Tree Automata, Approximations, and Constraints for Verification

Ph.D. thesis defence for Vincent Hugot, Supervised by O. Kouchnarenko and P.-C. Héam {pheam,vhugot,okouchna}@femto-st.fr

> University of Franche-Comté DGA & Inria/CASSIS & FEMTO-ST (DISC)

> > August 1, 2014

LTL Checking

Bounded TA

Other Works

ppendices

References

Model-Checking

Introduced in [Clarke and Emerson, 1981, Queille and Sifakis, 1982]

Check $M, s_0 \models \phi$: "do all executions of M starting in s_0 follow ϕ ?"

- M finite states/transitions model
- s₀ initial state
- ϕ $\;$ the specification, in temporal logic

Limited by state explosion. Prevented by parametrisation.

Preliminaries	
0000	

LTL Checking

Bounded TAGI

Other Works

ppendices

References

Regular Model-Checking

Introduced in [Kesten et al., 1997]

regular model-checking.

states $ ightarrow$	finite words
sets of states \rightarrow	finite-state automata
transitions $ ightarrow$	finite-state transducers, semi-Thue systems

$$\rightarrow \underbrace{q_0}^{b} \underbrace{a}_{q_1} \underbrace{q_2}^{a} \leftrightarrow \{aa, aba, abba, \ldots\}$$

Automata provide finite, tractable symbolic representations of **infinite sets** of states.

Preliminaries	
0000	

LTL Checking

Bounded TAGI

Other Works

Appendices

References

Regular Model-Checking

Introduced in [Kesten et al., 1997]

tree regular model-checking.

states $ ightarrow$	finite trees
sets of states \rightarrow	tree automata
transitions $ ightarrow$	tree transducers, term rewriting systems

$$\rightarrow \underbrace{q_0}^{b} \underbrace{a}_{q_1} \underbrace{a}_{q_2} \\ \leftrightarrow \quad \{aa, aba, abba, \ldots\}$$

Automata provide finite, tractable symbolic representations of **infinite sets** of states.

LTL Checking

Bounded TAGE

Other Works

ppendices

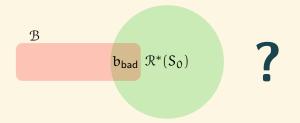
References

Reachability Analysis (in TRMC)

e.g. [Feuillade et al., 2004, Bouajjani and Touili, 2002]

- S₀ initial language
- \mathfrak{B} set of "bad" states
- \mathfrak{R} the transitions

tree automaton tree automaton rewrite system or transducer



- Preliminaries
- LTL Checking

Bounded TAGE

Other Works

ppendices

References

Reachability Analysis (in TRMC)

e.g. [Feuillade et al., 2004, Bouajjani and Touili, 2002]

- S₀ initial language
- **B** set of "bad" states
- \mathfrak{R} the transitions

tree automaton tree automaton rewrite system or transducer

• Regularity-preserving classes, context-free step,...

LTL Checking

Bounded TAGE

Other Works

ppendices

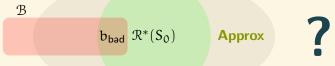
References

Reachability Analysis (in TRMC)

e.g. [Feuillade et al., 2004, Bouajjani and Touili, 2002]

- S_0 initial language
- ${\mathfrak B}$ set of "bad" states
- \mathfrak{R} the transitions

tree automaton tree automaton rewrite system or transducer



- Regularity-preserving classes, context-free step,...
- Regular over- or under-approximations.

LTL Checking

Bounded TAGE

Other Works

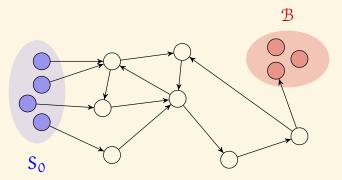
ppendices

References

Variations on Reachability Analysis

With Rewriting: e.g.

[Meseguer, 1992, Boyer and Genet, 2009, Courbis et al., 2009]



Reachability analysis = $\Box \neg \mathcal{B}$.

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 4/24

LTL Checking

Bounded TAGE

Other Works

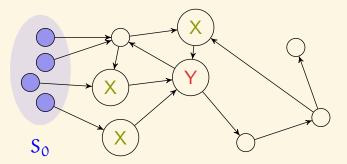
Appendices

References

Variations on Reachability Analysis

With Rewriting: e.g.

[Meseguer, 1992, Boyer and Genet, 2009, Courbis et al., 2009]



Reachability analysis = $\Box \neg \mathcal{B}$. More general: e.g. $\Box(X \Rightarrow \circ Y)$.

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 4/24

LTL Checking

Bounded TAG

Other Works

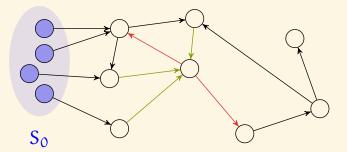
ppendices

References

Variations on Reachability Analysis

With Rewriting: e.g.

[Meseguer, 1992, Boyer and Genet, 2009, Courbis et al., 2009]



Reachability analysis = $\Box \neg \mathcal{B}$. More general: e.g. $\Box(X \Rightarrow \circ Y)$. Same on transitions: $\Box(\spadesuit \Rightarrow \circ \spadesuit)$.

Preliminaries 0000●	LTL Checking	Bounded TAGE	Other Works	Appendices	References

1 Model-Checking LTL on Rewrite Sequences

- Statement of the Central Problem
- Our Approach: An Overview

2 TAGE With a Bounded Number of Constraints

- Global Equality Constraints
- Overview of the Results

Other Works and Some Perspectives Results on SAT & Tree-Walking Automata

Perspectives and Questions

Preliminaries	LTL Checking ●0000 ○○○○○○	Bounded TAGE	Other Works	Appendices	References

1 Model-Checking LTL on Rewrite Sequences Statement of the Central Problem

Our Approach: An Overview

Global Equality Constraints

Overview of the Results

 Results on SAT & Tree-Walking Automata Perspectives and Questions

LTL Checking

Bounded TAC

Other Works

Appendices

References

Model-Checking Rewrite Sequences

[Meseguer, 1992]

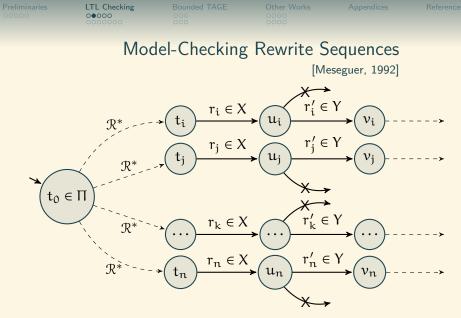
Order of application of rewrite rules.

Check $\mathfrak{R}, \Pi \models \phi$, with

- ${\mathfrak R}$ a term rewriting system (TRS)
- Π the initial (regular) tree language
- ϕ a linear temporal logic (LTL) formula

Example: $\varphi = \Box(X \Rightarrow \bullet Y)$

 $X,Y\subseteq \mathcal{R}$ are sets of rules



 $\varphi = \Box(X \Rightarrow \bullet Y)$

 LTL Checking
 Bounded TAGE

 ○●○○○
 ○○○

 ○○○○○○○○
 ○○○

Other Works

Appendices

References

Model-Checking Rewrite Sequences

[Meseguer, 1992]

Order of application of rewrite rules.

Check $\mathfrak{R}, \Pi \models \varphi$, with

- ${\mathfrak R}$ a term rewriting system (TRS)
- Π the initial (regular) tree language
- ϕ a linear temporal logic (LTL) formula

Example: $\varphi = \Box(X \Rightarrow \bullet Y)$

 $X, Y \subseteq \Re$ are sets of rules X ="ask PIN code" = { ask } Y ="authenticate or cancel" = { auth₁, auth₂, can }

					e	

LTL Checking

Bounded TAG

Other Works

Appendices

References

Model-Checking Rewrite Sequences

Overview of the Model-Checking Process

Whether $\mathfrak{R}, \Pi \models \varphi$ is **undecidable**.

Two-step positive approximated decision [Courbis et al., 2009]:

- π a rewrite proposition language equation
- δ_k TAGE-based approximated procedures
- TAGE tree automata with constraints: more precision

LTL Checking

Bounded TAG

Other Works

ppendices

References

Model-Checking Rewrite Sequences

Prior work [Courbis et al., 2009]

"The system ${\mathfrak R}$ satisfies the property"....

 $\mathcal{R},\Pi\models\ \Box(X\Rightarrow \bullet Y)$

... is equivalent to the rewrite proposition...

 $[\mathfrak{R} \setminus Y](X(\mathfrak{R}^*(\Pi))) = \varnothing \land X(\mathfrak{R}^*(\Pi)) \subseteq Y^{-1}(\mathfrak{T})$

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 7/24

LTL Checking

Bounded TAG

Other Works

ppendices

References

Model-Checking Rewrite Sequences

Prior work [Courbis et al., 2009]

"The system ${\mathfrak R}$ satisfies the property"....

 $\mathcal{R},\Pi\models\ \Box(X\Rightarrow \bullet Y)$

... is equivalent to the rewrite proposition...

 $[\mathfrak{R} \setminus Y](X(\mathfrak{R}^*(\Pi))) = \varnothing \land X(\mathfrak{R}^*(\Pi)) \subseteq Y^{-1}(\mathfrak{T})$

... approximated with TAGE by, assuming Y is left-linear,

$$\begin{split} & \texttt{IsEmpty}(\texttt{OneStep}(\mathcal{R} \setminus \mathsf{Y}, \texttt{Approx}(\mathcal{A}, \mathcal{R})), \mathsf{X}) \text{ and} \\ & \texttt{Subset}(\texttt{OneStep}(\mathsf{X}, \texttt{Approx}(\mathcal{A}, \mathcal{R})), \texttt{Backward}(\mathsf{Y})), \\ & \texttt{where } \mathcal{L}(\mathcal{A}) = \Pi, \ \mathcal{L}(\texttt{Approx}(\mathcal{A}, \mathcal{R})) \supseteq \mathcal{R}^*(\mathcal{L}(\mathcal{A})) \end{split}$$

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 7/24

LTL Checking

Bounded TAGE

Other Works

ppendices

References

Model-Checking Rewrite Sequences

Prior work [Courbis et al., 2009], and New Goals

 $[\mathcal{R} \setminus Y](X(\mathcal{R}^*(\Pi))) = \emptyset \land X(\mathcal{R}^*(\Pi)) \subseteq Y^{-1}(\mathcal{T})$ **2** $\mathcal{R}, \Pi \models \neg Y \land \Box (\bullet Y \Rightarrow X)$ $Y(\Pi) = \emptyset \land Y([\mathcal{R} \setminus X](\mathcal{R}^*(\Pi))) = \emptyset$ $Y(\mathcal{R}^*(X(\mathcal{R}^*(\Pi)))) = \emptyset$

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 8/24

LTL Checking

Bounded TAGE

Other Works

ppendices

References

Model-Checking Rewrite Sequences

Prior work [Courbis et al., 2009], and New Goals

Main goal: from **manual** to **automatic** translations.

Sub-goal: efficient procedures \implies TAGE complexity study.

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 8/24

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	References
	•000000				

1 Model-Checking LTL on Rewrite Sequences

- Statement of the Central Problem
- Our Approach: An Overview

 Global Equality Constraints Overview of the Results

 Results on SAT & Tree-Walking Automata Perspectives and Questions

reliminaries	LTL (
	0.000

LTL Checking	
000000	

Bounded TAG

Other Works

ppendices

References

Intuitions for the Translation

1 $\mathcal{R}, \Pi \models \neg X$:

"The first transition, if it occurs, is not by X"

 $\pi_1 \equiv X(\Pi) = \emptyset$

Preliminaries	

LTL Checking

Bounded TAG

Other Works

Appendices

References

Intuitions for the Translation

① ¬X:

"The first transition, if it occurs, is not by X"

$$\pi_1 \equiv X(\Pi) = \emptyset$$

2 X:

"There is a first transition, and it is by X"

 $\pi_2 \equiv [\mathfrak{R} \setminus X](\Pi) = \emptyset$?

Preliminaries	

LTL Checking

Bounded TAG

Other Works

Appendices

References

Intuitions for the Translation

① ¬X:

"The first transition, if it occurs, is not by X"

$$\pi_1 \equiv X(\Pi) = \emptyset$$

2 X:

"There is a first transition, and it is by X"

 $\pi_2 \equiv [\mathcal{R} \setminus X](\Pi) = \varnothing \land \Pi \subseteq X^{-1}(\mathcal{T})$

inaries ○	LTL Checking ○○○○ ○●○○○○○	Bounded TAGE	Other Works	Appendices	Re
• •	¬X:	Intuition	s for the Tr	anslation	
	"The fi	rst transition, if i	it occurs, is not	: by X"	
2)		$x_1 \equiv X(\Pi) = \emptyset$			
	"The	re is a first transi	tion, and it is b	у Х"	
3 [<i>τ</i> □¬X:	$\mathfrak{x}_2 \equiv [\mathfrak{R} \setminus \mathbf{X}](\Pi)$	$= \varnothing \land \Pi \subseteq I$	$X^{-1}(\mathfrak{T})$	
	"1	No transition that	t occurs is by λ	<" 	
	τ	$\mathfrak{a}_3 \equiv X(\mathfrak{R}^*(\Pi))$	$= \emptyset$		

Preliminaries	LTL Checki ○○○○ ○●○○○○○	ng	1	Bounded TAGE	Other Works	Appendices	References
0 - 2)		-		Intuitions f $X(\Pi) = \emptyset$ $[\mathcal{R} \setminus X](\Pi) = 1$			

"No transition that occurs is by X"

$$\pi_3 \equiv X(\mathcal{R}^*(\Pi)) = \varnothing \equiv \pi_1[\mathcal{R}^*(\Pi)/\Pi]$$

④ □X:

"All transitions that occur are by X"

Preliminaries	LTL Checking ○●○○○○	Bounded TAGE	Other Works	Appendices	References
		Intuitions	s for the Tr	ranslation	
0 -	x: π	$\Xi = X(\Pi) = \emptyset$			

$$\begin{aligned} \pi_1 &\equiv X(\Pi) = \varnothing \\ \pi_2 &\equiv [\mathcal{R} \setminus X](\Pi) = \varnothing \quad \land \ \Pi \subseteq X^{-1}(\mathcal{T}) \end{aligned}$$

"No transition that occurs is by X"

$$\pi_3 \equiv X(\mathfrak{R}^*(\Pi)) = \varnothing \equiv \pi_1[\mathfrak{R}^*(\Pi)/\Pi]$$

④ □X:

"All transitions that occur are by X"

$$\pi_4 \equiv \pi_2[\mathcal{R}^*(\Pi)/\Pi]$$

$$\equiv [\mathcal{R} \setminus X](\mathcal{R}^*(\Pi)) = \emptyset \land \mathcal{R}^*(\Pi) \subseteq X^{-1}(\mathcal{T})$$

?

