J. Autom. Reasoning, 33(3-4), 341–383.
† Cited 5 times, pages 43, 45, 46, 137, and 139.

Filiot, E. (2008). Logics for n-ary queries in trees. PhD thesis, Université des Sciences
et Technologie de Lille - Lille I.
† Cited 4 times, pages 35, 112, 118, and 143.

Filiot, E., Talbot, J.-M., & Tison, S. (2007). Satisfiability of a spatial logic with tree
variables. In Duparc, J. & Henzinger, T. A. (Eds.), CSL, volume 4646 of Lecture
Notes in Computer Science, (pp. 130–145). Springer.
† Cited page 112.

Filiot, E., Talbot, J.-M., & Tison, S. (2008). Tree automata with global constraints.
In Developments in Language Theory, volume 5257 of Lecture Notes in Computer
Science, (pp. 314–326). Springer.
† Cited 8 times, pages 35, 88, 92, 110, 112, 113, 120, and 134.

Filiot, E., Talbot, J.-M., & Tison, S. (2010). Tree automata with global constraints.
Int. J. Found. Comput. Sci., 21(4), 571–596.
† Cited 6 times, pages 35, 107, 109, 112, 121, and 134.

Finkel, A. & Goubault-Larrecq, J. (2012). The theory of wsts: The case of complete
wsts. In Haddad, S. & Pomello, L. (Eds.), Petri Nets, volume 7347 of Lecture Notes
in Computer Science, (pp. 3–31). Springer.
† Cited page 16.

Finkel, A. & Schnoebelen, P. (2001). Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1-2), 63–92.
† Cited page 16.

Fisman, D. & Pnueli, A. (2001). Beyond regular model checking. In Hariharan,
R., Mukund, M., & Vinay, V. (Eds.), FSTTCS, volume 2245 of Lecture Notes in
Computer Science, (pp. 156–170). Springer.
† Cited page 15.

Floyd, R. W. (1962). Algorithm 97: Shortest path. Commun. ACM, 5(6), 345–.
† Cited page 172.

Frick, M. & Grohe, M. (2002). The complexity of first-order and monadic second-
order logic revisited. In Logic in Computer Science, 2002. Proceedings. 17th Annual

BIBLIOGRAPHY 217

IEEE Symposium on, (pp. 215–224). IEEE.
† Cited page 156.

Gabbay, D. M. (1987). The declarative past and imperative future: Executable
temporal logic for interactive systems. In Banieqbal, B., Barringer, H., & Pnueli,
A. (Eds.), Temporal Logic in Specification, volume 398 of Lecture Notes in Computer
Science, (pp. 409–448). Springer.
† Cited page 189.

Gabbay, D. M., Pnueli, A., Shelah, S., & Stavi, J. (1980). On the temporal basis of
fairness. In Abrahams, P. W., Lipton, R. J., & Bourne, S. R. (Eds.), POPL, (pp.
163–173). ACM Press.
† Cited page 189.

Genet, T. (1998). Decidable approximations of sets of descendants and sets of normal
forms. In Nipkow, T. (Ed.), RTA, volume 1379 of Lecture Notes in Computer Science,
(pp. 151–165). Springer.
† Cited twice, pages 43 and 46.

Genet, T. (2009). Reachability analysis of rewriting for software verification. Habilitation
thesis (habilitation à diriger des recherches), University of Rennes I.
† Cited 11 times, pages 43, 45, 46, 47, 48, 49, and 50.

Genet, T. & Klay, F. (2000). Rewriting for cryptographic protocol verification. In
McAllester, D. (Ed.), CADE, volume 1831 of Lecture Notes in Computer Science,
(pp. 271–290). Springer.
† Cited 6 times, pages 43, 53, 97, 103, and 204.

Genet, T. & Rusu, V. (2010). Equational approximations for tree automata comple-
tion. J. Symb. Comput., 45(5), 574–597.
† Cited twice, pages 46 and 48.

Gilleron, R. & Tison, S. (1995). Regular tree languages and rewrite systems. Fundam.
Inform., 24(1/2), 157–174.
† Cited page 44.

Godoy, G., Giménez, O., Ramos, L., & Àlvarez, C. (2010). The hom problem is
decidable. In Schulman, L. J. (Ed.), STOC, (pp. 485–494). ACM.
† Cited page 109.

Goris, E. & Marx, M. (2005). Looping caterpillars. In LICS, (pp. 51–60). IEEE
Computer Society.
† Cited thrice, pages 161 and 162.

Gottlob, G. & Koch, C. (2004). Monadic datalog and the expressive power of
languages for web information extraction. J. ACM, 51(1), 74–113.
† Cited page 157.

Gottlob, G., Koch, C., & Pichler, R. (2002). Efficient algorithms for processing XPath
queries. In VLDB, (pp. 95–106). Morgan Kaufmann.
† Cited page 158.

Gottlob, G., Koch, C., & Pichler, R. (2005). Efficient algorithms for processing XPath
queries. ACM Trans. Database Syst., 30(2), 444–491.
† Cited twice, page 158.

218 BIBLIOGRAPHY

Guessarian, I. (1981). On pushdown tree automata. In Astesiano, E. & Böhm,
C. (Eds.), CAAP, volume 112 of Lecture Notes in Computer Science, (pp. 211–223).
Springer.
† Cited page 193.

Guessarian, I. (1983). Pushdown tree automata. Mathematical Systems Theory, 16(4),
237–263.
† Cited page 193.

Gyenizse, P. & Vágvölgyi, S. (1998). Linear generalized semi-monadic rewrite
systems effectively preserve recognizability. Theoretical Computer Science, 194(1-2),
87–122.
† Cited twice, page 45.

Héam, P., Hugot, V., & Kouchnarenko, O. (2010a). Random Generation of Positive
TAGEDs wrt. the Emptiness Problem. Technical Report RR-7441, INRIA.
† Cited 5 times, pages 20, 167, 182, 183, and 201.

Héam, P., Hugot, V., & Kouchnarenko, O. (2010b). SAT Solvers for Queries over Tree
Automata with Constraints. In Third International Conference on Software Testing,
Verification, and Validation Workshops, (pp. 343–348). IEEE.
† Cited 4 times, pages 20, 128, 130, and 201.

Héam, P.-C., Hugot, V., & Kouchnarenko, O. (2011). Loops and overloops for tree
walking automata. In CIAA’11, LNCS 6807, (pp. 166–177).
† Cited 4 times, pages 20, 165, 184, and 202.

Héam, P.-C., Hugot, V., & Kouchnarenko, O. (2012a). From linear temporal logic
properties to rewrite propositions. In Gramlich, B., Miller, D., & Sattler, U.
(Eds.), IJCAR’12, volume 7364 of Lecture Notes in Computer Science, (pp. 316–331).
Springer.
† Cited 5 times, pages 20, 77, 78, 88, and 201.

Héam, P.-C., Hugot, V., & Kouchnarenko, O. (2012b). Loops and overloops for
tree-walking automata. Theoretical Computer Science, 450, 43–53.
† Cited 4 times, pages 20, 165, 184, and 202.

Héam, P.-C., Hugot, V., & Kouchnarenko, O. (2012c). On positive TAGED with a
bounded number of constraints. In Moreira, N. & Reis, R. (Eds.), CIAA, volume
7381 of Lecture Notes in Computer Science, (pp. 329–336). Springer.
† Cited 4 times, pages 20, 118, 128, and 201.

Héam, P.-C., Hugot, V., & Kouchnarenko, O. (2013). Semi-deciding LTL properties
over rewrite-rules sequences. (prepublication), ?
† Cited twice, pages 20 and 201.

Héam, P.-C., Nicaud, C., & Schmitz, S. (2009). Random generation of deterministic
tree (walking) automata. In [Maneth, 2009], (pp. 115–124).
† Cited twice, pages 166 and 181.

Heen, O., Genet, T., Geller, S., & Prigent, N. (2008). An industrial and academic joint
experiment on automated verification of a security protocol. In IFIP Networking
Workshop on Mobile and Networks Security.
† Cited page 43.

BIBLIOGRAPHY 219

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10), 576–580.
† Cited page 10.

Hosoya, H. (2010). Foundations of XML processing: the tree-automata approach. Cam-
bridge University Press.
† Cited 10 times, pages 19, 35, 143, 148, 151, 152, 160, 161, 163, and 199.

Jacquemard, F. (1996). Decidable approximations of term rewriting systems. In
Ganzinger, H. (Ed.), RTA, volume 1103 of Lecture Notes in Computer Science, (pp.
362–376). Springer.
† Cited page 45.

Jacquemard, F., Klay, F., & Vacher, C. (2009). Rigid tree automata. In Horia Dediu,
A., Mihai Ionescu, A., & Martín-Vide, C. (Eds.), Proceedings of the 3rd Inter-
national Conference on Language and Automata Theory and Applications (LATA’09),
volume 5457 of Lecture Notes in Computer Science, (pp. 446–457)., Tarragona, Spain.
Springer.
† Cited page 113.

Jacquemard, F., Klay, F., & Vacher, C. (2011). Rigid tree automata and applications.
Inf. Comput., 209(3), 486–512.
† Cited page 113.

Jacquemard, F., Rusinowitch, M., & Vigneron, L. (2008). Tree automata with equality
constraints modulo equational theories. J. Log. Algebr. Program., 75(2), 182–208.
† Cited thrice, pages 110 and 111.

Jones, N. D. (1987). Flow analysis of lazy higher-order functional programs. (pp.
103–122). Halsted Press.
† Cited page 42.

Jones, N. D. & Andersen, N. (2007). Flow analysis of lazy higher-order functional
programs. Theoretical Computer Science, 375(1-3), 120–136.
† Cited page 42.

Kamimura, T. & Slutzki, G. (1981). Parallel and two-way automata on directed
ordered acyclic graphs. Information and Control, 49(1), 10–51.
† Cited thrice, pages 144, 163, and 198.