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	References
		Intuitio	ns for the T	ranslation	
0 -	X: 7	$\tau_1 \equiv X(\Pi) = \emptyset$	y		

$$\pi_2 \equiv [\mathfrak{R} \setminus X](\Pi) = \varnothing \land \Pi \subseteq X^{-1}(\mathfrak{T}$$

"No transition that occurs is by X"

$$\pi_3 \equiv X(\mathcal{R}^*(\Pi)) = \varnothing \equiv \pi_1[\mathcal{R}^*(\Pi)/\Pi]$$

④ □ X:

2 X:
3 □ ¬X:

"All transitions that occur are by X"

$$\pi_{4} \equiv \pi_{2}[\mathcal{R}^{*}(\Pi)/\Pi]$$
$$\equiv [\mathcal{R} \setminus X](\mathcal{R}^{*}(\Pi)) = \emptyset \land \mathcal{R}^{*}(\Pi) \subseteq X^{-1}(\mathcal{T})$$
?
w-language! Too strong

Preliminarie			Bounded TAGE	Other Works 0000 0000	Appendices	References
	□ ¬X: ⊇ X: ⊇ □¬X:	•	Intuitions $X(\Pi) = \emptyset$ $[\mathcal{R} \setminus X](\Pi) =$	for the Tr = \emptyset ∧ Π⊆		
		"No ti	ransition that	occurs is by >	ζ"	

$$\pi_3 \equiv X(\mathcal{R}^*(\Pi)) = \varnothing \equiv \pi_1[\mathcal{R}^*(\Pi)/\Pi]$$

④ □ X:

"All transitions that occur are by X"

 $\pi_4 \equiv [\mathfrak{R} \setminus X](\mathfrak{R}^*(\Pi)) = \emptyset$

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	References
	00000				
	000000				

$$\varphi : \pi = "\mathcal{R}, \Pi \models \varphi$$
 is translated by π "
"for all executions, φ is satisfied"

 $\forall x. P(x) \land \forall x. Q(x) \iff \forall x. (P(x) \land Q(x))$

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	References
	00000				

 $\forall x. \mathsf{P}(x) \ \lor \ \forall x. Q(x) \implies \forall x. (\mathsf{P}(x) \ \lor \ Q(x))$

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	References
	00000				

•
$$\neg X$$
: $\pi_1 \equiv X(\Pi) = \emptyset$
• X : $\pi_2 \equiv [\mathcal{R} \setminus X](\Pi) = \emptyset \land \Pi \subseteq X^{-1}(\mathcal{T})$
• $\Box \neg X$: $\pi_3 \equiv X(\mathcal{R}^*(\Pi)) = \emptyset \equiv \pi_1[\mathcal{R}^*(\Pi)/\Pi]$
• $\Box X$: $\pi_4 \equiv [\mathcal{R} \setminus X](\mathcal{R}^*(\Pi)) = \emptyset$
• Conjunction: if $\varphi : \pi_5$ and $\psi : \pi'_5$ then $\varphi \land \psi : \pi_5 \land \pi'_5$.

$$\forall x.P(x) \land \forall x.Q(x) \iff \forall x.(P(x) \land Q(x))$$

6 Disjunction: $\pi_6 \vee \pi'_6 \implies \Re, \Pi \models \phi \lor \psi$

$$\forall x.P(x) \lor \forall x.Q(x) \implies \forall x.(P(x) \lor Q(x))$$

O Negation: $\Re, \Pi \not\models \phi \neq \Re, \Pi \models \neg \phi$: "NNF" required

$$\forall x. \neg P(x) \neq \neg \forall x. P(x)$$

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	Reference
	00000				

1	¬X:	$\pi_1 \equiv X(\Pi) = \emptyset$
2	X:	$\pi_2 \ \equiv \ [\mathcal{R} \setminus X](\Pi) = \varnothing \land \ \Pi \subseteq X^{-1}(\mathfrak{T})$
3	□ ¬X:	$\pi_3 \equiv X(\mathfrak{R}^*(\Pi)) = \varnothing \equiv \pi_1[\mathfrak{R}^*(\Pi)/\Pi]$
4	□X:	$\pi_4 \equiv [\mathfrak{R} \setminus X](\mathfrak{R}^*(\Pi)) = \varnothing$
6	Conjunctio	on: if $\varphi : \pi_5$ and $\psi : \pi'_5$ then $\varphi \land \psi : \pi_5 \land \pi'_5$.
6	Disjunctio	n : $\pi_6 \lor \pi'_6 \implies \mathfrak{R}, \Pi \models \varphi \lor \psi$
0	Negation:	$\mathfrak{R},\Pi \not\models \phi \ \neq \ \mathfrak{R},\Pi \models \neg \phi: \ \text{``NNF'' required}$
8	Implicatio	$n: X \Rightarrow \bullet Y:$

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	Reference
	00000				

 $\pi_1 \equiv X(\Pi) = \emptyset$ $\pi_2 \equiv [\mathcal{R} \setminus X](\Pi) = \emptyset \land \Pi \subseteq X^{-1}(\mathcal{T})$ **2** X: 3 □ ¬X: $\pi_3 \equiv X(\Re^*(\Pi)) = \emptyset \equiv \pi_1[\Re^*(\Pi)/\Pi]$ $\pi_4 \equiv [\mathcal{R} \setminus X](\mathcal{R}^*(\Pi)) = \emptyset$ **6 Conjunction:** if $\varphi : \pi_5$ and $\psi : \pi'_5$ then $\varphi \land \psi : \pi_5 \land \pi'_5$. **O** Disjunction: $\pi_6 \vee \pi'_6 \implies \Re, \Pi \models \varphi \vee \psi$ **O** Negation: $\Re, \Pi \not\models \varphi \neq \Re, \Pi \models \neg \varphi$: "NNF" required **3** Implication: $X \Rightarrow \bullet Y$: $\pi_7 \equiv [\mathcal{R} \setminus Y](X(\Pi)) = \emptyset \land X(\Pi) \subseteq Y^{-1}(\mathcal{T})$

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	Referenc
00000	00000				

1
$$\neg X$$
: $\pi_1 \equiv X(\Pi) = \emptyset$
2 X : $\pi_2 \equiv [\mathcal{R} \setminus X](\Pi) = \emptyset \land \Pi \subseteq X^{-1}(\mathcal{T})$
3 $\Box \neg X$: $\pi_3 \equiv X(\mathcal{R}^*(\Pi)) = \emptyset \equiv \pi_1[\mathcal{R}^*(\Pi)/\Pi]$
4 $\Box X$: $\pi_4 \equiv [\mathcal{R} \setminus X](\mathcal{R}^*(\Pi)) = \emptyset$
5 Conjunction: if $\varphi : \pi_5$ and $\psi : \pi_5'$ then $\varphi \land \psi : \pi_5 \land \pi_5'$
5 Disjunction: $\pi_6 \lor \pi_6' \Longrightarrow \mathcal{R}, \Pi \models \varphi \lor \psi$
6 Negation: $\mathcal{R}, \Pi \nvDash \varphi \neq \mathcal{R}, \Pi \models \neg \varphi : "NNF"$ required
5 Implication: $X \Rightarrow \bullet Y$:
 $\pi_7 \equiv [\mathcal{R} \setminus Y](X(\Pi)) = \emptyset \land X(\Pi) \subseteq Y^{-1}(\mathcal{T})$
 $X : \pi_2, Y : \pi_2' \equiv \pi_2[Y/X], \pi_7 \equiv \pi_2'[X(\Pi)/\Pi]$

Tree (Not Quite) Regular Model-Checking

 $\wedge \pi'_5$.

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	Referenc
00000	00000				

•
$$\neg X$$
: $\pi_1 \equiv X(\Pi) = \emptyset$
• $\neg X$: $\pi_2 \equiv [\mathcal{R} \setminus X](\Pi) = \emptyset \land \Pi \subseteq X^{-1}(\mathcal{T})$
• $\Box \neg X$: $\pi_3 \equiv X(\mathcal{R}^*(\Pi)) = \emptyset \equiv \pi_1[\mathcal{R}^*(\Pi)/\Pi]$
• $\Box X$: $\pi_4 \equiv [\mathcal{R} \setminus X](\mathcal{R}^*(\Pi)) = \emptyset$
• Conjunction: if $\varphi : \pi_5$ and $\psi : \pi'_5$ then $\varphi \land \psi : \pi_5 \land \pi'_5$.
• Disjunction: $\pi_6 \lor \pi'_6 \Longrightarrow \mathcal{R}, \Pi \models \varphi \lor \psi$
• Negation: $\mathcal{R}, \Pi \nvDash \varphi \neq \mathcal{R}, \Pi \models \neg \varphi$: "NNF" required
• Implication: $X \Rightarrow \bullet Y$:
 $\pi_7 \equiv [\mathcal{R} \setminus Y](X(\Pi)) = \emptyset \land X(\Pi) \subseteq Y^{-1}(\mathcal{T})$
 $X : \pi_2, Y : \pi'_2 \equiv \pi_2[Y/X], \pi_7 \equiv \pi'_2[X(\Pi)/\Pi]$

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	Referenc
00000	00000				

•
$$\neg X$$
: $\pi_1 \equiv X(\Pi) = \emptyset$
• X : $\pi_2 \equiv [\mathcal{R} \setminus X](\Pi) = \emptyset \land \Pi \subseteq X^{-1}(\mathcal{T})$
• $\Box \neg X$: $\pi_3 \equiv X(\mathcal{R}^*(\Pi)) = \emptyset \equiv \pi_1[\mathcal{R}^*(\Pi)/\Pi]$
• $\Box X$: $\pi_4 \equiv [\mathcal{R} \setminus X](\mathcal{R}^*(\Pi)) = \emptyset$
• Conjunction: if $\varphi : \pi_5$ and $\psi : \pi_5'$ then $\varphi \land \psi : \pi_5 \land \pi_5'$
• Disjunction: $\pi_6 \lor \pi_6' \Longrightarrow \mathcal{R}, \Pi \models \varphi \lor \psi$
• Negation: $\mathcal{R}, \Pi \nvDash \varphi \neq \mathcal{R}, \Pi \models \neg \varphi : "NNF"$ required
• Implication: $X \Rightarrow \bullet Y$:
 $\pi_7 \equiv [\mathcal{R} \setminus Y](X(\Pi)) = \emptyset \land X(\Pi) \subseteq Y^{-1}(\mathcal{T})$

 $X: \pi_2, Y: \pi'_2 \equiv \pi_2[Y/X], \pi_7 \equiv \pi'_2[X(\Pi)/\Pi]$

Tree (Not Quite) Regular Model-Checking

 (\mathfrak{T})

 $\wedge \pi'_5$.

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	Reference
	00000				
	000000				

① ¬X:	$\pi_1 \equiv X(\Pi) = \varnothing$
2 X:	$\pi_2 \ \equiv \ [\mathcal{R} \setminus X](\Pi) = \varnothing \ \land \ \Pi \subseteq X^{-1}(\mathcal{T})$
③ □¬X:	$\pi_3 \equiv X(\mathfrak{R}^*(\Pi)) = \varnothing \equiv \pi_1[\mathfrak{R}^*(\Pi)/\Pi]$
④ □X:	$\pi_4 \equiv [\mathcal{R} \setminus X](\mathcal{R}^*(\Pi)) = \emptyset$
Onjunct	ion: if $\varphi : \pi_5$ and $\psi : \pi'_5$ then $\varphi \land \psi : \pi_5 \land \pi'_5$.
O Disjuncti	on: $\pi_6 \lor \pi'_6 \implies \mathcal{R}, \Pi \models \phi \lor \psi$
O Negation	: $\mathcal{R}, \Pi \not\models \phi \neq \mathcal{R}, \Pi \models \neg \phi$: "NNF" required
Implication	on: $X \Rightarrow \bullet Y$:
$\pi_7 \equiv [\mathcal{R}]$	$\setminus Y](X(\Pi)) = \varnothing \land X(\Pi) \subseteq Y^{-1}(\mathfrak{T})$
X:π ₂ , Υ	$: \pi'_2 \equiv \pi_2[Y/X], \pi_7 \equiv \pi'_2[X(\Pi)/\Pi]$
$\Box(X \Rightarrow \bullet)$	$\mathbf{Y}): \pi_0 \equiv \pi_7[\mathfrak{R}^*(\Pi)/\Pi]$

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	Reference
	00000				

① ¬X:	$\pi_1 \equiv X(\Pi) = \emptyset$
2 X:	$\pi_2 \; \equiv \; [\mathcal{R} \setminus X](\Pi) = \varnothing \; \land \; \Pi \subseteq X^{-1}(\mathfrak{T})$
③ □¬X:	$\pi_3 \equiv X(\mathfrak{R}^*(\Pi)) = \varnothing \equiv \pi_1[\mathfrak{R}^*(\Pi)/\Pi]$
④ □ X:	$\pi_4 \equiv [\mathfrak{R} \setminus X](\mathfrak{R}^*(\Pi)) = \emptyset$
Onjunction	on: if $\varphi : \pi_5$ and $\psi : \pi'_5$ then $\varphi \wedge \psi : \pi_5 \wedge \pi'_5$.
O Disjunctio	$\mathbf{n}: \ \pi_6 \lor \pi_6' \implies \ \mathcal{R}, \Pi \models \varphi \lor \psi$
Ø Negation:	$\mathfrak{R},\Pi \not\models \phi \ \neq \ \mathfrak{R},\Pi \models \neg \phi : \ \text{``NNF'' required}$
Implication	n: $X \Rightarrow \bullet Y$:
$\pi_7 \equiv [\mathcal{R} \setminus$	$(\mathbf{Y})(\mathbf{X}(\Pi)) = \varnothing \land \mathbf{X}(\Pi) \subseteq \mathbf{Y}^{-1}(\mathfrak{T})$
$X:\pi_2, Y:$	$\pi'_2 \equiv \pi_2[Y/X], \pi_7 \equiv \pi'_2[X(\Pi)/\Pi]$
$\Box(X \Rightarrow \bullet Y)$	$(): \pi_0 \equiv \pi_7[\Re^*(\Pi)/\Pi]$
What abou	$t \bullet Y \Rightarrow X ?$

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	Reference
	00000				
	000000				

1	¬X:	$\pi_1 \equiv X(\Pi) = \emptyset$
2	X:	$\pi_2 \ \equiv \ [\mathcal{R} \setminus X](\Pi) = \varnothing \ \land \ \Pi \subseteq X^{-1}(\mathfrak{T})$
3	□ ¬X:	$\pi_3 \equiv X(\mathcal{R}^*(\Pi)) = \varnothing \equiv \pi_1[\mathcal{R}^*(\Pi)/\Pi]$
4	□ X:	$\pi_4 \equiv [\mathfrak{R} \setminus X](\mathfrak{R}^*(\Pi)) = \emptyset$
6	Conjunctio	on: if $\varphi : \pi_5$ and $\psi : \pi'_5$ then $\varphi \land \psi : \pi_5 \land \pi'_5$.
6	Disjunction	$\mathbf{n}: \ \pi_6 \lor \pi_6' \implies \ \mathcal{R}, \Pi \models \varphi \lor \psi$
0	Negation:	$\mathfrak{R},\Pi \not\models \phi \ \neq \ \mathfrak{R},\Pi \models \neg \phi : \text{``NNF'' required}$
8	Implication	
	$\pi_7 \equiv [\mathcal{R} \setminus$	$Y](X(\Pi)) = \emptyset \land X(\Pi) \subseteq Y^{-1}(\mathfrak{T})$
	$X:\pi_2, Y:\pi_2$	$\pi'_{2} \equiv \pi_{2}[Y/X], \pi_{7} \equiv \pi'_{2}[X(\Pi)/\Pi]$
	$\Box(X \Rightarrow \bullet Y)$	$\dot{\pi}_0 \equiv \pi_7 [\Re^*(\Pi)/\Pi]$
	, ,	$t \bullet Y \Rightarrow X$? Other techniques (signatures,)
		$r \rightarrow r \rightarrow r$. Other teeningues (signatures,)

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	Reference
00000	00000				

Translation Rules, by Examples

A dozen rules, e.g. conjunction:

$$\uparrow \frac{\langle \Pi \, \mathring{}\, \sigma \, \Vdash \, \phi \wedge \psi \rangle}{\langle \Pi \, \mathring{}\, \sigma \, \Vdash \, \phi \rangle \, \wedge \, \langle \Pi \, \mathring{}\, \sigma \, \Vdash \, \psi \rangle}$$

always (simplest case):

$$\uparrow \frac{\langle \Pi \, \mathring{s} \, \varepsilon \Vdash \Box \, \varphi \rangle}{\langle \mathcal{R}^*(\Pi) \, \mathring{s} \star \varepsilon \Vdash \varphi \rangle}$$

positive literal:

$$\begin{split} & \updownarrow \frac{\langle \Pi \ ; \ \sigma \ \Vdash \ X \rangle}{\Pi_{\sigma \setminus X}^{\hbar(\sigma \setminus X)} = \varnothing} \xrightarrow[\hbar(\sigma \setminus X)]{} \frac{\langle \Pi \ ; \ \sigma \ \mid X \rangle}{ \pi_{\sigma \setminus X}^{\hbar(\sigma \setminus X)} = \varnothing} \xrightarrow[\kappa \in \nabla \sigma, k=0]{} \frac{ \hbar(\sigma \setminus X) = \varepsilon}{ \pi_{\sigma \setminus X}^{\hbar(\sigma \setminus X)} = \varnothing}$$

Derivation tree: automatic translation and proof

Optional global **optimisation** phase: $\mathcal{R}^{-1}(\mathcal{T}) \to Y^{-1}(\mathcal{T})$.

Translatable Fragment

Exactly rewrite-translatable fragment:

$$\begin{split} & X \in \wp(\mathcal{R}), \ m \in \mathbb{N} \\ & \varphi := \top \mid \bot \mid X \mid \neg X \mid \varphi \land \varphi \mid \psi \Rightarrow \varphi \mid \bullet \varphi \mid \circ \varphi \mid \Box \varphi \\ & \psi := \top \mid \bot \mid X \mid \neg X \mid \psi \lor \psi \mid \psi \land \psi \mid \bullet \psi \mid \circ \psi \mid \Phi \\ & \Phi := \mathsf{at least } \varepsilon \mathsf{-stabilisable } \Box \varphi \end{split}$$

Practical pre-experimental evaluation: good partial support of [Dwyer et al., 1999] patterns.

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	References
	0000000				

LTL on Rewrite Sequences

Perspectives (Translation Into Rewrite Proposition)

• [Héam et al., 2012a] Int. Conf. IJCAR'12, Manchester

- Extensions: Past-Time and Existential LTL
- Dealing with eventuality by studying "exhaustion":
 e.g. ◊ ¬{f(x) → x} holds with bounded f-height & no intro

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	References
	00000 000000				

LTL on Rewrite Sequences

Perspectives (Approximated Decision Procedures)

• Coping with more **non-linearity** – e.g. protocols, rewrite steps e.g. $f(x, x) \rightarrow g(x)$, $f(x) \rightarrow g(x, x)$,...