Kamp, H. (1968). Tense Logic and the Theory of Linear Order.
† Cited page 57.

Kesten, Y., Maler, O., Marcus, M., Pnueli, A., & Shahar, E. (1997). Symbolic model
checking with rich assertional languages. In Grumberg, O. (Ed.), CAV, volume
1254 of Lecture Notes in Computer Science, (pp. 424–435). Springer.
† Cited thrice, pages 13, 16, and 17.

Kirchner, C. & Kirchner, H. (1996). Rewriting, Solving, Proving.
† Cited twice, pages 22 and 30.

Klaedtke, F. & Rueß, H. (2002). Parikh automata and monadic second-order logics
with linear cardinality constraints. Tech. Report, (-).
† Cited page 112.

220 BIBLIOGRAPHY

Knuth, D. (1968). Semantics of context-free languages. Theory of Computing Systems,
2(2), 127–145.
† Cited page 166.

Knuth, D. E. (1997). Fundamental Algorithms (Third ed.)., volume 1 of The Art of
Computer Programming. Addison-Wesley Professional.
† Cited page 152.

Knuth, D. E. & Bendix, P. B. (1970). Simple word problems in universal algebras.
In Computational problems in abstract algebra, (pp. 263–297). Oxford, Pergamon
Press.
† Cited twice, page 46.

Ladner, R. E., Lipton, R. J., & Stockmeyer, L. J. (1984). Alternating pushdown and
stack automata. SIAM J. Comput., 13(1), 135–155.
† Cited page 150.

Laroussinie, F., Markey, N., & Schnoebelen, P. (2002). Temporal logic with forget-
table past. In LICS, (pp. 383–392). IEEE Computer Society.
† Cited page 189.

Maneth, S. (Ed.). (2009). Implementation and Application of Automata, 14th Inter-
national Conference, CIAA 2009, Sydney, Australia, July 14-17, 2009. Proceedings,
volume 5642 of Lecture Notes in Computer Science. Springer.
† Cited twice, pages 214 and 218.

Manna, Z. & Pnueli, A. (1995). Temporal Verification of Reactive Systems - Safety.
Springer.
† Cited page 57.

Manolios, P., Srinivasan, S. K., & Vroon, D. (2007). Bat: The bit-level analysis
tool. In Damm, W. & Hermanns, H. (Eds.), CAV, volume 4590 of Lecture Notes in
Computer Science, (pp. 303–306). Springer.
† Cited page 137.

Martens, W. & Neven, F. (2003). Typechecking top-down uniform unranked tree
transducers. In Calvanese, D., Lenzerini, M., & Motwani, R. (Eds.), ICDT, volume
2572 of Lecture Notes in Computer Science, (pp. 64–78). Springer.
† Cited page 150.

Martens, W. & Niehren, J. (2005). Minimizing tree automata for unranked trees.
In Bierman, G. M. & Koch, C. (Eds.), DBPL, volume 3774 of Lecture Notes in
Computer Science, (pp. 232–246). Springer.
† Cited twice, pages 151 and 154.

Martí-Oliet, N. & Meseguer, J. (1996). Rewriting logic as a logical and semantic
framework. Electr. Notes Theor. Comput. Sci., 4, 190–225.
† Cited page 43.

Martí-Oliet, N. & Meseguer, J. (2002). Rewriting logic: roadmap and bibliography.
Theoretical Computer Science, 285(2), 121–154.
† Cited page 43.

BIBLIOGRAPHY 221

Marx, M. & de Rijke, M. (2005). Semantic characterizations of navigational XPath.
SIGMOD Record, 34(2), 41–46.
† Cited page 159.

Meseguer, J. (1992). Conditioned rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1), 73–155.
† Cited thrice, page 43.

Meseguer, J. (2008). The temporal logic of rewriting: A gentle introduction. In
Concurrency, Graphs and Models, volume 5065 of Lecture Notes in Computer Science.
Springer.
† Cited page 43.

Milo, T., Suciu, D., & Vianu, V. (2003). Typechecking for XML transformers. J.
Comput. Syst. Sci., 66(1), 66–97.
† Cited page 163.

Mongy, J. (1981). Transformation de noyaux reconnaissables d’arbres. Forêts RATEG.
Ph.d. thesis, LIF de Lille, Université des Sciences et Technologies de Lille, Lille,
France.
† Cited page 108.

Muscholl, A., Samuelides, M., & Segoufin, L. (2006). Complementing deterministic
tree-walking automata. Inf. Process. Lett., 99(1), 33–39.
† Cited twice, pages 163 and 197.

Nagaya, T. & Toyama, Y. (1999). Decidability for left-linear growing term rewriting
systems. In Narendran, P. & Rusinowitch, M. (Eds.), RTA, volume 1631 of Lecture
Notes in Computer Science, (pp. 256–270). Springer.
† Cited page 45.

Nagaya, T. & Toyama, Y. (2002). Decidability for left-linear growing term rewriting
systems. Inf. Comput., 178(2), 499–514.
† Cited page 45.

Neven, F. (1999). Extensions of attribute grammars for structured document queries.
In Connor, R. C. H. & Mendelzon, A. O. (Eds.), DBPL, volume 1949 of Lecture
Notes in Computer Science, (pp. 99–116). Springer.
† Cited page 164.

Neven, F. (2002). Automata, logic, and XML. In Bradfield, J. C. (Ed.), CSL, volume
2471 of Lecture Notes in Computer Science, (pp. 2–26). Springer.
† Cited 7 times, pages 150, 152, 153, 164, and 197.

Neven, F. & Schwentick, T. (2000). Expressive and efficient pattern languages for
tree-structured data. In Vianu, V. & Gottlob, G. (Eds.), PODS, (pp. 145–156).
ACM.
† Cited page 157.

Ölveczky, P. C. (Ed.). (2010). Rewriting Logic and Its Applications, volume 6381 of
Lecture Notes in Computer Science. Springer.
† Cited twice, pages 43 and 210.

222 BIBLIOGRAPHY

Otto, F. (1998). Some undecidability results concerning the property of preserving
regularity. Theoretical Computer Science, 207(1), 43–72.
† Cited page 45.

Paulson, L. C. (1989). The foundation of a generic theorem prover. J. Autom.
Reasoning, 5(3), 363–397.
† Cited page 188.

Pnueli, A. (1977). The temporal logic of programs. In FOCS’77, (pp. 46–57).
† Cited twice, pages 11 and 12.

Queille, J.-P. & Sifakis, J. (1982). Specification and verification of concurrent systems
in CESAR. In Dezani-Ciancaglini, M. & Montanari, U. (Eds.), Symposium on
Programming, volume 137 of Lecture Notes in Computer Science, (pp. 337–351).
Springer.
† Cited twice, page 11.

Rabin, M. O. (1969). Decidability of second-order theories and automata on infinite
trees. Trans. Am. Math. Soc., 141, 1–35.
† Cited page 152.

Réty, P. (1999). Regular sets of descendants for constructor-based rewrite systems.
In Ganzinger, H., McAllester, D. A., & Voronkov, A. (Eds.), LPAR, volume 1705

of Lecture Notes in Computer Science, (pp. 148–160). Springer.
† Cited page 45.

Roy, B. (1959). Transitivité et connexité. CR Acad. Sci. Paris, 249, 216–218.
† Cited page 172.

Salomaa, K. (1988). Deterministic tree pushdown automata and monadic tree
rewriting systems. J. Comput. Syst. Sci., 37(3), 367–394.
† Cited page 45.

Salomaa, K., Yu, S., & Zan, J. (2007). Deterministic caterpillar expressions. In Holub,
J. & Zdárek, J. (Eds.), CIAA, volume 4783 of Lecture Notes in Computer Science,
(pp. 97–108). Springer.
† Cited page 160.

Salomaa, K., Yu, S., & Zan, J. (2009). Deciding determinism of caterpillar expressions.
Theoretical Computer Science, 410(37), 3438–3446.
† Cited page 160.

Samuelides, M. (2007). Automates d’arbres à jetons. PhD thesis, Université Paris-
Diderot - Paris VII.
† Cited 5 times, pages 166, 175, 176, and 197.

Samuelides, M. & Segoufin, L. (2007). Complexity of pebble tree-walking automata.
In Csuhaj-Varjú, E. & Ésik, Z. (Eds.), FCT, volume 4639 of Lecture Notes in
Computer Science, (pp. 458–469). Springer.
† Cited page 197.

Segoufin, L. & Vianu, V. (2002). Validating Streaming XML Documents. In PODS,
(pp. 53–64). ACM.
† Cited page 163.

BIBLIOGRAPHY 223

Seki, H., Takai, T., Fujinaka, Y., & Kaji, Y. (2002). Layered transducing term
rewriting system and its recognizability preserving property. In Tison, S. (Ed.),
RTA, volume 2378 of Lecture Notes in Computer Science, (pp. 98–113). Springer.
† Cited page 45.

Serbanuta, T.-F., Rosu, G., & Meseguer, J. (2009). A rewriting logic approach to
operational semantics. Inf. Comput., 207(2), 305–340.
† Cited page 43.

Shepherdson, J. (1959). The reduction of two-way automata to one-way automata.
IBM Journal of Research and Development, 3(2), 198–200.
† Cited page 166.

Sipser, M. (1978). Halting space-bounded computations. In [Unknown, 1978], (pp.
73–74).
† Cited page 163.

Slutzki, G. (1985). Alternating tree automata. Theoretical Computer Science, 41, 305–
318.
† Cited page 199.

Stothers, A. J. (2010). On the complexity of matrix multiplication. PhD thesis, The
University of Edinburgh.
† Cited page 171.

Suciu, D. (2001). Typechecking for semistructured data. In Ghelli, G. & Grahne,
G. (Eds.), DBPL, volume 2397 of Lecture Notes in Computer Science, (pp. 1–20).
Springer.
† Cited twice, page 153.