Tractable algorithmic toolbox for TAGE

Last points \Rightarrow closer study of **TAGE complexity**

Preliminaries	LTL Checking 00000 0000000	Bounded TAGE ●00 ○○○	Other Works	Appendices	References

Model-Checking LTL on Rewrite Sequences

- Statement of the Central Problem
- Our Approach: An Overview

TAGE With a Bounded Number of Constraints Global Equality Constraints

Overview of the Results

Other Works and Some Perspectives Results on SAT & Tree-Walking Automata Perspectives and Questions

minaries LTL Checking

Bounded TAGE

Other Works

pendices

References

Tree Automata

With Global Equality Constraints [Filiot et al., 2008]

TAGE, TA⁼, Positive TAGED, $\mathcal{A} = \langle \mathbb{A}, Q, F, \Delta, \cong \rangle$:

$\langle \mathbb{A}, \mathbf{Q}, F, \Delta \rangle$	vanilla tree automaton $ta(\mathcal{A})$
\approx	equality constraints , $\cong \subseteq Q^2$

Constraint $\mathbf{p} \cong \mathbf{q}$:

run ρ of A on t:

• run of $ta(\mathcal{A})$ on t

• satisfying \cong : $\forall \alpha, \beta \in \mathcal{P}(t); \ \rho(\alpha) \cong \rho(\beta) \Rightarrow t|_{\alpha} = t|_{\beta}$ accepting run: accepting for $ta(\mathcal{A})$

aries LTL Checking

Bounded TAGE

Other Works

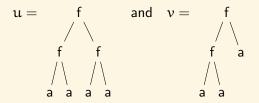
ppendices

References

Tree Automata

With Global Equality Constraints [Filiot et al., 2008]

$$\begin{split} \mathbb{A} &= \{ \, \mathfrak{a}/_0, \mathfrak{f}/_2 \, \}, \; Q = \{ \, q, \hat{q}, q_{\mathfrak{f}} \, \}, \; \mathsf{F} = \{ \, q_{\mathfrak{f}} \}, \; \hat{q} \cong \hat{q}, \; \mathsf{and} \\ \\ \Delta &= \{ \, \mathfrak{f}(\hat{q}, \hat{q}) \to q_{\mathfrak{f}}, \; \mathfrak{f}(q, q) \to q, \; \mathfrak{f}(q, q) \to \hat{q}, \; \mathfrak{a} \to q, \; \mathfrak{a} \to \hat{q} \, \} \end{split}$$



naries LTL Checking

Bounded TAGE

Other Works

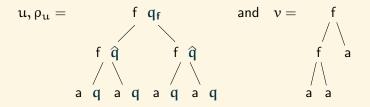
opendices

References

Tree Automata

With Global Equality Constraints [Filiot et al., 2008]

$$\begin{split} \mathbb{A} &= \{ \, \alpha/_0, f/_2 \, \}, \; Q = \{ \, q, \hat{q}, q_f \, \}, \; \mathsf{F} = \{ \, q_f \, \}, \; \hat{q} \cong \hat{q}, \; \text{and} \\ \Delta &= \{ \, f(\hat{q}, \hat{q}) \to q_f, \; f(q, q) \to q, \; f(q, q) \to \hat{q}, \; \alpha \to q, \; \alpha \to \hat{q} \, \} \end{split}$$



haries LTL Checking

Bounded TAGE

Other Works

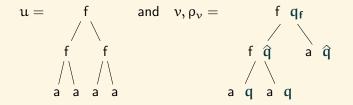
Appendices

References

Tree Automata

With Global Equality Constraints [Filiot et al., 2008]

$$\begin{split} \mathbb{A} &= \{ \, \alpha/_0, f/_2 \, \}, \; Q = \{ \, q, \hat{q}, q_f \, \}, \; \mathsf{F} = \{ \, q_f \, \}, \; \hat{q} \cong \hat{q}, \; \text{and} \\ \Delta &= \{ \, f(\hat{q}, \hat{q}) \to q_f, \; f(q, q) \to q, \; f(q, q) \to \hat{q}, \; \alpha \to q, \; \alpha \to \hat{q} \, \} \end{split}$$



Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	References
		•00			

Model-Checking LTL on Rewrite Sequences

- Statement of the Central Problem
- Our Approach: An Overview

TAGE With a Bounded Number of Constraints
 Global Equality Constraints

Overview of the Results

Other Works and Some Perspectives
 Results on SAT & Tree-Walking Automata
 Perspectives and Questions

Bounded TAGE 000 $TA^{=}$ versus $TA^{=}_{\nu}$

Restriction on the kind of constraints: Rigid Automata (RTA)

- Same expressive power as TA⁼
- Less compact representations
- Linear emptiness / finiteness tests, vs. EXPTIME-complete
- Applications: [Jacquemard et al., 2009, Vacher, 2010]

What of the **number** of constraints? $TA_k^= \mathcal{A} = \langle \Sigma, Q, F, \Delta, \cong \rangle$:

 $\begin{array}{ll} \langle \Sigma, Q, F, \Delta, \cong \rangle & \quad \mathsf{TA}^= \ \mathcal{A} \\ \cong & \quad \mathsf{such that } \mathsf{Card}(\cong) \leqslant k \end{array}$

Bounded TAGE

Other Works

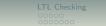
Appendices

References

Summary of Results

• [Héam et al., 2012c] Int. Conf. CIAA'12, Porto

- Strict hierarchy of powers: $\mathcal{L}(TA_k^{=}) \subset \mathcal{L}(TA_{k+1}^{=})$
- Emptiness linear for TA⁼₁, ExpTime-complete TA⁼₂
- Finiteness polynomial for TA⁼₁, ExpTime-complete for TA⁼₂
- NP-complete membership becomes polynomial if k fixed.



Bounded TAGE

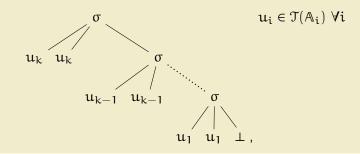
Other Works

ppendices

References

Summary of Results

- [Héam et al., 2012c] Int. Conf. CIAA'12, Porto
- Strict hierarchy of powers: $\mathcal{L}(TA_k^{=}) \subset \mathcal{L}(TA_{k+1}^{=})$



- Emptiness linear for TA⁼₁, ExpTime-complete TA⁼₂
- Finiteness polynomial for TA₁⁼, ExpTime-complete for TA₂⁼
- NP-complete membership becomes polynomial if k fixed.

LTL Checking

Bounded TAGE

Other Works

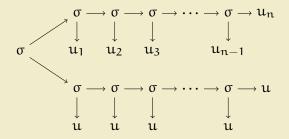
ppendices

References

Summary of Results

• [Héam et al., 2012c] Int. Conf. CIAA'12, Porto

- Strict hierarchy of powers: $\mathcal{L}(\mathsf{TA}_k^=) \subset \mathcal{L}(\mathsf{TA}_{k+1}^=)$
- Emptiness linear for TA₁⁼, ExpTime-complete TA₂⁼



- Finiteness polynomial for $TA_1^=$, ExpTime-complete for $TA_2^=$
- NP-complete membership becomes polynomial if k fixed.

Checking

Bounded TAGE

Other Works

ppendices

References

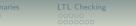
Summary of Results

• [Héam et al., 2012c] Int. Conf. CIAA'12, Porto

- Strict hierarchy of powers: $\mathcal{L}(TA_k^{=}) \subset \mathcal{L}(TA_{k+1}^{=})$
- Emptiness linear for TA₁⁼, ExpTime-complete TA₂⁼
- Finiteness polynomial for TA⁼₁, ExpTime-complete for TA⁼₂

Reduction of emptiness to finiteness.

• NP-complete membership becomes polynomial if k fixed.



Bounded TAGE

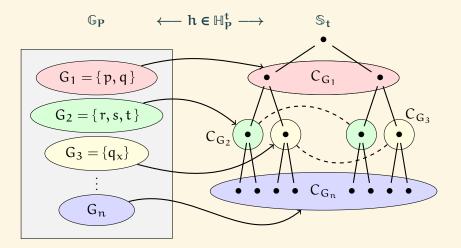
Other Works

ppendices

References

Summary of Results

• NP-complete membership becomes polynomial if k fixed.



Preliminaries	LTL Checking	Bounded TAGE	Other Works ●000 ○000	Appendices	References

Model-Checking LTL on Rewrite Sequences

- Statement of the Central Problem
- Our Approach: An Overview

2 TAGE With a Bounded Number of Constraints
 • Global Equality Constraints
 • Our give of the Decults

Overview of the Results

Other Works and Some Perspectives
 Results on SAT & Tree-Walking Automata
 Perspectives and Questions

P			13	e	

LTL Checking

Bounded TAG

Other Works

References

TAGE SAT & Tree-Walking Overloops

- [Héam et al., 2010] Int. Workshop CSTVA'10, Paris
- [Héam et al., 2011] Int. Conf. CIAA'11, Blois
- [Héam et al., 2012b] Int. Journal Theo. Comp. Sci.
- SAT Encoding for TAGE membership & optimisations.
- Formal treatment of tree-walking **loops** for transformation into bottom-up TA; revealed missing factor in space $\Sigma \times \mathbb{T} \times 2^{Q^2}$.
- Introduced tree-walking overloops: restores $\mathbb{T}\times 2^{Q^2}$, smaller automata in practice in extensive random tests.
- Shown overloops **upper-bound** is $|\mathbb{T}| \cdot 2^{|Q| \log_2(|Q|+1)}$ in the deterministic case. Note that exponential is unavoidable.
- Polynomial overloops-based **approximation** to TWA emptiness, vs. EXPTIME-c. Very precise in random tests.

LTL Checking

Bounded TAG

Other Works

ppendices

References

Polynomial Approximation for Emptiness Random tests

- Ad-hoc scheme: $\approx 20\,000$ TWA, $2 \le |Q| \le 20$, $|\Delta| \approx 3 \times |Q|$, 75% of empty languages, only two *Unknown* instead of *Empty*.
- **② Uniform** scheme [Héam et al., 2009], REGAL back-end for FSA generation [Bassino et al., 2007]. 2000 deterministic and complete TWA uniformly generated for each $2 \leq |Q| \leq 25$.

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 20/24

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	Refere
			0000		

Polynomial Approximation for Emptiness Random tests

Preliminaries

CTL Checking

Bounded TAG

Other Works

pendices

References

Size Comparison: Loops vs. Overloops One Example & Uniform Generation Scheme

For \mathfrak{X} : loops $||\mathfrak{B}_1|| = 1986$; overloops $||\mathfrak{B}_0|| = 95$; deterministic minimal $||\mathfrak{B}_m|| = 56$; smallest known non-deterministic $||\mathfrak{B}_s|| = 34$. Loops **60 times** worse than manual optimal; overloops **3 times**.

Orthogonal to **post-processing** cleanup: $||\mathcal{B}'_1|| = 1617$, $||\mathcal{B}'_0|| = 78$.

$$\frac{\|\mathcal{B}_{l}\|}{\|\mathcal{B}_{o}\|} \approx 20.9 \quad \text{and} \quad \frac{\|\mathcal{B}_{l}'\|}{\|\mathcal{B}_{o}'\|} \approx 20.7 \quad \text{and} \quad \frac{\|\mathcal{B}_{l}\|}{\|\mathcal{B}_{l}'\|} \approx \frac{\|\mathcal{B}_{o}\|}{\|\mathcal{B}_{o}'\|} \approx 1.2 \; .$$

Preliminaries

LTL Checking

ounded TAGE

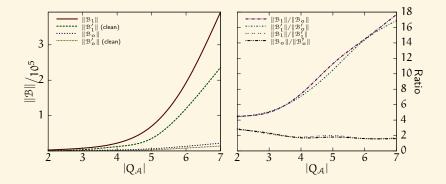
Other Works

ppendices

References

Size Comparison: Loops vs. Overloops

One Example & Uniform Generation Scheme



Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	References
			0000 0000		

Model-Checking LTL on Rewrite Sequences

- Statement of the Central Problem
- Our Approach: An Overview

2 TAGE With a Bounded Number of Constraints
 • Global Equality Constraints
 • Overview of the Results

Overview of the Results

Other Works and Some Perspectives
 Results on SAT & Tree-Walking Automata

Perspectives and Questions

Conclusion / Summary

Generalisation of the translation

$$\begin{array}{c} \mathcal{R} \\ \hline \mathcal{P} \\ \hline \mathcal{P}$$

Study of complexity of bounded global constraints

Improved loops-based methods for tree-walking automata

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 22/24

Preliminaries	LTL Checking 00000 0000000	Bounded TAGE	Other Works ○○○ ○○●○	Appendices	References
			Per	spectives	

Full TAGE may not be required for $X(\Pi)$; flat constraints ensure polynomial emptiness decision; are they enough?

Implemented algorithmic toolbox for these automata.

Rewrite propositions go beyond LTL (e.g. \exists -LTL). What is their **full expressive power**?

Intermix state and transition-based properties.

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 23/24

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	Reference
00000					
			0000		

Questions ?

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 24/24

Preliminaries	l

LTL Checking

Bounded TAGE

Other Works

Appendices

References

Supported Fragment, In Practice

Partially Supported Patterns From [Dwyer et al., 1999]

			Scope			
Pattern	Global	Before	After	Between	Until	Support
Absence	41	5	12	18	9	48%
Universality	110	1	5	2	1	96%
Existence	12	1	4	8	1	0%
Bound Exist.	0	0	0	1	0	0%
Response	241	1	3	0	0	99%
Precedence	25	0	1	0	0	96%
Resp. Chain	8	0	0	0	0	0%
Prec. Chain	1	0	0	0	0	0%
Support	95%	0%	32%	0%	0%	83%

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 25/24

Preliminaries

LTL Checking

Bounded TAG 000 000 Other Works

Appendices

References

Formal Tools for Verification

Reliable Software

Software failure is undesirable...

Ariane 5, Therac-25, Mariner I, Phobos I, XA/21 USA & Canada Northeast 2003 blackout, MIM-104 Patriot anti-missile, Mars Climate Orbiter, Mars Polar Lander, Mars Global Surveyor space probes,...

... hence the need for **formal verification** methods.

E.G. With Hoare logic, correctness is a mathematical theorem.

Precondition, code, post-condition: $\{ \top \} x := y \{ x = y \}.$

Manual proofs require mathematical ingenuity. Automation?

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 26/24

LTL Checking

Bounded TAC

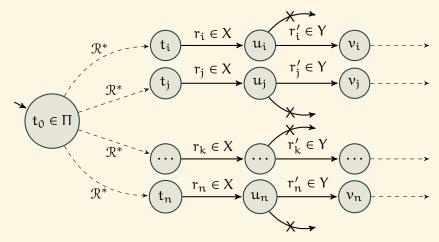
Other Works

Appendices

References

Model-Checking Rewrite Sequences

Coding the Behaviour of the System: $\Box(X \Rightarrow \bullet Y)$



Preliminaries	Ľ

LTL Checking

Bounded TAG

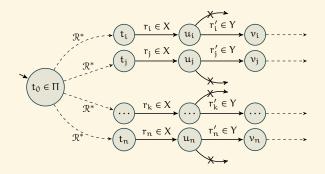
Other Works

Appendices

References

Maximal Rewrite Words

Coding the Behaviour of the System



Executions may or may not terminate: finite and infinite words.

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	Reference
00000					

Maximal Rewrite Words

Coding the Behaviour of the System

Finite or infinite words on \mathcal{R} :

$$\overline{\mathbb{N}} = \mathbb{N} \cup \{+\infty\} \qquad \mathcal{W} = \bigcup_{n \in \overline{\mathbb{N}}} \big(\llbracket 1, n \rrbracket \to \mathcal{R} \big)$$

Notation: **length** $\#w \in \overline{\mathbb{N}}$: #w = Card(dom w).

Maximal rewrite words of \mathcal{R} , originating in Π :

 (Π) is the set of words $w \in W$ such that

$$\exists \mathfrak{u}_0 \in \Pi : \exists \mathfrak{u}_1, \dots, \mathfrak{u}_{\#w} \in \mathfrak{T} : \forall k \in \operatorname{dom} w, \\ \mathfrak{u}_{k-1} \xrightarrow{w(k)} \mathfrak{u}_k \land \#w \in \mathbb{N} \Rightarrow \mathfrak{R}(\{\mathfrak{u}_{\#w}\}) = \emptyset$$

reliminaries	Ľ

Bounded TAGE

Other Works

Appendices

References

Syntax and Semantics for LTL

Close to Finite-LTL [Manna and Pnueli, 1995]

$$\begin{split} \varphi &\coloneqq X \mid \neg \varphi \mid \varphi \land \varphi \mid \bullet^{\mathfrak{m}} \varphi \mid \circ^{\mathfrak{m}} \varphi \mid \varphi \; \mathsf{U} \; \varphi & X \in \varphi(\mathfrak{R}) \\ & \top \mid \bot \mid \varphi \lor \varphi \mid \varphi \Rightarrow \varphi \mid \Diamond \varphi \mid \Box \; \varphi & \mathfrak{m} \in \mathbb{N} \; . \end{split}$$

$$\begin{array}{lll} (w,i) \models X & \Leftrightarrow & i \in \operatorname{dom} w \text{ and } w(i) \in X \\ (w,i) \models \neg \phi & \Leftrightarrow & (w,i) \not\models \phi \\ (w,i) \models (\phi \land \psi) & \Leftrightarrow & (w,i) \models \phi \text{ and } (w,i) \models \psi \\ (w,i) \models \bullet^m \phi & \Leftrightarrow & i + m \in \operatorname{dom} w \text{ and } (w,i + m) \models \phi \\ (w,i) \models \circ^m \phi & \Leftrightarrow & i + m \notin \operatorname{dom} w \text{ or } (w,i + m) \models \phi \\ (w,i) \models \phi \mathsf{U} \psi & \Leftrightarrow & \left\{ \begin{array}{l} \exists j \in \operatorname{dom} w : j \geqslant i \land (w,j) \models \psi \\ \land \forall k \in \llbracket i, j - 1 \rrbracket, \ (w,k) \models \phi \end{array} \right.$$

For any $w \in W$, $i \in \mathbb{N}_1$, $m \in \mathbb{N}$ and $X \in \rho(\mathcal{R})$.

reliminaries	LTL

B<mark>ounded TAGE</mark> 000 000 Other Works

Appendices

References

Syntax and Semantics for LTL

Close to Finite-LTL [Manna and Pnueli, 1995]

$$\begin{split} \varphi &\coloneqq X \mid \neg \varphi \mid \varphi \land \varphi \mid \bullet^{\mathfrak{m}} \varphi \mid \circ^{\mathfrak{m}} \varphi \mid \varphi \; \mathsf{U} \; \varphi & X \in \varphi(\mathfrak{R}) \\ & \top \mid \bot \mid \varphi \lor \varphi \mid \varphi \Rightarrow \varphi \mid \Diamond \varphi \mid \Box \; \varphi & \mathfrak{m} \in \mathbb{N} \; . \end{split}$$

For any $w \in W$, $i \in \mathbb{N}_1$, $m \in \mathbb{N}$ and $X \in p(\mathcal{R})$.