Takahashi, M. (1975). Generalizations of regular sets and their applicatin to a study
of context-free languages. Information and Control, 27(1), 1–36.
† Cited thrice, pages 152, 154, and 161.

Takai, T. (2004). A verification technique using term rewriting systems and abstract
interpretation. In [van Oostrom, 2004], (pp. 119–133).
† Cited twice, pages 43 and 45.

Takai, T., Kaji, Y., & Seki, H. (2000). Right-linear finite-path overlapping term
rewriting systems effectively preserve recognizability. In Bachmair, L. (Ed.), RTA,
volume 1833 of Lecture Notes in Computer Science, (pp. 246–260). Springer.
† Cited twice, page 45.

ten Cate, B., Litak, T., & Marx, M. (2007). A complete axiomatization for core XPath
1.0. In J. van den Bussche (Ed.), Liber Amicorum Jan Paredaens (pp. 41–56).
† Cited page 159.

ten Cate, B. & Marx, M. (2007). Axiomatizing the logical core of XPath 2.0. In
Schwentick, T. & Suciu, D. (Eds.), ICDT, volume 4353 of Lecture Notes in Computer
Science, (pp. 134–148). Springer.
† Cited twice, page 159.

ten Cate, B. & Marx, M. (2009). Axiomatizing the logical core of XPath 2.0. Theory
Comput. Syst., 44(4), 561–589.
† Cited twice, page 159.

224 BIBLIOGRAPHY

ten Cate, B. & Segoufin, L. (2010). Transitive closure logic, nested tree walking
automata, and XPath. J. ACM, 57(3), 251–260.
† Cited 7 times, pages 158, 159, 162, 164, and 197.

Unknown (Ed.). (1978). 19th Annual Symposium on Foundations of Computer Science,
Ann Arbor, Michigan, USA, 16-18 October 1978. IEEE Computer Society.
† Cited twice, pages 211 and 223.

Vacher, C. (2010). Tree automata with global constraints for the verification of security
properties. Ph.D. thesis, ENS Cachan.
† Cited 9 times, pages 107, 113, 193, 194, and 196.

van Oostrom, V. (Ed.). (2004). Rewriting Techniques and Applications, 15th Interna-
tional Conference, RTA 2004, Aachen, Germany, June 3-5, 2004, Proceedings, volume
3091 of Lecture Notes in Computer Science. Springer.
† Cited twice, pages 213 and 223.

Vardi, M. Y. & Wolper, P. (1986). Automata-theoretic techniques for modal logics of
programs. J. Comput. Syst. Sci., 32(2), 183–221.
† Cited page 12.

Warshall, S. (1962). A theorem on boolean matrices. J. ACM, 9(1), 11–12.
† Cited page 172.

Williams, V. V. (2011). Breaking the Coppersmith-Winograd barrier. Unpublished
manuscript.
† Cited page 171.

Wong, K. & Löding, C. (2007). Unranked tree automata with sibling equalities and
disequalities. In Arge, L., Cachin, C., Jurdzinski, T., & Tarlecki, A. (Eds.), ICALP,
volume 4596 of Lecture Notes in Computer Science, (pp. 875–887). Springer.
† Cited page 110.

Index

Symbols
-RA, 111

P-housings on t: HtP , 124

R≡: equivalence closure, 23

S/∼: quotient set of S by ∼, 24

Sαu : variable “u rooted in α”, 134

Tuq : variable “u ∈ Lq(A)”, 133

X] Y: disjoint set union, 23

Xαq : variable: (α,q) ∈ ρ, 131

#σ: cardinal of signature σ, 63

#w: length of (in)finite word, 56

#w: length of word w, 24

L(C): expressive power of C, 118

L(A): accepted language, 32

Pf1 . . . f #σ # fω | SQ: signature, in extenso, 63

acsρ: active constrained states, 126

domσ: domain of signature σ, 63

∆σ: transitions rooted in σ., 132

Hτσ: simple here-loops, 169

Uτσ[L]: up-closure of loops L, 173

Ψα(·): rule application constraint, 132

α fβ: incomparable positions, 26

α E β: α under β, 26

α C β: α strictly under β, 26

•m: strong next operator, 57

χ(·): TWA get move from type, 145

◦
m: weak next operator, 57

Ω9: partial function constraint, 131

ΘA(t): membership formula, 134

λ, ε: empty word, 24

GP : groups of states for �P , 123

HtP : P-housings on t, 124

M : TWA moves, 145

S: TWA “son” types, 145

St: similarity classes of t, 123

T: TWA node types, 145

A×B: product automaton, 36

A]B: disjoint automata union, 36

Lq(A): q-accepted language, 32

P(t): positions of a term, 25

R,Π |= ϕ: satisfaction of the specification ϕ, 58

V(t): variables of a term, 28

|t|: height of tree t, 26

|x|0: positive or zero, 24

‖t‖: size of tree t, 26

{X 7→ v }ϕ, ϕ[v/X]: substitution, 24

fτ(u): loops on u, type τ, 169

∼: similarity relation, 123

ta(A): underlying automaton, 35

σ Im: strong m-right shift of σ, 67

σ ≡ ρ: extensional equivalence, 70

σ�σ ′: signature product, 66

σ Cm: weak m-left shift of σ, 78

σ Bm: weak m-right shift of σ, 67

σ∞, limn→∞ σn: limit of a sequence of signatures, 69

TA=k: bounded TA=, 117

[x]∼: equiv. class of x wrt. ∼, 24

Ji, jK: integer interval, 23

*f | S+: signature, compact, 63

LΠ #σM: words constrained by σ, 63

LΠ #σM#
m: words constrained by σ, of length m, 63

LΠM: maximal rewrite words of R, originating in Π, 56

A : assumptions, 90

K: kinds of automata, 89

P: properties of a system, 90

�P : togetherness wrt. P, 123

∇σ: support of signature σ, 63

?σ: strengthening of σ, 77

X: overfinal state, 173

P(t) : extended positions of t, 172

ε: overroot: ε C ε, 172

∂σ: core of signature σ, 63

wm: suffix of w, of rank m, 56

parent(·): parent function, 26

ε = P#R | NQ: empty signature, 63

ξ(ϕ): signature of ϕ, 62

f(x), fx: function application, 24

q-accepted language: Lq(A), 32

q-recognised language, 32

t[u]α: subtree replacement, 28

Πnσ : iteration of σ, n times, 77

σ[k]: signature “at” operator, 63

Σ: set of signatures, 63

α strictly under β: α C β, 26

α under β: α E β, 26

Ω,
6: compatibility with irr. 6, 134

Ω,
6: compatibility with refl. 6, 134

Ω∆: rules compatibility constraint, 132

Ω�: structural glue, 133

Ωu: compatibility with u, 133

R-LTL: Rewrite LTL, 62

A-LTL: Antecedent LTL, 62

W: words on R, finite or infinite, 56

‖A‖: size of an automaton A, 38

ω-language, 12

ω-word, 12

tyα: TWA type of α, 145

TA=, 36

TA=,, 35

TA,, 36

f↑ τ(u): overloops on u, type τ, 173

2AFA, 150

2FSA, 144

A
accelerations, 15

accepted language: L(A), 32

accepting run, 33

active constrained states: acsρ, 126

AFA, 150

Antecedent LTL: A-LTL, 62

approximated procedures, 15

arithmetic overloading, +, 67

arithmetic overloading, −, 78

arity function, 24

assumptions: A , 90

automata-theoretic model-checking, 12

B
Büchi automaton, 12

BAT, 137

binarisation, 145

binary alphabet, 145

bit-level analysis tool, 137

225

226 INDEX

boolean satisfiability problem, 13, 129

bottom-up tree automata, 31

bounded TA=: TA=k, 117

bounded model-checking, 13

BUTA, 31

C
cardinal of signature σ: #σ, 63

caterpillar expressions, 160

CE, 160

Church-Rosser property, 29

CNF, 137

compatibility of housing and run, 124

compatibility with u: Ωu, 133

compatibility with u,6, 35

compatibility with irr. 6: Ω,
6, 134

compatibility with refl. 6: Ω,
6, 134

completion for tree automata, 46

completion step, 46

Computation Tree Logic, 11

confluence property, 29

conjunctive normal form, 136

constrained maximal rewrite words, 63

core of signature σ: ∂σ, 63

Core XPath 1.0, 158

critical pair, 46

CTL, 11

currying, 154

cutting caterpillars, 162

D
DAG automata, 191

DAGA, 191

deduction, 90

derivation, 74

disequality relation, 35

disjoint automata union: A]B, 36

disjoint set union: X] Y, 23

divergent sequence of signatures, 69

Document Type Definitions, 151

domain of a function, 23

domain of a relation, 23

domain of signature σ: domσ, 63

DTD, 151

E
Ehrenfeucht–Fraïsse games, 161

empty signature: ε = P#R | NQ, 63

empty word: λ, ε, 24

equality relation, 35

equiv. class of x wrt. ∼: [x]∼, 24

equivalence closure: R≡, 23

escaped TWA, 173

exact translation, 58

exact translation rule, 73

expressive power of C: L(C), 118

extended positions of t: P(t) , 172

extensional equivalence: σ ≡ ρ, 70

F
FCNS, 152

Finite-LTL, 57

first-child next-sibling, 152