P			ari	ies

Bounded TAGE

Other Works

Appendices

References

Syntax and Semantics for LTL

Close to Finite-LTL [Manna and Pnueli, 1995]

For any $w \in W$, $i \in \mathbb{N}_1$, $m \in \mathbb{N}$ and $X \in \rho(\mathcal{R})$.

Satisfaction:

•
$$w \models \phi \iff (w, 1) \models \phi$$

• $\Re, \Pi \models \varphi \iff \forall w \in (\Pi), w \models \varphi$

Preliminaries

LTL Checking

Bounded TAGE

Other Works

Appendices

References

Rewrite Propositions

Problem Statement: First Translation Step

Rewrite proposition π on \Re , from Π ; has a trivial truth value

 $\begin{aligned} \pi &:= \gamma \mid \gamma \land \gamma \mid \gamma \lor \gamma \qquad \gamma := \ell = \varnothing \mid \ell \subseteq \ell \\ X \in \wp(\mathcal{R}) \qquad \qquad \ell &:= \Pi \mid \Im \mid X(\ell) \mid X^{-1}(\ell) \mid X^*(\ell) \end{aligned}$

Problem statement: translations into RP

Input: \Re , $\varphi \in LTL$, $\Pi \subseteq \Im$ **Output:** RP π such that: $\Re, \Pi \models \varphi \iff \pi$ (exact translation) $\Re, \Pi \models \varphi \iff \pi$ (under-approximated translation) $\Re, \Pi \models \varphi \implies \pi$ (over-approximated translation)

Preliminaries	LTL Checking	Bounded TAGE	Ot

Other Works

Appendices

References

Intuitions for the Translation

Boundaries of the Translatable Fragment

 $\mathcal{R}^*(\Pi)$ hides **traces**: $\Diamond X$ probably untranslatable. So are { \Diamond , **U**, **W**, **R**,...}.

Formulæ in sanitised form: negation on literals. Not exactly NNF.

$$(A \lor B) \Rightarrow C$$
 $(A \Rightarrow C) \land (B \Rightarrow C)$ $(\neg A \land \neg B) \lor C$

Preprocessing to fit translatable "antecedent/consequent" form.

eliminaries	LTL Checking

Bounded TAGE

Other Works

Appendices

References

Signatures

Implication: Girdling the Future

Idea: $\phi \Rightarrow \psi$? ϕ as an assumption, i.e. a model of $\phi \colon \xi(\phi)$

$$\Sigma = \bigcup_{n \in \mathbb{N}} \Big[\big(\llbracket 1, n \rrbracket \cup \{\omega\} \big) \to \wp(\mathfrak{R}) \Big] \times \wp(\overline{\mathbb{N}}) \; .$$

Notations: $\sigma \in \Sigma$

- compactly as $\sigma = \langle f \mid S \rangle = \langle \partial \sigma \mid \nabla \sigma \rangle$,
- or in extenso as $(f(1), f(2), \dots, f(\#\sigma) \ ; f(\omega) \mid S)$.

Example:
$$\xi(X \wedge \circ^1 Y \wedge \circ^2 \Box Z) = (X, Y \ ; Z | \overline{\mathbb{N}}_1)$$

Preliminaries

LTL Checking

Bounded TAC

Other Works

Appendices

References

Signatures

Implication: Girdling the Future

$$\Sigma = \bigcup_{n \in \mathbb{N}} \Big[\big(\llbracket 1, n \rrbracket \cup \{\omega\} \big) \to \wp(\mathfrak{R}) \Big] \times \wp(\overline{\mathbb{N}}) \; .$$

Notations: $\sigma \in \Sigma$

- compactly as $\sigma = \langle f \mid S \rangle = \langle \partial \sigma \mid \nabla \sigma \rangle$,
- or in extenso as $(f(1), f(2), \dots, f(\#\sigma) \ ; f(\omega) | S)$.

Example: $\xi(X \wedge \circ^1 Y \wedge \circ^2 \Box Z) = (X, Y; Z | \overline{\mathbb{N}}_1)$

Constrained Words:

 $\begin{array}{l} (\Pi \ ; \ \sigma) = \{ w \in (\Pi) \mid \#w \in \nabla \sigma \land \forall k \in \operatorname{dom} w, \ w(k) \in \sigma[k] \} \\ \forall \ \Pi \subseteq \mathcal{T}, \ \varphi \in \mathcal{A}\text{-LTL}, \ (\Pi \ ; \ \xi(\varphi)) = \{ w \in (\Pi) \mid w \models \varphi \} \end{array}$

Preliminaries

LTL Checking

Bounded TAGE

Other Works

Appendices

References

Signatures: the Transformation $\xi(\cdot)$

Modelling the Antecedent to Girdle the Future

$$\begin{split} \xi(\top) &= \langle \mathring{}_{\mathcal{G}} \mathcal{R} \mid \overline{\mathbb{N}} \rbrace = \varepsilon & \xi(\bot) = \langle \mathring{}_{\mathcal{G}} \varnothing \mid \varnothing \rbrace \\ \xi(X) &= \langle X \mathring{}_{\mathcal{G}} \mathcal{R} \mid \overline{\mathbb{N}}_{1} \rbrace & \xi(\neg X) = \langle \mathcal{R} \setminus X \mathring{}_{\mathcal{G}} \mathcal{R} \mid \overline{\mathbb{N}} \rbrace \\ \xi(\bullet^{\mathfrak{m}} \varphi) &= \xi(\varphi) \blacktriangleright \mathfrak{m} & \xi(\circ^{\mathfrak{m}} \varphi) = \xi(\varphi) \rhd \mathfrak{m} \\ \xi(\varphi \land \psi) &= \xi(\varphi) \otimes \xi(\psi) & \xi(\Box \varphi) = \bigotimes_{\mathfrak{m}=0}^{\infty} \Big[\xi(\varphi) \rhd \mathfrak{m} \Big] \end{split}$$

P			n	а	r	e	

Bounded TAG

Other Works

Appendices

References

Signatures: the Transformation $\xi(\cdot)$

Modelling the Antecedent to Girdle the Future

- $\xi(\top) = \langle \mathfrak{R} \mid \overline{\mathbb{N}} \rangle = \varepsilon \qquad \qquad \xi(\bot) = \langle \mathfrak{R} \mid \emptyset \rangle$
- $\xi(X) = \langle X \, \mathrm{\r{g}}\, \mathcal{R} \, | \, \overline{\mathbb{N}}_1 \, \mathrm{\r{g}} \qquad \xi(\neg X) = \langle \mathcal{R} \setminus X \, \mathrm{\r{g}}\, \mathcal{R} \, | \, \overline{\mathbb{N}} \mathrm{\r{g}}$

$$\xi(\bullet^{\mathfrak{m}} \varphi) = \xi(\varphi) \blacktriangleright \mathfrak{m}$$

$$\xi(\circ^{\mathfrak{m}} \phi) = \xi(\phi) \vartriangleright \mathfrak{m}$$

 $\xi(\phi \wedge \psi) = \xi(\phi) \otimes \xi(\psi) \qquad \xi(\Box \phi) = \bigotimes_{m=0}^{\infty} \Big[\xi(\phi) \rhd m\Big]$

• $\sigma \triangleright m =$ Strong Shift Right = $(\mathcal{R}_1, \dots, \mathcal{R}_m, \partial\sigma(1), \dots, \partial\sigma(\#\sigma); \partial\sigma(\omega) | (\nabla\sigma \setminus \{0\}) + m)$ • $\sigma \triangleright m =$ Weak Shift Right = $(\mathcal{R}_1, \dots, \mathcal{R}_m, \partial\sigma(1), \dots, \partial\sigma(\#\sigma); \partial\sigma(\omega) | [0, m]] \cup (\nabla\sigma + m))$

P			а	ri	e	S	

Appendices

Signatures: the Transformation $\xi(\cdot)$

Modelling the Antecedent to Girdle the Future

- $\xi(\top) = i \Re | \overline{\mathbb{N}} | \varepsilon$
- $\xi(\mathbf{X}) = \mathcal{I}\mathbf{X} \circ \mathcal{R} \mid \overline{\mathbb{N}}_1$

- $\xi(\perp) = 23 \otimes | \otimes S$
- $\xi(\neg X) = ?\mathcal{R} \setminus X : \mathcal{R} \mid \overline{\mathbb{N}}$
- $\xi(\bullet^{\mathfrak{m}} \varphi) = \xi(\varphi) \triangleright \mathfrak{m}$
 - $\xi(\circ^{\mathfrak{m}} \varphi) = \xi(\varphi) \triangleright \mathfrak{m}$
- $\xi(\Box \, \varphi) = \bigotimes^{\infty} \left[\xi(\varphi) \triangleright \mathfrak{m} \right]$ $\xi(\phi \land \psi) = \xi(\phi) \otimes \xi(\psi)$
- **Product Property:** $(\Pi; \sigma \otimes \sigma') = (\Pi; \sigma) \cap (\Pi; \sigma')$ **Example:** $\sigma = \{X, Y \in Z \mid \mathbb{N}_2\}$ $\rho = \{X' \in Z' \mid \mathbb{N}_3\}$ $\sigma \otimes \rho = i X \cap X', Y \cap Z' \otimes Z \cap Z' | \mathbb{N}_3$

Ρ	re	m	a	es

Bounded TAG

Other Works

Appendices

References

Signatures: the Transformation $\xi(\cdot)$

Modelling the Antecedent to Girdle the Future

$$\xi(\mathsf{T}) = \langle \mathsf{s} \mathcal{R} \mid \overline{\mathbb{N}} \mathsf{s} = \varepsilon \qquad \quad \xi(\mathsf{L}) = \langle \mathsf{s} \varnothing \mid \varnothing \mathsf{s} \rangle$$

$$\xi(\neg X) = \langle \mathcal{R} \setminus X \, \mathrm{\r{g}} \, \mathcal{R} \, | \, \overline{\mathbb{N}}$$

$$\xi(\bullet^{\mathfrak{m}}\varphi) = \xi(\varphi) \blacktriangleright \mathfrak{m}$$

 $\xi(X) = i X \ ; \mathcal{R} \mid \overline{\mathbb{N}}_1 \ ;$

$$\xi(\circ^{\mathfrak{m}} \varphi) = \xi(\varphi) \rhd \mathfrak{m}$$

$$\xi(\phi \land \psi) = \xi(\phi) \otimes \xi(\psi)$$

$$(\Box \varphi) = \bigotimes_{m=0}^{\infty} \Big[\xi(\varphi) \triangleright m \Big]$$

$$\Box \phi \Leftrightarrow \bigwedge_{m=0}^{\infty} \circ^{m} \phi \qquad (\Pi \overset{\circ}{,} \bigotimes_{n=0}^{\infty} \sigma_{n}) = \bigcap_{n=0}^{\infty} (\Pi \overset{\circ}{,} \sigma_{n})$$
$$\bigotimes_{n=0}^{\infty} [\sigma \blacktriangleright n] \quad \text{and} \quad \bigotimes_{n=0}^{\infty} [\sigma \rhd n] \quad \text{converge } \forall \sigma \in \Sigma$$

٤

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 33/24

liminaries	LTL Ch

Bounded

Other Works

Appendices

References

Rewrite Proposition \rightarrow Procedure

automatic kind inference and generation rules

Kind inference: expressiveness required & assumptions

$$\begin{array}{ll} \alpha:\mathsf{TA}\vdash\mathsf{X}(\alpha):\mathsf{TA}^{=}\vartriangleleft & \alpha:\mathsf{TA},\mathsf{X}:\mathsf{reg}\mathsf{-}\mathsf{pres}\vdash\mathsf{X}(\alpha):\mathsf{TA}\\ & \vdash\mathsf{X}^{-1}(\mathfrak{T}):\mathsf{TA}^{=}\vartriangleleft & \mathsf{X}:\mathsf{left}\mathsf{-}\mathsf{lin}\vdash\mathsf{X}^{-1}(\mathfrak{T}):\mathsf{TA}\\ \alpha:\mathsf{TA}\vdash \natural\alpha:\mathsf{TA} & \alpha:\mathsf{TA}^{=}\vdash \natural\alpha:\mathsf{TA},\natural\alpha:+ \end{array}$$

Procedure Generation: from languages to automata

$$\begin{split} & \Gamma \mathring{} X^{-1}(\mathfrak{T}) \rightrightarrows \Gamma, \langle X : \mathsf{left-lin} \rangle \mathring{} X^{-1}(\mathfrak{T}) \\ & \Gamma \mathring{} [\ell \rightarrowtail \Delta, \alpha] \mathring{} \Delta \vdash^* \alpha : \mathsf{TA} \quad \mathring{} X(\ell) \rightrightarrows \Gamma, \Delta, \langle X : \mathsf{reg-pres} \rangle \mathring{} X(\alpha) \\ & \Gamma \mathring{} [\ell \rightarrowtail \Delta, \alpha] \mathring{} \Delta \vdash^* \alpha : \mathsf{TA}^= \mathring{} X(\ell) \rightrightarrows \Gamma, \Delta, \langle X : \mathsf{reg-pres} \rangle \mathring{} X(\natural \alpha) \end{split}$$

Preliminaries	L

Bounded TAGE

Other Works

Appendices

References

Supported Fragment, In Practice

Partially Supported Patterns From [Dwyer et al., 1999]

			Scope			
Pattern	Global	Before	After	Between	Until	Support
Absence	41	5	12	18	9	48%
Universality	110	1	5	2	1	96%
Existence	12	1	4	8	1	0%
Bound Exist.	0	0	0	1	0	0%
Response	241	1	3	0	0	99%
Precedence	25	0	1	0	0	96%
Resp. Chain	8	0	0	0	0	0%
Prec. Chain	1	0	0	0	0	0%
Support	95%	0%	32%	0%	0%	83%

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 35/24

Preliminaries

LTL Checking

Bounded TA

Other Works

Appendices

References

Tree Automata

[Comon et al., 2008]

Introduced in the fifties; regular tree languages:

- model-checking: programs, protocols,...
- automated theorem-proving
- XML schema and (esp. variants) query languages
- ... and so much more

Doesn't deal with comparisons and non-linearity:

- { $f(u, u) \mid u \in \mathcal{T}(\Sigma)$ }
- { $f(u,v) \mid u,v \in \mathfrak{T}(\Sigma), u \neq v$ }
- $\mathcal{R}(\ell)$, ℓ regular, \mathcal{R} a TRS

e.g. password verification e.g. primary keys e.g. { $g(x) \rightarrow f(x, x)$ }(T(A))

Preliminaries	

Bounded TAG

Other Works

Appendices

References

Tree Automata

Bottom-Up, Non-Deterministic, Finite

Tree Automaton $\mathcal{A} = \langle \mathbb{A}, Q, F, \Delta \rangle$:

A	finite ranked alphabet
Q	finite set of states
F	final states, $F \subseteq Q$
Δ	finite set of transitions

Transition $\mathbf{r} \in \Delta$:

 $\sigma(q_1,\ldots,q_n) \to q \qquad \sigma \in \mathbb{A}_n \quad q_1,\ldots,q_n,q \in Q$

Tree (Not Quite) Regular Model-Checking

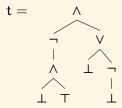
Vincent HUGOT Ph.D. Defence 37/24

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendi
00000				

Tree Automata

Bottom-Up, Non-Deterministic, Finite

$$\begin{split} \mathbb{A} &= \{ \wedge, \vee/_2, \neg/_1, \top, \perp/_0 \}, \ Q &= \{ q_0, q_1 \}, \ \mathsf{F} = \{ q_1 \}, \ \Delta = \\ \left\{ \begin{array}{c} \top \to q_1, \quad \bot \to q_0, \quad \neg(q_b) \to q_{\neg b} \\ \wedge(q_b, q_{b'}) \to q_{b \wedge b'}, \quad \vee(q_b, q_{b'}) \to q_{b \vee b'} \end{array} \right| \ b, b' \in \{ 0, 1 \} \\ \end{split}$$