formal methods, 10

FOT, 159

FOT+, 162

FSA, 12

FST, 13

FTA, 31

function application: f(x), fx, 24

G
generalised reduction automata, 111

GRA, 111

ground rewrite systems, 45

ground substitution, 28

ground terms, 28

groups of states for �P : GP , 123

H
hedge, 149

hedge automata, 150

height of tree t: |t|, 26

high point, 81

Hoare logic, 10

I
incomparable positions: α fβ, 26

integer interval: Ji, jK, 23

interpretation, 129

iteration of σ, n times: Πnσ , 77

K
kind-inference rule, 90

kinds of automata: K, 89

kinds: deductions, 90

Kleene Closure, 24

Kripke structure, 11

L
left-linear rewrite rule, 28

length of (in)finite word: #w, 56

length of word w: #w, 24

limit core, 69

limit of a sequence of signatures: σ∞, limn→∞ σn, 69

linear constraint tree automata, 112

linear rewrite rule, 28

Linear Temporal Logic, 12

linear term, 28

loop, 167

looping caterpillars, 162

loops on u, type τ: fτ(u), 169

loops: simple, trivial, non-trivial, 168

LTL, 12

LTL on finite and infinite words, 57

M
maximal rewrite words of R, originating in Π: LΠM, 56

membership formula: ΘA(t), 134

memories, 193

MiniSAT2, 129

model-checking, 11

N
negative TA=,, 36

negative approximated procedure, 15

next operators, strong and weak, 57

NFTA, 31

node, 25

noetherian rewrite system, 29

noRA, 111

normal form, 29

notational choices, 22

NParikh+ED, 112

NParikh+EDB, 112

O
OBDD, 12

One-Step Completion, 48

one-step deduction, 90

ordered binary decision diagrams, 12

INDEX 227

over-approximated rules, 74

over-approximated translation, 59

overfinal state: X, 173

overloop, 172

overloops on u, type τ: f↑ τ(u), 173

overroot: ε C ε: ε, 172

P
parent function: parent(·), 26

Parikh tree automata, 112

Parikh+E, 112

partial function, 23

partial function constraint: Ω9, 131

PDA, 193

PDTA, 193

pebble automata, 196

PicoSAT, 129

position, 25

positional constraints, 108

positions of a term: P(t), 25

positive TA=,, 36

positive approximated procedure, 15

positive or zero: |x|0, 24

prefix-closed, 25

procedure-generation rule, 92

product automaton: A×B, 36

product of two signatures, 66

properties of a system: P, 90

Q
query, 155

quotient set of S by ∼: S/∼, 24

R
RA, 110

ranked alphabet, 24

RATEG, 108

reachability analysis, 13

reachability problem, 44

recognised language, 32

reduction automata, 110

regular model-checking, 13

regular tree language, 33

Rewrite LTL: R-LTL, 62

rewrite proposition, 58

rewrite relation, 28

rewrite rule, 28

rewrite systems, 27

rewrite words, maximal, 56

rewriting logic, 43

right-linear rewrite rule, 28

rigid constraints, 113

rigid tree automata, 113

RMC, 13

root, 26

RTA, 113

rule application constraint: Ψα(·), 132

rules compatibility constraint: Ω∆, 132

run (BUTA), 33

run (TWA), 146

RXPathW, 159

S
SA, 155

SAT problem, 129

SAT solvers, 13, 129

satisfaction of the specification ϕ: R,Π |= ϕ, 58

schema, 18

semi-Thue systems, 29

set of positions, 25

set of signatures: Σ, 63

shift left, weak – signatures, 78

shift right, weak and strong – signatures, 67

signature “at” operator: σ[k], 63

signature of ϕ: ξ(ϕ), 62

signature product: σ�σ ′, 66

signature strengthening, 77

signature, compact: *f | S+, 63

signature, in extenso: Pf1 . . . f #σ # fω | SQ, 63

signature: core, support, domain, notations, 63

signatures, set of, 63

signatures: equivalence, extensional, 70

signatures: iteration from Π, 77

signatures: left shift, weak, 78

signatures: right shifts, weak and strong, 67

signatures: sequence divergence, 69

signatures: sequence limit, 69

similarity classes of t: St, 123

similarity relation: ∼, 123

simple here-loops: Hτσ, 169

size of an automaton A: ‖A‖, 38

size of tree t: ‖t‖, 26

stable signature, 80

stepwise automaton, 155

strengthening of σ: ?σ, 77

strong m-right shift of σ: σ Im, 67

strong next operator: •m, 57

strongly normalising, 29

structural glue: Ω�, 133

substitution, 28

substitution: {X 7→ v }ϕ, ϕ[v/X], 24

subterm, subtree, 26

subtree replacement: t[u]α, 28

successful run, 33

suffix of w, of rank m: wm, 56

support of signature σ: ∇σ, 63

symbolic model-checking, 12

T
TA, 31

TA1M, 193

TABB, 109

TAGC, 112

TAGD, 36

TAGE, 36

TAGED, 35

TAGErD, 113

TAGrD, 113

TALEDC, 108

TAM, 193

TAPLEDC, 109

TC, 154

temporal logics, 11

term, 24

term rewriting systems, 27

terminating rewrite system, 29

togetherness wrt. P: �P , 123

top-down finite tree automata, 33

total function, 23

transitions rooted in σ.: ∆σ, 132

translation blocks, 73

translation rules, 73

translations: exact, under-, and over-approximated, 59

tree, 25

tree automata completion, 46

tree automata with equality and disequality constrain-
ts between brothers, 109

tree automata with global constraints, 112

tree automata with global equality and disequality con-
straints, 35

228 INDEX

tree automata with local equality and disequality con-
straints, 108

tree automata with one memory, 193

tree automata with propositional local equality and dis-
equality constraints, 109