Preliminaries	LTI

Bounded TAG

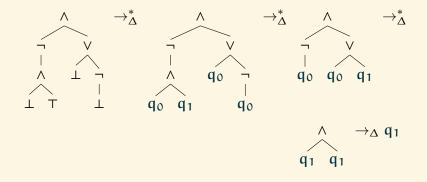
Other Works

Appendices

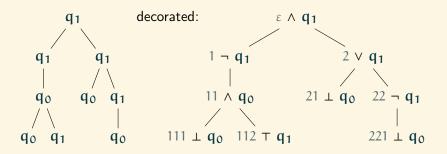
References

Tree Automata

Bottom-Up, Non-Deterministic, Finite



The reduction $t \rightarrow^*_{\Lambda} q_1$ is captured by the **run**:



Preliminaries	L

Bounded TAG

Other Works

Appendices

References

Tree Automata

With Global Equality Constraints [Filiot et al., 2008]

TAGE, TA⁼, Positive TAGED, $\mathcal{A} = \langle \mathbb{A}, Q, F, \Delta, \cong \rangle$:

$\langle \mathbb{A}, \mathbf{Q}, F, \Delta \rangle$	vanilla tree automaton $ta(\mathcal{A})$
\approx	equality constraints , $\cong \subseteq Q^2$

Constraint $p \cong q$:

run ρ of A on t:

• run of $ta(\mathcal{A})$ on t

• satisfying \cong : $\forall \alpha, \beta \in \mathcal{P}(t); \ \rho(\alpha) \cong \rho(\beta) \Rightarrow t|_{\alpha} = t|_{\beta}$ accepting run: accepting for $ta(\mathcal{A})$

reliminaries	LTL

Bounded TAG

Other Works

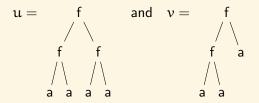
Appendices

References

Tree Automata

With Global Equality Constraints [Filiot et al., 2008]

$$\begin{split} \mathbb{A} &= \{ \, \mathfrak{a}/_0, \mathfrak{f}/_2 \, \}, \; Q = \{ \, q, \hat{q}, q_{\mathfrak{f}} \, \}, \; \mathsf{F} = \{ \, q_{\mathfrak{f}} \}, \; \hat{q} \cong \hat{q}, \; \mathsf{and} \\ \\ \Delta &= \{ \, \mathfrak{f}(\hat{q}, \hat{q}) \to q_{\mathfrak{f}}, \; \mathfrak{f}(q, q) \to q, \; \mathfrak{f}(q, q) \to \hat{q}, \; \mathfrak{a} \to q, \; \mathfrak{a} \to \hat{q} \, \} \end{split}$$



eliminaries	LTL C

Bounded TAG

Other Works

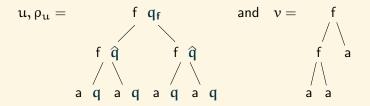
Appendices

References

Tree Automata

With Global Equality Constraints [Filiot et al., 2008]

$$\begin{split} \mathbb{A} &= \{ \, \mathfrak{a}/_0, \mathfrak{f}/_2 \, \}, \; Q = \{ \, \mathfrak{q}, \hat{\mathfrak{q}}, \mathfrak{q}_{\, \mathsf{f}} \, \}, \; \mathsf{F} = \{ \, \mathfrak{q}_{\, \mathsf{f}} \, \}, \; \hat{\mathfrak{q}} \cong \hat{\mathfrak{q}}, \; \mathsf{and} \\ \Delta &= \{ \, \mathfrak{f}(\hat{\mathfrak{q}}, \hat{\mathfrak{q}}) \to \mathfrak{q}, \; \, \mathfrak{f}(\mathfrak{q}, \mathfrak{q}) \to \mathfrak{q}, \; \, \mathfrak{f}(\mathfrak{q}, \mathfrak{q}) \to \hat{\mathfrak{q}}, \; \, \mathfrak{a} \to \mathfrak{q}, \; \, \mathfrak{a} \to \hat{\mathfrak{q}} \, \} \end{split}$$



eliminaries	LTL C

Bounded TAGE

Other Works

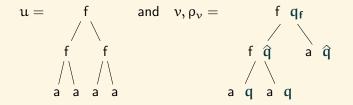
Appendices

References

Tree Automata

With Global Equality Constraints [Filiot et al., 2008]

$$\begin{split} \mathbb{A} &= \{ \, \mathfrak{a}/_0, \mathfrak{f}/_2 \, \}, \; Q = \{ \, \mathfrak{q}, \hat{\mathfrak{q}}, \mathfrak{q}_{\, \mathsf{f}} \, \}, \; \mathsf{F} = \{ \, \mathfrak{q}_{\, \mathsf{f}} \, \}, \; \hat{\mathfrak{q}} \cong \hat{\mathfrak{q}}, \; \mathsf{and} \\ \Delta &= \{ \, \mathfrak{f}(\hat{\mathfrak{q}}, \hat{\mathfrak{q}}) \to \mathfrak{q}, \; \, \mathfrak{f}(\mathfrak{q}, \mathfrak{q}) \to \mathfrak{q}, \; \, \mathfrak{f}(\mathfrak{q}, \mathfrak{q}) \to \hat{\mathfrak{q}}, \; \, \mathfrak{a} \to \mathfrak{q}, \; \, \mathfrak{a} \to \hat{\mathfrak{q}} \, \} \end{split}$$



liminaries	LTL Checking

Bounded TAGE

Other Works

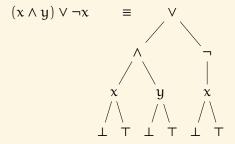
Appendices

References

Tree Automata

With Global Equality Constraints [Filiot et al., 2008]

$$\begin{split} \mathbb{A} &= \{\wedge, \vee/_2, \neg/_1, \top, \perp/_0\} \uplus \mathbb{X}, \ Q = \{q_0, q_1\} \uplus \{\nu_x \mid x \in \mathbb{X}\} \text{ and } \\ \mathsf{F} &= \{q_1\}, \text{ new rules } \top \rightarrow \nu_x, \ \perp \rightarrow \nu_x, \ x(q_0, \nu_x) \rightarrow q_1, \\ x(\nu_x, q_1) \rightarrow q_0 \text{ for each } x \in \mathbb{X}, \ \nu_x \cong \nu_x. \end{split}$$



Preliminaries	LTL Checking	

Other Wo

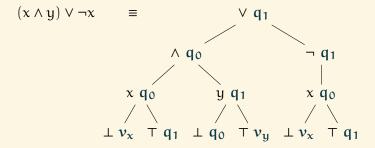
Appendices

References

Tree Automata

With Global Equality Constraints [Filiot et al., 2008]

$$\begin{split} \mathbb{A} &= \{\wedge, \vee/_2, \neg/_1, \top, \perp/_0\} \uplus \mathbb{X}, \ Q = \{q_0, q_1\} \uplus \{\nu_x \mid x \in \mathbb{X}\} \text{ and } \\ \mathsf{F} &= \{q_1\}, \text{ new rules } \top \rightarrow \nu_x, \ \perp \rightarrow \nu_x, \ x(q_0, \nu_x) \rightarrow q_1, \\ x(\nu_x, q_1) \rightarrow q_0 \text{ for each } x \in \mathbb{X}, \ \nu_x \cong \nu_x. \end{split}$$



reliminaries	LTL C

Checking

Bounded TA

Other Works

Appendices

References

TA versus RTA versus TA⁼

Closure, Complexity and Decidability

	ТА	RTA ($p \approx p$)	TA ⁼
U	PTIME	PTIME	PTIME
\cap	PTIME	ExpTime	ExpTime
7	ExpTime	Ø	Ø
$t \in \mathcal{L}(\mathcal{A})$?	PTIME	NP-c	NP-c ^(a)
$\mathcal{L}(\mathcal{A}) = \emptyset$?	linear-time	linear-time	ExpTime-c
$ \mathcal{L}(\mathcal{A}) \in \mathbb{N}$?	PTIME	PTIME	EXPTIME-c
$\mathcal{L}(\mathcal{A}) = \Im(\Sigma)$?	$\operatorname{ExpTime-c}$	undecidable	undecidable
$\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{B})$?	$\mathrm{ExpTime-c}$	undecidable	undecidable
$\mathcal{L}(\bigcap_{i}\mathcal{A}_{i})=\varnothing$?	$\mathrm{ExpTime-}c$	$\mathrm{ExpTime-c}$	ExpTime-c

^(a)SAT solver approach: [Héam et al., 2010].

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 43/24

reliminaries	LTL C

Bounded TA

Other Works

Appendices

References

TA versus RTA versus TA⁼

Closure, Complexity and Decidability

	ТА	RTA ($p \cong p$)	TA ⁼
U	PTime	PTime	PTime
()	PTime	ExpTime	ExpTime
7	ExpTime	Ø	Ø
$t \in \mathcal{L}(\mathcal{A}) ?$	PTIME	NP-c	NP-c ^(a)
$\mathcal{L}(\mathcal{A}) = \emptyset ?$	linear-time	linear-time	ExpTime-c
$ \mathcal{L}(\mathcal{A}) \in \mathbb{N} ?$	PTIME	PTime	ExpTime-c
$\mathcal{L}(\mathcal{A}) = \mathcal{T}(\Sigma) ?$	ExpTIME-c	undecidable	undecidable
$\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{B}) ?$	ExpTIME-c	undecidable	undecidable
$\mathcal{L}(\bigcap_{i} \mathcal{A}_{i}) = \emptyset ?$	ExpTIME-c	ExpTIME-c	EXPTIME-c

^(a)SAT solver approach: [Héam et al., 2010].

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 43/24

Appendices $TA^{=}$ versus $TA^{=}_{\nu}$

Restriction on the kind of constraints: Rigid Automata (RTA)

- Same expressive power as TA⁼
- Less compact representations
- Linear emptiness / finiteness tests, vs. EXPTIME-complete
- Applications: [Jacquemard et al., 2009, Vacher, 2010]

What of the number of constraints? $TA_k^= \mathcal{A} = \langle \Sigma, Q, F, \Delta, \cong \rangle$:

 $\begin{array}{ll} \langle \Sigma, Q, F, \Delta, \cong \rangle & \quad \mathsf{TA}^= \ \mathcal{A} \\ \cong & \quad \mathsf{such that } \mathsf{Card}(\cong) \leqslant k \end{array}$

reliminaries	LTL Checking

Bounded TAGE

Other Works

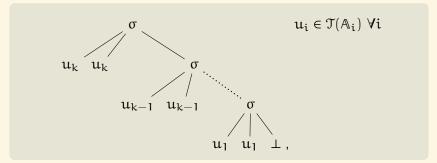
Appendices

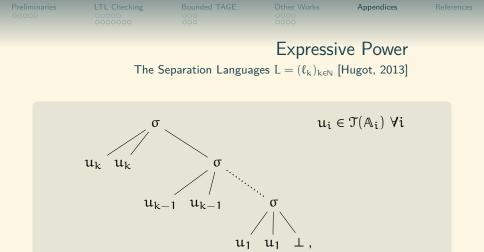
References

Expressive Power

The Separation Languages $L=(\ell_k)_{k\in\mathbb{N}}$ [Hugot, 2013]

$$\begin{split} & \bigoplus_{i=1}^{k} \mathbb{A}_{i} \uplus \{ \sigma/_{3}, \perp/_{0} \} \qquad \mathbb{A}_{i} = \{ a_{i}, b_{i}/_{0}, f_{i}, g_{i}/_{2} \} \\ & \ell_{0} = \{ \bot \} \quad \forall k \geqslant 1, \ell_{k} = \{ \sigma(u, u, t_{k-1}) \mid u \in \mathcal{T}(\mathbb{A}_{k}), t_{k-1} \in \ell_{k-1} \} \end{split}$$





$$\begin{split} \ell_1 &\in \mathcal{L}(\mathsf{TA}_1^=) \setminus \mathcal{L}(\mathsf{TA}) &\approx \text{ground instances of } f(x,x). \\ \ell_k &\in \mathcal{L}(\mathsf{TA}_k^=) \setminus \mathcal{L}(\mathsf{TA}_{k-1}^=), \quad \forall k \geqslant 1. \end{split}$$

Preliminaries

LTL Checking

Bounded TAGE

Other Works

Appendices

References

Expressive Power Show $\ell_{k} \in \mathcal{L}(TA_{k}^{=}) \setminus \mathcal{L}(TA_{k-1}^{=})$ [Hugot, 2013]

Show $\ell_k \in \mathcal{L}(\mathsf{TA}_k^=)$: $\mathcal{A}_k \in \mathsf{TA}_k^=$ such that $\mathcal{L}(\mathcal{A}_k) = \ell_k$

 $\mathcal{U}_i \in \mathsf{TA}$ universal, $\mathcal{U}_i: \mathsf{F} = \{q_i^u\}$, for all i. \mathcal{A}_k is

$$\begin{split} &Q = \{q_0^{\mathsf{v}}\} \uplus \biguplus_{i=1}^k \mathfrak{U}_i \colon Q \uplus \{q_i^{\mathsf{v}}\} \qquad \mathsf{F} = \{q_1^{\mathsf{v}}\} \qquad q_i^{\mathsf{u}} \cong q_i^{\mathsf{u}}, \; \forall i \in \llbracket 1, k \rrbracket \\ &\Delta = \left\{ \left. \sigma(q_i^{\mathsf{u}}, q_i^{\mathsf{u}}, q_i^{\mathsf{v}}, q_{i-1}^{\mathsf{v}}) \to q_i^{\mathsf{v}} \; \middle| \; i \in \llbracket 1, k \rrbracket \right\} \cup \left\{ \perp \to q_0^{\mathsf{v}} \right\}. \end{split}$$

Preliminaries

LTL Checking

Bounded TAGE

Other Works

Appendices

References

Expressive Power

Show $\ell_k \in \mathcal{L}(\mathsf{TA}_k^=) \setminus \mathcal{L}(\mathsf{TA}_{k-1}^=)$ [Hugot, 2013]

Show $\ell_k \notin \mathcal{L}(\mathsf{TA}_{k-1}^=)$:

active constrained states:

 $\mathsf{acs}\,\rho = \{\,\rho(\alpha) \mid \alpha \in \mathfrak{P}(\rho), \exists \beta \in \mathfrak{P}(\rho) \setminus \{\alpha\} : \rho(\alpha) \cong \rho(\beta) \,\}$

Preli	ries

Bounded TAGE

Other Works

Appendices

References

Expressive Power

Show $\ell_k \in \mathcal{L}(\mathsf{TA}_k^=) \setminus \mathcal{L}(\mathsf{TA}_{k-1}^=)$ [Hugot, 2013]

Show $\ell_k \notin \mathcal{L}(\mathsf{TA}_{k-1}^=)$:

• Assume $\ell_k \in \mathcal{L}(\mathsf{TA}_{k-1}^=)$ i.e. $\exists \mathcal{A} \in \mathsf{TA}_{k-1}^= : \mathcal{L}(\mathcal{A}) = \ell_k$

		13	e	

Bounded TAGE

Other Works

Appendices

References

Expressive Power

Show $\ell_k \in \mathcal{L}(\mathsf{TA}_k^=) \setminus \mathcal{L}(\mathsf{TA}_{k-1}^=)$ [Hugot, 2013]

Show $\ell_k \notin \mathcal{L}(\mathsf{TA}_{k-1}^=)$:

- Assume $\ell_k \in \mathcal{L}(\mathsf{TA}_{k-1}^=)$ i.e. $\exists \mathcal{A} \in \mathsf{TA}_{k-1}^= : \mathcal{L}(\mathcal{A}) = \ell_k$
- $\forall \rho, \ \nexists \alpha, \beta : \alpha \neq \beta, \alpha \in 3^*, \rho(\alpha) \cong \rho(\beta)$

Preli	ari	es

Bounded TAGE

Other Works

Appendices

References

Expressive Power

Show $\ell_k \in \mathcal{L}(\mathsf{TA}_k^=) \setminus \mathcal{L}(\mathsf{TA}_{k-1}^=)$ [Hugot, 2013]

Show $\ell_k \notin \mathcal{L}(\mathsf{TA}_{k-1}^{=})$:

- Assume $\ell_k \in \mathcal{L}(\mathsf{TA}_{k-1}^=)$ i.e. $\exists \mathcal{A} \in \mathsf{TA}_{k-1}^= : \mathcal{L}(\mathcal{A}) = \ell_k$
- $\forall \rho, \ \nexists \alpha, \beta : \alpha \neq \beta, \alpha \in 3^*, \rho(\alpha) \cong \rho(\beta)$
- Pick $t \in \ell_k$ such that $|t|_{\alpha}| > |Q|$, for all $\alpha \in 3^*(1+2)$

Preliminaries

LTL Checking

Bounded TAG

Other Works

Appendices

References

Expressive Power

Show $\ell_k \in \mathcal{L}(TA_k^=) \setminus \mathcal{L}(TA_{k-1}^=)$ [Hugot, 2013]

Show $\ell_k \notin \mathcal{L}(\mathsf{TA}_{k-1}^=)$:

- Assume $\ell_k \in \mathcal{L}(\mathsf{TA}_{k-1}^=)$ i.e. $\exists \mathcal{A} \in \mathsf{TA}_{k-1}^= : \mathcal{L}(\mathcal{A}) = \ell_k$
- $\forall \rho, \ \nexists \alpha, \beta : \alpha \neq \beta, \alpha \in 3^*, \rho(\alpha) \cong \rho(\beta)$
- Pick $t \in \ell_k$ such that $|t|_{\alpha}| > |Q|$, for all $\alpha \in 3^*(1+2)$
- Suppose $\exists \alpha \in 3^*(1+2)$ such that $\operatorname{ran} \rho|_{\alpha} \cap \operatorname{acs} \rho = \emptyset$. \mathcal{A} acts as BUTA wrt. $t|_{\alpha}$; pump $\rho|_{\alpha}$, get $t' \notin \ell_k$, but $t' \in \mathcal{L}(\mathcal{A})$.