tree currying, 154

tree loop, 167

tree regular model-checking, 16

tree structure, 25

tree-local tree languages, 161

tree-walking automata, 144

tree-walking pebble automata, 196

TRMC, 16

TRS, 27

TWA, 144

TWA “son” types: S, 145

TWA get move from type: χ(·), 145

TWA moves: M , 145

TWA node types: T, 145

TWA type of α: tyα, 145

two-way automata, 144

TWPA, 196

U
under-approximated rule, 73

under-approximated translation, 59

underlying automaton: ta(A), 35

unranked tree, 149

unranked tree automata with C, 150

up-closure of loops L: Uτσ[L], 173

UTA/C, 150

V
valuation, 129

variable “u rooted in α”: Sαu , 134

variable “u ∈ Lq(A)”: Tuq , 133

variable: (α,q) ∈ ρ: Xαq , 131

variables of a term: V(t), 28

vbTAGED, 112

verification, 10

vertically bounded TAGED, 112

visibly rigid tree automata, 114

visibly tree automata with memory, 195

VRTA, 114

VTAM, 195

VTAMSB, 195

W
weak m-left shift of σ: σ Cm, 78

weak m-right shift of σ: σ Bm, 67

weak next operator: ◦m, 57

well-structured transition systems, 16

WMSO, 153

word length, finite or infinite, 56

word rewriting systems, 29

words constrained by σ, of length m: LΠ #σM#
m, 63

words constrained by σ: LΠ #σM, 63

words on R, finite or infinite: W, 56

WS1S, 34

WSkS, 34

WSTS, 16

INDEX 229

Version of the document: 69268,
dated 2014-08-01 14:58:25+02:00 ,
compiled on August 1, 2014.

Abstract:

Tree automata, and their applications to verification, form the common thread of this thesis. In the first
part, we define a complete model-checking framework; the general problem which we solve is to verify that
a given term rewriting system – encoding some program, circuit, protocol, or more generally any system of
interest – satisfies a given specification expressed in linear temporal logic, dictating the order in which the
transitions of the system may occur. Our methods are closely related to reachability analysis techniques. In a
first step, translation rules supporting a fragment of LTL sufficiently expressive to describe common security
properties reformulate the verification problem into an equivalent expression of propositional logic whose atoms
are comparisons of languages obtained through rewriting; we call such a formula a rewrite proposition. In the
second step, the rewrite proposition is given a concrete representation in terms of tree automata with or without
constraints. Since the general problem is undecidable, these representations are sometimes approximations, for
which we use constructions studied for reachability analysis; the end result is a set of semi-decision procedures
for the general problem. The second part focuses on an important aspect of the automata involved: constraints.
We study their role in the complexity of several decision problems, in particular when bounding the number
of constraints. Finally, we also study the very different variety of tree-walking automata, which have tight
connections with navigational languages on semi-structured documents. We improve their conversion into
branching models, and develop an efficient and accurate semi-decision procedure for emptiness testing.

Keywords: Tree automata, constraints, approximations, semi-decision procedures, tree model-checking

Résumé :

Les automates d’arbres et leurs applications à la vérification forment le tronc commun de cette thèse. Dans sa première
partie, nous définissons une plate-forme de model-checking complète; le problème général que nous résolvons est de
vérifier qu’un système de réécriture – codant quelque programme, circuit, protocole, ou tout autre système à vérifier –
suit une spécification donnée, exprimée en logique temporelle linéaire, imposant l’ordre dans lequel les transitions du
système doivent s’enchaı̂ner. Nos méthodes se rapprochent fortement des techniques d’analyse d’accessibilité. Dans
une première étape, des règles de traduction supportant un fragment de LTL assez expressif pour décrire des propriétés
de sécurité usuelles reformulent le problème de vérification en une expression de logique propositionnelle dont les
atomes sont des comparaisons de langages obtenus par réécriture; nous appelons une telle formule une proposition de
réécriture. La deuxième étape consiste à donner à cette proposition de réécriture une représentation concrète en termes
d’automates d’arbres avec et sans contraintes. Étant donné que le problème général est indécidable, ces représentations
sont occasionnellement approximées, ce pour quoi nous utilisons des constructions étudiées pour l’analyse d’accessibilité;
le résultat final est un ensemble de procédures de semi-décision pour le problème général. La seconde partie se
penche sur un aspect important des automates que nous utilisons: leurs contraintes. Nous étudions leur contribution à
la complexité de plusieurs problèmes de décision, en particulier lorsque le nombre de contraintes est borné. Finalement,
nous étudions également les automates d’arbres cheminants, une variété très différente, dont les connexions aux langages
de navigation sur les documents semi-structurés sont fortes. Nous améliorons leur conversion en automates parallèles, et
nous développons une procédure de semi-décision de leur vacuité, à la fois efficace et précise.

Mots-clés : Automates d’arbres, contraintes, approximations, semi-décision, vérification de modèles à arbres