Pr	reli	ari	es	

Bounded TAGE

Other Works

Appendices

References

Expressive Power

Show $\ell_k \in \mathcal{L}(TA_k^=) \setminus \mathcal{L}(TA_{k-1}^=)$ [Hugot, 2013]

Show $\ell_k \notin \mathcal{L}(\mathsf{TA}_{k-1}^=)$:

- Assume $\ell_k \in \mathcal{L}(\mathsf{TA}_{k-1}^=)$ i.e. $\exists \mathcal{A} \in \mathsf{TA}_{k-1}^= : \mathcal{L}(\mathcal{A}) = \ell_k$
- $\forall \rho, \ \nexists \alpha, \beta : \alpha \neq \beta, \alpha \in 3^*, \rho(\alpha) \cong \rho(\beta)$
- Pick $t \in \ell_k$ such that $|t|_{\alpha}| > |Q|$, for all $\alpha \in 3^*(1+2)$
- $\forall \alpha \in 3^*(1+2), \ \operatorname{ran} \rho|_{\alpha} \cap \operatorname{acs} \rho \neq \emptyset$

Preliminaries	

Bounded TAG

Other Works

Appendices

References

Expressive Power

Show $\ell_k \in \mathcal{L}(\mathsf{TA}_k^=) \setminus \mathcal{L}(\mathsf{TA}_{k-1}^=)$ [Hugot, 2013]

Show $\ell_k \notin \mathcal{L}(\mathsf{TA}_{k-1}^=)$:

- Assume $\ell_k \in \mathcal{L}(\mathsf{TA}_{k-1}^=)$ i.e. $\exists \mathcal{A} \in \mathsf{TA}_{k-1}^= : \mathcal{L}(\mathcal{A}) = \ell_k$
- $\forall \rho, \ \nexists \alpha, \beta : \alpha \neq \beta, \alpha \in 3^*, \rho(\alpha) \cong \rho(\beta)$
- Pick $t \in \ell_k$ such that $|t|_{\alpha}| > |Q|$, for all $\alpha \in 3^*(1+2)$
- $\forall \alpha \in 3^*(1+2), \ \operatorname{ran} \rho|_{\alpha} \cap \operatorname{acs} \rho \neq \varnothing$
- $i \neq j$, p_i acs for u_i , p_j for u_j . $\exists acs q_i, q_j : p_i \cong q_i, p_j \cong q_j$. Suppose q_i in subrun of u_j . Then $\exists s_i \trianglelefteq u_i, s_j \trianglelefteq u_j, s_i = s_j$. But $u_i \in \mathcal{T}(A_i)$ and $u_j \in \mathcal{T}(A_j)$, thus $s_i \in \mathcal{T}(A_i)$ and $s_j \in \mathcal{T}(A_j)$. $\mathcal{T}(A_i) \cap \mathcal{T}(A_j) = \emptyset$, thus $s_i = s_j \in \emptyset$.

		ıa	e	

Bounded TAGE

Other Works

Appendices

References

Expressive Power

Show $\ell_k \in \mathcal{L}(TA_k^=) \setminus \mathcal{L}(TA_{k-1}^=)$ [Hugot, 2013]

Show $\ell_k \notin \mathcal{L}(\mathsf{TA}_{k-1}^=)$:

- Assume $\ell_k \in \mathcal{L}(\mathsf{TA}_{k-1}^=)$ i.e. $\exists \mathcal{A} \in \mathsf{TA}_{k-1}^= : \mathcal{L}(\mathcal{A}) = \ell_k$
- $\forall \rho, \ \nexists \alpha, \beta : \alpha \neq \beta, \alpha \in 3^*, \rho(\alpha) \cong \rho(\beta)$
- Pick $t \in \ell_k$ such that $|t|_{\alpha}| > |Q|$, for all $\alpha \in 3^*(1+2)$
- $\forall \alpha \in 3^*(1+2), \ \operatorname{ran} \rho|_{\alpha} \cap \operatorname{acs} \rho \neq \varnothing$
- \bullet Each pair of u_i needs its own fresh state(s) $p_i \,{\simeq}\, q_i$

	ari	es

Bounded TAGE

Other Works

Appendices

References

Expressive Power

Show $\ell_k \in \mathcal{L}(TA_k^=) \setminus \mathcal{L}(TA_{k-1}^=)$ [Hugot, 2013]

Show $\ell_k \notin \mathcal{L}(\mathsf{TA}_{k-1}^=)$:

- Assume $\ell_k \in \mathcal{L}(\mathsf{TA}_{k-1}^=)$ i.e. $\exists \mathcal{A} \in \mathsf{TA}_{k-1}^= : \mathcal{L}(\mathcal{A}) = \ell_k$
- $\forall \rho, \ \nexists \alpha, \beta : \alpha \neq \beta, \alpha \in 3^*, \rho(\alpha) \cong \rho(\beta)$
- Pick $t \in \ell_k$ such that $|t|_{\alpha}| > |Q|$, for all $\alpha \in 3^*(1+2)$
- $\forall \alpha \in 3^*(1+2), \ ran \rho|_{\alpha} \cap acs \rho \neq \emptyset$
- \bullet Each pair of u_i needs its own fresh state(s) $p_i \,{\simeq}\, q_i$
- \mathcal{A} does not exist, contradiction.

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	Ref
00000					

The Membership Problem

General Idea & Strategy

Membership complexity : $t \in \mathcal{L}(\mathcal{A})$?

NP-complete for $TA^=$ **PTime** for $TA_k^=$, $\forall k \in \mathbb{N}$

Proof **Strategy** :

- Choose each $P \subseteq dom \cong \{p \mid \exists q : p \cong q \text{ or } q \cong p\}$
- \bullet Given P, turn \cong into an equivalence relation \asymp_P
- \bullet Try all possible "housings" of the $\cong\mbox{-classes}$ into t
- For each housing, try to build an accepting run

\cong is Not an Equivalence

(but we can pretend it is)

Example: Given $p \cong r$ and $r \cong q$, what of $p \cong q$?

Does r actually appear in the run ?

yes: $p \cong q$ implied no: $p \cong r$ and $r \cong q$ are moot.

Fix $P \subseteq \text{dom} \cong$. Any run ρ such that $(\operatorname{ran} \rho) \cap (\operatorname{dom} \cong) = P$ is accepting for \mathcal{A} iff it is so for

$$\mathcal{A}_P = \left \lfloor \mathcal{A} \mid \, \cong \, := \left (\cong \, \cap P^2 \right)^{\equiv} \, \right \rfloor$$
 ,

symmetric, transitive, reflexive closure under dom($\cong \cap P^2$).

Groups & Similarity Classes

Groups $\mathbb{G}_{\mathbf{P}}$: set of \cong -equivalence classes (given P)

$$\mathbb{G}_{P} = \frac{\mathsf{dom}(\cong \cap P^{2})}{(\cong \cap P^{2})^{\Xi}} = \frac{\mathsf{dom}(\cong \cap P^{2})}{\asymp_{P}}$$

Similarity **Classes** S_t of t :

$$\begin{array}{rcl} \forall \alpha, \beta \in \mathcal{P}(t); \ \alpha \sim \beta & \Longleftrightarrow & t|_{\alpha} = t|_{\beta} \\ & \textbf{classes } \mathbb{S}_t & = & \mathcal{P}(t)/_{\sim} \end{array}$$

LTL Checking

Bounded TAG

Other Works

Appendices

References

Housings

And Their Compatibility with the Constraints

Characterisation of Satisfaction of \cong :

$$\forall G \in \mathbb{G}_P; \exists C_G \in \mathbb{S}_t : \rho^{-1}(G) \subseteq C_G$$

Housings $\mathbb{H}_{\mathbf{P}}^{\mathbf{t}}$ of P within t :

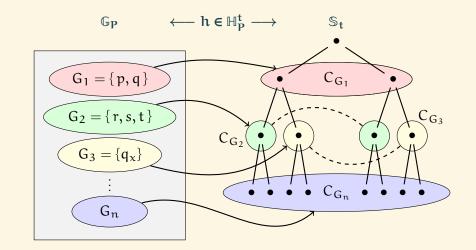
The map $G \mapsto C_G$ is a **P-housing of** ρ in t, compatible with ρ

$$\mathbb{H}_{P}^{t} = \mathbb{G}_{P} o \mathbb{S}_{t}$$

is the set of all possible P-housings on t.

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 50/24



Operations Needed :

- Choose P: 2^{2k} possible P ⊆ dom ≃
- Choose housing: $|S_t^{\mathbb{G}_P}| = |S_t|^{|\mathbb{G}_P|} \le ||t||^{2k}$ P-housings on t

• $\Rightarrow 4^k \cdot ||t||^{2k}$ tests in total

\hookrightarrow polynomial compatibility test = variant of reachability

Is a final state reachable if states $q \in P$ can only go in $h([q]_{\asymp_P})$?

LTL Checking

Bounded TAC

Other Works

Appendices

References

Compatibility Test

In Polynomial Time

Simple variant of **reachability** algorithm:

Given P and $h \in \mathbb{H}_P^t$, there exists a compatible run iff

 $\Phi^{P,h}_t(\epsilon)\cap F
eq arnothing$,

where

$$\Phi^{P,h}_t(\alpha) = \left\{ \begin{array}{l} q \in Q \\ q \in Q \\ \end{array} \middle| \begin{array}{l} t(\alpha)(p_1,\ldots,p_n) \to q \in \Delta \\ \forall i \in \llbracket 1,n \rrbracket, \ p_i \in \Phi^{P,h}_t(\alpha.i) \\ q \in \bigcup \mathbb{G}_P \implies \alpha \in h([q]_{\asymp_P}) \\ q \notin dom(\underline{\approx}) \setminus P \end{array} \right\}$$

Tree (Not Quite) Regular Model-Checking

LTL Checking

Bounded TAC

Other Works

Appendices

References

Compatibility Test

In Polynomial Time

Simple variant of **reachability** algorithm:

Given P and $h \in \mathbb{H}_P^t$, there exists a compatible run iff

 $\Phi^{P,h}_t(\epsilon)\cap F
eq arnothing$,

where

$$\Phi^{P,h}_t(\alpha) = \left\{ \begin{array}{l} q \in Q \\ q \in Q \\ \end{array} \middle| \begin{array}{l} t(\alpha)(p_1,\ldots,p_n) \to q \in \Delta \\ \forall i \in \llbracket 1,n \rrbracket, \ p_i \in \Phi^{P,h}_t(\alpha.i) \\ q \in \bigcup \mathbb{G}_P \implies \alpha \in h([q]_{\asymp_P}) \\ q \notin dom(\underline{\approx}) \setminus P \end{array} \right\}$$

Tree (Not Quite) Regular Model-Checking

LTL Checking

Bounded TAC

Other Works

Appendices

References

Compatibility Test

In Polynomial Time

Simple variant of **reachability** algorithm:

Given P and $h \in \mathbb{H}_P^t$, there exists a compatible run iff

 $\Phi^{P,h}_t(\epsilon)\cap F
eq arnothing$,

where

$$\Phi^{P,h}_t(\alpha) = \left\{ \begin{array}{l} q \in Q \\ q \in Q \\ \end{array} \middle| \begin{array}{l} t(\alpha)(p_1,\ldots,p_n) \to q \in \Delta \\ \forall i \in \llbracket 1,n \rrbracket, \ p_i \in \Phi^{P,h}_t(\alpha.i) \\ q \in \bigcup \mathbb{G}_P \implies \alpha \in h([q]_{\asymp_P}) \\ q \notin dom(\underline{\approx}) \setminus P \end{array} \right\}$$

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 53/24

LTL Checking

Bounded TAC

Other Works

Appendices

References

Compatibility Test

In Polynomial Time

Simple variant of **reachability** algorithm:

Given P and $h \in \mathbb{H}_P^t$, there exists a compatible run iff

 $\Phi^{P,h}_t(\epsilon)\cap F
eq arnothing$,

where

$$\Phi^{P,h}_t(\alpha) = \left\{ \begin{array}{l} q \in Q \\ q \in Q \\ \end{array} \middle| \begin{array}{l} t(\alpha)(p_1,\ldots,p_n) \to q \in \Delta \\ \forall i \in \llbracket 1,n \rrbracket, \ p_i \in \Phi^{P,h}_t(\alpha.i) \\ q \in \bigcup \mathbb{G}_P \implies \alpha \in h([q]_{\asymp P}) \\ q \notin dom(\underline{\approx}) \setminus P \end{array} \right\}$$

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 53/24

LTL Checking

Bounded TAC

Other Works

Appendices

References

Compatibility Test

In Polynomial Time

Simple variant of **reachability** algorithm:

Given P and $h \in \mathbb{H}_P^t$, there exists a compatible run iff

 $\Phi^{P,h}_t(\epsilon)\cap F
eq arnothing$,

where

$$\Phi^{P,h}_t(\alpha) = \left\{ \begin{array}{l} q \in Q \\ q \in Q \\ \end{array} \middle| \begin{array}{l} t(\alpha)(p_1,\ldots,p_n) \to q \in \Delta \\ \forall i \in \llbracket 1,n \rrbracket, \ p_i \in \Phi^{P,h}_t(\alpha.i) \\ q \in \bigcup \mathbb{G}_P \implies \alpha \in h([q]_{\asymp_P}) \\ q \notin dom(\underline{\approx}) \setminus P \end{array} \right\}$$

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 53/24

reliminaries LTL Checking

Bounded TAG

Other Works

Appendices

References

Rigidification

Problem : Given $TA^{=} A$, build equivalent RTA \mathcal{B} .

General Result [Filiot, 2008, Lem. 5.3.5]

Exponential construction: $\|\mathcal{B}\| \leq O(2^{\|\mathcal{A}\|^2})$

In the case of $TA_1^=$:

Polynomial construction: $||\mathcal{B}|| \leq O(||\mathcal{A}||^2)$

Idea : Simulate a constraint $p \cong q, \ p \neq q$ by a TA intersection

eliminaries	LTL Check

Checking

Bounded TAGE

Other Works

Appendices

References

Rigidification: Construction

 $\mathfrak{B} = \mathfrak{B}_p^{\neg} \uplus \mathfrak{B}_q^{\neg} \uplus (\mathcal{A} \mid Q', \Delta', \mathfrak{q}_f \cong \mathfrak{q}_f)$

$$\begin{split} \mathcal{B}_{p}^{\neg} &= \langle \mathcal{A} \mid Q \setminus \{p\} \rangle & \mathcal{B}_{q}^{\neg} &= \langle \mathcal{A} \mid Q \setminus \{q\} \rangle \\ Q' &= (Q \setminus \{p,q\}) \uplus (\mathcal{B}_{p\,q};Q) & \Delta' &= \Delta_{p\,q}^{q\,f} \uplus (\mathcal{B}_{p\,q};\Delta) \\ \mathcal{B}_{p\,q} &= \mathcal{B}_{p} \otimes \mathcal{B}_{q} & q_{f} &= (p,q) \\ \mathcal{B}_{p} &= \langle \mathcal{B}_{q}^{\neg} \mid \mathsf{F} := \{p\}, \Delta := \Delta_{p} \rangle & \mathcal{B}_{q} &= \langle \mathcal{B}_{p}^{\neg} \mid \mathsf{F} := \{q\}, \Delta := \Delta_{q} \rangle \\ \Delta_{p} &= \mathcal{B}_{q}^{\neg}; \Delta \setminus \{\dots, p \dots \to \dots\} & \Delta_{q} &= \mathcal{B}_{p}^{\neg}; \Delta \setminus \{\dots, q \dots \to \dots\} \end{split}$$

 $\Delta_{p\,q}^{q_f}$ is $\mathcal{A}:\Delta$ from which all left-hand side occurrences of p or q have been replaced by q_f .

LTL Checking

Bounded TAC

Other Works

Appendices

References

Emptiness

Outline of the Result and Proof

Complexity of **Emptiness** : $\mathcal{L}(\mathcal{A}) = \emptyset$?

 $\begin{array}{lll} \mbox{PTime} (\mbox{quadratic}) & \mbox{for} & \mbox{TA}_1^{=} \\ \mbox{ExpTime-complete} & \mbox{for} & \mbox{TA}_k^{=}, \ k \geqslant 2 \\ \end{array}$

 $TA_1^{=}$: immediate by **rigidification**. Emptiness for RTA: linear time $TA_2^{=}$: Reduction of **intersection-emptiness** of n TA A_1, \ldots, A_n . Generalisation of the usual argument [Filiot et al., 2008, Thm. 1] from "unlimited constraints" to "**two constraints**"

Preliminaries	

Bounded TAGE

Other Works

Appendices

References

$$\mathsf{L} = \varnothing \iff \bigcap_{i=1}^{n} \mathcal{L}(\mathcal{A}_{i}) = \varnothing$$

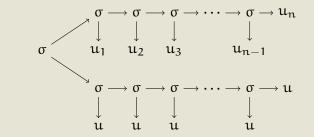


Figure : Reduction of intersection-emptiness: the language.

where $\forall i, x_i \in \mathcal{L}(\mathcal{A}_i)$ and $x = x_i$

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 57/24

LTL Checking

Bounded TAC

Other Works

Appendices

References

Finiteness

Outline of the Result and Proof

Complexity of **Finiteness** : $|\mathcal{L}(\mathcal{A})| \in \mathbb{N}$?

 $TA_1^=$: immediate by rigidification. Finiteness for RTA is PTIME $TA_2^=$: Reduction of **Emptiness for TA**₂⁼.

Preliminaries L 00000 0

LTL Checking

Bounded TAC

Other Works

Appendices

References

Finiteness

Outline of the Result and Proof

$$\begin{split} \mathcal{A}' = \left\{ \begin{array}{l} \mathcal{A} \mid Q \uplus \{p\}, \mathsf{F} := \{p\}, \Sigma \uplus \{\sigma/_1\}, \Delta' \right\} \\ \text{where } \Delta' = \Delta \cup \left\{ \begin{array}{l} \sigma(q_f) \to p \mid q_f \in \mathsf{F} \right\} \cup \left\{ \begin{array}{l} \sigma(p) \to p \end{array} \right\} \end{split}$$

$$\begin{array}{ll} \text{if } \mathcal{L}(\mathcal{A}) = \varnothing & \text{then} & \mathcal{L}(\mathcal{A}') = \varnothing \\ \text{if } t \in \mathcal{L}(\mathcal{A}) & \text{then} & \sigma^+(t) \subseteq \mathcal{L}(\mathcal{A}') \end{array}$$

$\mathcal{L}(\mathcal{A}')$ is finite $\iff \mathcal{L}(\mathcal{A})$ is empty

Appendices

Summary and Perspectives

Refined **complexity** and **expressiveness** results:

- Expressiveness: TA⁼_k form a strict hierarchy
- **Membership:** NP-c for TA⁼, but PTIME for TA⁼_{ν}, $\forall k$
- **Emptiness:** quadratic for $TA_1^{=}$, EXPTIME-complete for $TA_2^{=}$
- **Finiteness:** PTIME for $TA_1^=$, EXPTIME-complete for $TA_2^=$

Left to do:

Effects of $\not\cong$, flat constraints, efficient heuristics, etcetera.

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appen
00000				

dices

References

Tree Walking Automata

in a Few Words

- Not a new formalism [Aho and Ullman, 1969]
- Sequential model, as opposed to branching tree automata
- Less extensively studied model until pprox 2000
- [Bojańczyk and Colcombet, 2005, Bojańczyk and Colcombet, 2006]
- Recent surge in interest, due mostly to connection to XML:
 - Caterpillar expressions [Brüggemann-Klein and Wood, 2000]
 - Streaming XML documents [Segoufin and Vianu, 2002]
 - type-checking XML-QL, XSLT,... [Milo et al., 2003]
- Rich variants: pebbles, marbles,...

 Internation
 LTL Checking
 B

 00000
 00000
 0

 000000
 0000000
 0

Bounded TAGE

Other Works

Appendices

References

Tree Walking Automata

in a Few Words

Existing research focused on **fundamental** problems: expressive power, determinisability, . . .

We study practical, efficient algorithms

In particular: the transformation from TWA to BUTA

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 61/24

LTL Checking

Bounded TAG

Other Works

Appendices

References

Preliminaries

Definition of Tree Walking Automata

A Tree-Walking Automaton is a tuple $\mathcal{A} = \langle \Sigma, Q, I, F, \Delta \rangle$

$$\Delta \subseteq \Sigma \times Q \times \underbrace{\{\star, 0, 1\}}_{\mathbb{T} : \text{ types}} \times \underbrace{\{\uparrow, \circlearrowleft, \swarrow, \searrow\}}_{\mathbb{M} : \text{ moves}} \times Q$$

• " $\langle f, p, \tau \rightarrow \mu, q \rangle$ " written for the tuple $(f, p, \tau, \mu, q) \in \Delta$.

• $\langle \Sigma_2, p, \mathbb{T} \to \circlearrowleft, q \rangle = \{ (\sigma, p, \tau, \circlearrowright, q) \mid \sigma \in \Sigma_2, \tau \in \mathbb{T} \}$

Remarks

- Ranked (binary) vs. unranked alphabet
- $\langle \Sigma_0, Q, \mathbb{T} \to \{\swarrow, \searrow\}, Q \rangle \cup \langle \Sigma, Q, \star \to \uparrow, Q \rangle$ invalid

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 62/24

reliminaries LTL (

LTL Checking

Bounded TAC

Other Works

Appendices

References

Preliminaries

Example Tree Walking Automaton

A very simple example TWA: $\mathfrak{X} = \langle \Sigma, Q, I, F, \Delta \rangle$

•
$$\Sigma_0 = \{a, b, c\} \text{ and } \Sigma_2 = \{f, g, h\}$$

• $Q = \{q_\ell, q_u\}, I = \{q_\ell\}, F = \{q_u\}$
 $\Delta = \langle a, q_\ell, \{\star, 0\} \rightarrow \circlearrowleft, q_u \rangle$
 $\cup \langle \Sigma, q_u, 0 \rightarrow \uparrow, q_u \rangle$
 $\cup \langle \Sigma_2, q_\ell, \{\star, 0\} \rightarrow \checkmark, q_\ell \rangle$

 ${\mathcal X}$ accepts exactly all trees whose left-most leaf is labelled by a — and the tree a itself.

Preliminaries	

Bounded TAGE

Other Works

Appendices

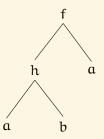
References

Preliminaries

Example Tree Walking Automaton

$$Q = \{ q_{\ell}, q_{u} \}, I = \{ q_{\ell} \}, F = \{ q_{u} \}$$

$$\begin{split} \Delta &= \langle \mathfrak{a}, \mathfrak{q}_{\ell}, \{\star, \boldsymbol{0}\} \to \circlearrowright, \mathfrak{q}_{\mathsf{u}} \rangle \\ & \cup \langle \Sigma, \mathfrak{q}_{\mathsf{u}}, \boldsymbol{0} \to \uparrow, \mathfrak{q}_{\mathsf{u}} \rangle \\ & \cup \langle \Sigma_{2}, \mathfrak{q}_{\ell}, \{\star, \boldsymbol{0}\} \to \swarrow, \mathfrak{q}_{\ell} \rangle \end{split}$$



Preliminaries	

Bounded TAG

Other Works

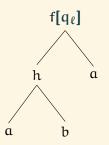
Appendices

References

Preliminaries

Example Tree Walking Automaton

$$\begin{aligned} \mathbf{Q} &= \{ \mathbf{q}_{\ell}, \mathbf{q}_{u} \}, \ \mathbf{I} = \{ \mathbf{q}_{\ell} \}, \ \mathbf{F} = \{ \mathbf{q}_{u} \} \\ \Delta &= \langle \mathbf{a}, \mathbf{q}_{\ell}, \{ \star, \mathbf{0} \} \rightarrow \circlearrowleft, \mathbf{q}_{u} \rangle \\ & \cup \langle \boldsymbol{\Sigma}, \mathbf{q}_{u}, \mathbf{0} \rightarrow \uparrow, \mathbf{q}_{u} \rangle \\ & \cup \langle \boldsymbol{\Sigma}_{2}, \mathbf{q}_{\ell}, \{ \star, \mathbf{0} \} \rightarrow \swarrow, \mathbf{q}_{\ell} \rangle \end{aligned}$$



Preliminaries	

Bounded TAG

Other Works

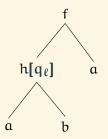
Appendices

References

Preliminaries

Example Tree Walking Automaton

$$Q = \{ q_{\ell}, q_{u} \}, I = \{ q_{\ell} \}, F = \{ q_{u} \}$$
$$\Delta = \langle a, q_{\ell}, \{ \star, \mathbf{0} \} \rightarrow \circlearrowleft, q_{u} \rangle$$
$$\cup \langle \Sigma, q_{u}, \mathbf{0} \rightarrow \uparrow, q_{u} \rangle$$
$$\cup \langle \Sigma_{2}, q_{\ell}, \{ \star, \mathbf{0} \} \rightarrow \swarrow, q_{\ell} \rangle$$



Preliminaries	

Bounded TAG

Other Works

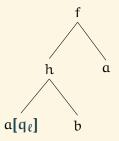
Appendices

References

Preliminaries

Example Tree Walking Automaton

$$\begin{aligned} \mathbf{Q} &= \{ \, \mathbf{q}_{\ell}, \mathbf{q}_{u} \, \}, \, \mathbf{I} = \{ \mathbf{q}_{\ell} \}, \, \mathbf{F} = \{ \mathbf{q}_{u} \} \\ \\ \Delta &= \langle \, \mathbf{\alpha}, \, \mathbf{q}_{\ell}, \{ \, \star, \, \mathbf{0} \, \} \to \circlearrowleft, \, \mathbf{q}_{u} \rangle \\ &\qquad \cup \langle \, \boldsymbol{\Sigma}, \, \mathbf{q}_{u}, \, \mathbf{0} \to \uparrow, \, \mathbf{q}_{u} \rangle \\ &\qquad \cup \langle \, \boldsymbol{\Sigma}_{2}, \, \mathbf{q}_{\ell}, \{ \, \star, \, \mathbf{0} \, \} \to \swarrow, \, \mathbf{q}_{\ell} \end{aligned}$$



LTL Checking

Bounded TAG

Other Works

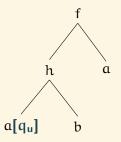
Appendices

References

Preliminaries

Example Tree Walking Automaton

$$\begin{aligned} \mathbf{Q} &= \{ \mathbf{q}_{\ell}, \mathbf{q}_{u} \}, \ \mathbf{I} &= \{ \mathbf{q}_{\ell} \}, \ \mathbf{F} = \{ \mathbf{q}_{u} \} \\ \Delta &= \langle \mathbf{a}, \mathbf{q}_{\ell}, \{ \star, \mathbf{0} \} \rightarrow \circlearrowleft, \mathbf{q}_{u} \rangle \\ & \cup \langle \boldsymbol{\Sigma}, \mathbf{q}_{u}, \mathbf{0} \rightarrow \uparrow, \mathbf{q}_{u} \rangle \\ & \cup \langle \boldsymbol{\Sigma}_{2}, \mathbf{q}_{\ell}, \{ \star, \mathbf{0} \} \rightarrow \swarrow, \mathbf{q}_{\ell} \rangle \end{aligned}$$



Preliminaries	

Bounded TAG

Other Works

Appendices

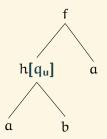
References

Preliminaries

Example Tree Walking Automaton

$$Q = \{ q_{\ell}, q_{u} \}, I = \{ q_{\ell} \}, F = \{ q_{u} \}$$
$$\Delta = \langle a, q_{\ell}, \{ \star, \mathbf{0} \} \rightarrow \circlearrowleft, q_{u} \rangle$$
$$\cup \langle \Sigma, q_{u}, \mathbf{0} \rightarrow \uparrow, q_{u} \rangle$$

$$\cup \langle \boldsymbol{\Sigma}_2, \boldsymbol{\mathfrak{q}}_\ell, \{\star, \boldsymbol{0}\} \to \swarrow, \boldsymbol{\mathfrak{q}}_\ell \rangle$$



LTL Checking

Bounded TAG

Other Works

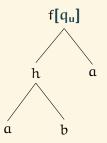
Appendices

References

Preliminaries

Example Tree Walking Automaton

$$\begin{split} Q &= \{ q_{\ell}, q_{u} \}, \ I = \{ q_{\ell} \}, \ F = \{ q_{u} \} \\ \Delta &= \langle \alpha, q_{\ell}, \{ \star, \boldsymbol{0} \} \rightarrow \circlearrowright, q_{u} \rangle \\ & \cup \langle \Sigma, q_{u}, \boldsymbol{0} \rightarrow \uparrow, q_{u} \rangle \\ & \cup \langle \Sigma_{2}, q_{\ell}, \{ \star, \boldsymbol{0} \} \rightarrow \swarrow, q_{\ell} \rangle \end{split}$$



Preliminaries	LTL

Boun

Other Works

Appendices

References

TWA to BUTA Transformation

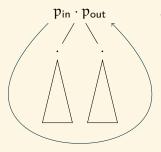
Given a TWA $\mathcal A,$ build an equivalent BUTA $\mathcal B$

- Solution outlined in [Bojańczyk, 2008] and [Samuelides, 2007]
- Based on the idea of tree loops
- \bullet Claims resulting states for $\mathfrak{B} {:}~\mathbb{T} \times 2^{Q^2}$ or det. $(2^{Q^2})^{\mathbb{T}}$
- Only proof sketches. No explicit algorithm is given.
- We argue that things are slightly less straightforward:
 - Needed states space: $\Sigma\times\mathbb{T}\times 2^{Q^2}$ or det. $\Sigma\times(2^{Q^2})^{\mathbb{T}}$
 - Existing implementations: *almost* correct [dtwa-tools]
- We introduce tree overloops
 - \bullet This time we really have $\mathbb{T}\times 2^{Q^2}$ or det. $(2^{Q^2})^{\mathbb{T}}$
 - Nicer upper bound if $\mathcal A$ is deterministic: $|\mathbb T|\cdot 2^{|Q|\log_2(|Q|+1)}$

With Pretty Pictures

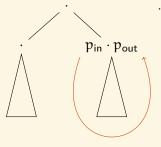
 $(p_{\text{in}},p_{\text{out}})\in Q^2$ is a loop of $\mathcal A$ on $t|_\alpha$ if there exists a run which

- starts in p_{in},
- ends in p_{out} at the local root α ,
- and always stays in the subtree



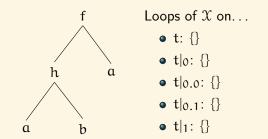
 $(p_{\text{in}},p_{\text{out}})\in Q^2$ is a loop of $\mathcal A$ on $t|_\alpha$ if there exists a run which

- starts in p_{in},
- ends in p_{out} at the local root α ,
- and always stays in the subtree



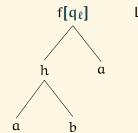
By Example

Recall that $\mathcal X$ visits the **left-most leaf** and goes back up if it is a.



By Example

Recall that ${\mathfrak X}$ visits the **left-most leaf** and goes back up if it is a.

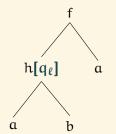


Loops of \mathcal{X} on... • t: {(q_{ℓ} , ?), (q_{ℓ} , q_{ℓ})}

- t|o: {}
- t|0.0: {}
- t|0.1: {}
- t|1: {}

The Idea of Tree Loops By Example

Recall that ${\mathfrak X}$ visits the **left-most leaf** and goes back up if it is a.

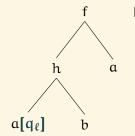


Loops of $\mathfrak X$ on...

- t: $\{(q_{\ell}, ?), (q_{\ell}, q_{\ell})\}$
- $t|_0: \{(q_\ell, ?), (q_\ell, q_\ell)\}$
- t|0.0: {}
- t|0.1: {}
- t|1: {}

By Example

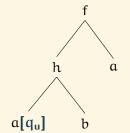
Recall that ${\mathfrak X}$ visits the left-most leaf and goes back up if it is a.



Loops of \mathfrak{X} on...

- t: $\{(q_{\ell}, ?), (q_{\ell}, q_{\ell})\}$
- $t|_0: \{(q_\ell, ?), (q_\ell, q_\ell)\}$
- $t|_{0.0}: \{(q_{\ell}, ?), (q_{\ell}, q_{\ell})\}$
- t|0.1: {}
- t|1: {}

Recall that \mathfrak{X} visits the **left-most leaf** and goes back up if it is a.



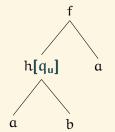
Loops of \mathcal{X} on. . .

- t: $\{(q_{\ell}, ?), (q_{\ell}, q_{\ell})\}$
- $t|_0: \{(q_\ell, ?), (q_\ell, q_\ell)\}$
- $t|0.0: \{(q_{\ell}, q_{u}), (q_{\ell}, q_{\ell}), (q_{u}, q_{u})\}$
- t|0.1: {}
- t|1: {}

By Example

By Example

Recall that ${\mathfrak X}$ visits the **left-most leaf** and goes back up if it is a.

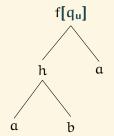


Loops of ${\mathfrak X}$ on. . .

- t: $\{(q_{\ell}, ?), (q_{\ell}, q_{\ell})\}$
- $t|o: \{(q_{\ell}, q_{u}), (q_{\ell}, q_{\ell}), (q_{u}, q_{u})\}$
- $t|o.o: \{(q_{\ell}, q_{u}), (q_{\ell}, q_{\ell}), (q_{u}, q_{u})\}$
- $t|_{0.1}$: {}
- $t|_1: \{\}$

By Example

Recall that $\mathcal X$ visits the **left-most leaf** and goes back up if it is a.

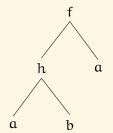


Loops of $\mathfrak X$ on. . .

- t: $\{(q_{\ell}, q_{u}), (q_{\ell}, q_{\ell}), (q_{u}, q_{u})\}$
- $t|_0: \{(q_\ell, q_u), (q_\ell, q_\ell), (q_u, q_u)\}$
- $t|o.o: \{(q_{\ell}, q_{u}), (q_{\ell}, q_{\ell}), (q_{u}, q_{u})\}$
- t|0.1: {}
- t|1: {}

. By Example

Recall that $\mathcal X$ visits the **left-most leaf** and goes back up if it is a.



Loops of $\mathfrak X$ on. . .

- t: $\{(q_{\ell}, q_{u}), (q_{\ell}, q_{\ell}), (q_{u}, q_{u})\}$
- $t|o: \{(q_{\ell}, q_{u}), (q_{\ell}, q_{\ell}), (q_{u}, q_{u})\}$
- $t|o.o: \{(q_{\ell}, q_{u}), (q_{\ell}, q_{\ell}), (q_{u}, q_{u})\}$
- $t|_{0.1}$: { $(q_{\ell}, q_{\ell}), (q_u, q_u)$ }
- $t|_1: \{(q_{\ell}, q_{\ell}), (q_u, q_u)\}$

Loops Decomposition

A loop is a **simple loop** on $t|_{\alpha}$ if there is a run which forms it and reaches α exactly twice — i.e. *simple looping run*

Proposition: loops decomposition

If $S \subseteq Q^2$ is the set of all simple loops of \mathcal{A} on a given subtree $\mathfrak{u} = t|_{\alpha}$, then S^* is the set of all loops of \mathcal{A} on \mathfrak{u} .

So to compute all loops, it **suffices** to compute **simple loops**.

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 68/24

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices
00000				

Computing Tree Loops

 $\mho^\tau(\mathfrak{u})=\mathsf{set}$ of loops of $\mathcal A$ on a subtree \mathfrak{u} of type τ

On leaves $u = a \in \Sigma_0$

Simple looping run = $(\alpha, p) \twoheadrightarrow (\alpha, q)$ only.

 $\mathfrak{H}_{\sigma}^{\tau} = \{ (\mathfrak{p}, \mathfrak{q}) \mid \langle \sigma, \mathfrak{p}, \tau \to \circlearrowleft, \mathfrak{q} \rangle \in \Delta \} \qquad \mho^{\tau}(\mathfrak{a}) = (\mathfrak{H}_{\mathfrak{a}}^{\tau})^{*}$

On inner nodes $u = f(u_0, u_1)$: by first move

- \uparrow impossible: leaves the subtree \mathfrak{u}
- \bigcirc all computed in \mathcal{H}_{f}^{τ}
- $\swarrow (\varepsilon, p), (0, p_0), (\beta_1, s_1), \dots, (\beta_n, s_n), (0, q_0), (\varepsilon, q),$ with all $\beta_k \leq 0$. So $(p_0, q_0) \in \mho^0(\mathfrak{u}_0)$
- $\searrow -(\varepsilon, p), (1, p_1), (\beta_1, s_1), \dots, (\beta_n, s_n), (1, q_1), (\varepsilon, q),$ with all $\beta_k \leq 1$. So $(p_1, q_1) \in \mho^1(\mathfrak{u}_1)$

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendice
00000				

Computing Tree Loops

 $\mho^\tau(u)=\mathsf{set}$ of loops of $\mathcal A$ on a subtree u of type τ

On leaves $u = a \in \Sigma_0$

Simple looping run = $(\alpha, p) \twoheadrightarrow (\alpha, q)$ only.

 $\mathfrak{H}^{\tau}_{\sigma} = \{ (p,q) \mid \langle \sigma, p, \tau \to \circlearrowleft, q \rangle \in \Delta \} \qquad \mho^{\tau}(\mathfrak{a}) = (\mathfrak{H}^{\tau}_{\mathfrak{a}})^{*}$

On inner nodes $u = f(u_0, u_1)$

() choose a side: $\theta \in \mathbb{S} = \{0, 1\}$

2 find an existing loop on that side: $(p_{\theta}, q_{\theta}) \in \mathcal{O}^{\theta}(\mathfrak{u}_{\theta})$

Such that one can connect beginning and end

•
$$\langle \mathbf{f}, \mathbf{p}, \tau \to \chi(\theta), \mathbf{p}_{\theta} \rangle \in \Delta^{a}$$
 and

 ${}^{\mathsf{a}}\chi(\cdot):\mathbb{S}\to\{\swarrow,\searrow\}\text{ such that }\chi(\boldsymbol{0})=\swarrow\text{ and }\chi(\boldsymbol{1})=\searrow$

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	References

Computing Tree Loops

 $\mho^\tau(u)=\mathsf{set}$ of loops of $\mathcal A$ on a subtree u of type τ

On leaves $u = a \in \Sigma_0$

Simple looping run = $(\alpha, p) \twoheadrightarrow (\alpha, q)$ only.

 $\mathfrak{H}^{\tau}_{\sigma} = \{ (p,q) \mid \langle \sigma, p, \tau \to \circlearrowleft, q \rangle \in \Delta \} \qquad \mho^{\tau}(\mathfrak{a}) = (\mathfrak{H}^{\tau}_{\mathfrak{a}})^{*}$

On inner nodes $u = f(u_0, u_1)$

$$\left(\mathfrak{H}_{\mathsf{f}}^{\tau} \cup \left\{ (\mathfrak{p}, \mathfrak{q}) \middle| \begin{array}{c} \exists \theta \in \mathbb{S} : \\ \exists (\mathfrak{p}_{\theta}, \mathfrak{q}_{\theta}) \in \mho^{\theta}(\mathfrak{u}_{\theta}) \\ \vdots \\ \langle \mathfrak{u}_{\theta}(\varepsilon), \mathfrak{q}_{\theta}, \theta \to \uparrow, \mathfrak{q} \rangle \in \Delta \end{array} \right\} \right)^{*}$$

Preliminaries

CTL Checking

Bounded TAC

Other Works

Appendices

References

Loops-Based Transformation Into BUTA

- **0** Input: A TWA $\mathcal{A} = \langle \Sigma, Q, I, F, \Delta \rangle$
- Initialise States and Rules to Ø
- $\textbf{@ for each } a \in \Sigma_0, \tau \in \mathbb{T} \textbf{ do}$
 - let $\mathsf{P}=(a,\tau,\mathfrak{H}_a^{\tau\,*})$ add $a\to\mathsf{P}$ to Rules and P to States
- **o** repeat until Rules remain unchanged
 - for each $f\in \Sigma_2, \tau\in \mathbb{T}$ do
 - add every $f(P_0,P_1) \rightarrow P$ to *Rules* and P to *States* where $P_0,P_1 \in \textit{States}$ such that $P_0 = (\sigma_0,0,S_0)$ and $P_1 = (\sigma_1,1,S_1)$ and $P = (f,\tau,(\mathcal{H}_f^\tau \cup S)^*)$, with S the set of simple loops built on the sons.

• **Output:** A BUTA \mathcal{B} equivalent to \mathcal{A} : $\mathcal{B} = \langle \Sigma, States, \{ (\sigma, \star, L) \in States \mid L \cap (I \times F) \neq \emptyset \}, Rules \rangle$ Preliminaries

CTL Checking

Bounded TAG

Other Works

Appendices

References

Loops-Based Transformation Into BUTA

- **0** Input: A TWA $\mathcal{A} = \langle \Sigma, Q, I, F, \Delta \rangle$
- Initialise States and Rules to Ø
- $\textbf{@ for each } a \in \Sigma_0, \tau \in \mathbb{T} \textbf{ do}$
 - let $P = (a, \tau, \mathcal{H}_a^{\tau *})$ add $a \to P$ to *Rules* and P to *States*
- **o** repeat until Rules remain unchanged
 - for each $f\in \Sigma_2, \tau\in \mathbb{T}$ do
 - add every $f(P_0,P_1) \rightarrow P$ to *Rules* and P to *States* where $P_0,P_1 \in \textit{States}$ such that $P_0 = (\sigma_0,0,S_0)$ and $P_1 = (\sigma_1,1,S_1)$ and $P = (f,\tau,(\mathcal{H}_f^\tau \cup S)^*)$, with S the set of simple loops built on the sons.

• **Output:** A BUTA \mathcal{B} equivalent to \mathcal{A} : $\mathcal{B} = \langle \Sigma, States, \{ (\sigma, \star, L) \in States \mid L \cap (I \times F) \neq \emptyset \}, Rules \rangle$
 Preliminaries
 LTL Checking
 Bounded TAGE
 Other Works
 Appendices
 I

 00000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Loops-Based Transformation Into BUTA

add every $f(P_0,P_1)\to P$ to $\it Rules$ and P to $\it States$ where $P_0,P_1\in \it States$ such that

• $P_0 = (\sigma_0, 0, S_0)$ and $P_1 = (\sigma_1, 1, S_1)$

• and
$$P = (f, \tau, (\mathcal{H}_f^{\tau} \cup S)^*)$$
,

• with S the set of simple loops built on the sons.

$$S = \left\{ \begin{array}{c|c} (p,q) & \exists \theta \in \mathbb{S} : \\ \exists (p_{\theta},q_{\theta}) \in S_{\theta} \end{array} : \begin{array}{c} \langle f,p,\tau \to \chi(\theta),p_{\theta} \rangle \in \Delta \\ \langle \sigma_{\theta},q_{\theta},\theta \to \uparrow,q \rangle \in \Delta \end{array} \right\}$$

 liminaries
 LTL Checking
 Bounded TAGE
 Other Works
 Appendices

 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Loops-Based Transformation Into BUTA

add every $f(P_0,P_1)\to P$ to $\it Rules$ and P to $\it States$ where $P_0,P_1\in \it States$ such that

• $\mathsf{P}_{\boldsymbol{0}}=(\sigma_{\boldsymbol{0}},\boldsymbol{0},S_{\boldsymbol{0}})$ and $\mathsf{P}_{\boldsymbol{1}}=(\sigma_{\boldsymbol{1}},\boldsymbol{1},S_{\boldsymbol{1}})$

• and
$$P = (f, \tau, (\mathcal{H}_f^\tau \cup S)^*)$$
,

• with S the set of simple loops built on the sons.

$$S = \left\{ \begin{array}{c} (p,q) \\ \exists (p_{\theta},q_{\theta}) \in S_{\theta} \end{array} : \begin{array}{c} \langle f,p,\tau \to \chi(\theta), p_{\theta} \rangle \in \Delta \\ \exists (p_{\theta},q_{\theta}) \in S_{\theta} \end{array} : \begin{array}{c} \langle \sigma_{\theta},q_{\theta},\theta \to \uparrow,q \rangle \in \Delta \end{array} \right\}$$

The son's symbol is needed to close the end of the loop!

Checking Bounded TAGE

Other Works

Appendices

References

Loops-Based Transformation Into BUTA The Real States Space

Sets of loops **cannot** be considered independently from the **symbol** in which they are rooted.

 $\begin{array}{l} \text{Consider } \langle \{ \, a,b \, \},p,\tau \to \circlearrowleft,q \rangle \text{ and } \langle b,q,\tau \to \uparrow,s' \rangle \in \Delta. \end{array} \\ \mathcal{U}^{\theta}(a) = \mathcal{U}^{\theta}(b) = \{(p,q)\}^* \text{, but } \mathcal{U}^{\tau}(f(a,a)) \neq \mathcal{U}^{\tau}(f(b,b)). \end{array}$

Needs states in $\Sigma\times \mathbb{T}\times 2^{Q^2}$ instead of just $\mathbb{T}\times 2^{Q^2}.$

Alphabet potentially large. How to get rid of it ?

s LTL Chec

Bounded TAC

Other Works

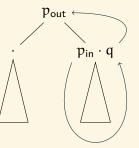
Appendices

References

From Tree Loops to Tree Overloops

Tree overloops: slight alteration of loops, with advantages.

- Fixes states space: $\mathbb{T}\times 2^{Q^2}$ instead of $\Sigma\times\mathbb{T}\times 2^{Q^2}.$
- Deterministic case: $|\mathbb{T}| \cdot 2^{|Q| \log_2(|Q|+1)}$ better upper bound
- 2 to 100 times smaller BUTA in average in random tests.



From Tree Loops to Tree Overloops

Tree overloops: slight alteration of loops, with advantages.

- Fixes states space: $\mathbb{T}\times 2^{Q^2}$ instead of $\Sigma\times\mathbb{T}\times 2^{Q^2}.$
- Deterministic case: $|\mathbb{T}| \cdot 2^{|Q| \log_2(|Q|+1)}$ better upper bound
- 2 to 100 times smaller BUTA in average in random tests.

 $(p,q) \in Q^2$ is an **overloop** of \mathcal{A} on $t|_{\alpha}$ if there exists a run which starts in p, ends in q at the *parent* of the root α , and always stays in the subtree, except for the last configuration.

Parent of ε is $\overline{\varepsilon}$. A TWA \mathcal{A} must be **escaped** into $\mathcal{A}' = \langle \Sigma, Q \uplus \{\checkmark\}, I, F, \Delta \uplus \langle \Sigma, F, \star \rightarrow \uparrow, \checkmark \rangle \rangle$.

Appendices

Overloops and Determinism

A TWA $\mathcal{A} = \langle \Sigma, Q, I, F, \Delta \rangle$ is **deterministic** if for all $\sigma \in \Sigma, p \in Q, \tau \in \mathbb{T}, |\langle \sigma, p, \tau \to M, Q \rangle \cap \Delta| \leq 1$.

In general, the overloops-based BUTA has up to $|\mathbb{T}| \times 2^{|Q|^2}$ states. However, it has at most $|\mathbb{T}| \cdot 2^{|Q| \log_2(|Q|+1)}$ states if \mathcal{A} is a DTWA.

If \mathcal{A} is deterministic, **overloop sets are functional**. Not like loops. Partial functions versus relations. At most $|Q + 1|^{|Q|}$ overloop sets, versus $2^{|Q|^2}$.

Preliminaries

LTL Checking

ounded TAG

Other Works

Appendices

References

Polynomial Approximation for Emptiness

Emptiness is ExpTime-complete

- XML Queries / Caterpillar accessibility
- Satisfiability of some XPath fragments
- But also TWA model-checking...

Standard: TWA \rightarrow BUTA (explosion) \rightarrow linear test. Alternative:

- An over-approximation; may detect emptiness
- Polynomial time and space
- Very surprisingly accurate in our random tests

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 74/24

liminaries	LTL Checking	

Other Works

Appendices

References

Polynomial Approximation for Emptiness

- **O Input:** An escaped TWA $\mathcal{A} = \langle \Sigma, Q, I, F, \Delta \rangle$
- **O** Initialise \mathcal{L}_0 , \mathcal{L}_1 , \mathcal{L}_{\star} to \varnothing
- **2** for each $a \in \Sigma_0, \tau \in \mathbb{T}$ do

• $\mathcal{L}_{\tau} \leftarrow \mathcal{L}_{\tau} \cup \mathcal{U}_{a}^{\tau}[\mathcal{H}_{a}^{\tau*}]$

- **③** repeat until \mathcal{L}_0 , \mathcal{L}_1 , \mathcal{L}_{\star} remain unchanged
 - for each $f \in \Sigma_2, \tau \in \mathbb{T}$ do
 - $\mathcal{L}_{\tau} \leftarrow \mathcal{L}_{\tau} \cup \mathcal{U}_{f}^{\tau}[(\mathcal{H}_{f}^{\tau} \cup S)^{*}]$

with S the set of simple loops built on \mathcal{L}_0 and $\mathcal{L}_1.$

Output: Empty if $\mathcal{L}_{\star} \cap (I \times \{\checkmark\}) = \emptyset$, else Unknown

liminaries	LTL Checking	

Other Works

Appendices

References

Polynomial Approximation for Emptiness

Input: An escaped TWA A = ⟨Σ, Q, I, F, Δ⟩
Initialise L₀, L₁, L_{*} to Ø
for each α ∈ Σ₀, τ ∈ T do

L_τ ← L_τ ∪ U_a^τ[H_a^{τ*}]

repeat until L₀, L₁, L_{*} remain unchanged

for each f ∈ Σ₂, τ ∈ T do
L_τ ← L_τ ∪ U_f^τ[(H_f^τ ∪ S)^{*}] with S the set of simple loops built on L₀ and L₁.

Output: Empty if L_{*} ∩ (I × {√}) = Ø, else Unknown

coarsest with one bucket \mathcal{L} ; finest as full transformation (exp)

 LTL Checking
 Bounded TAGE
 Other Works
 Appendices

 0000000
 0000
 0000
 0000
 Appendices

 Polynomial Approximation for Emptiness
 0000
 0000
 0000
 0000

Random tests

- Ad-hoc scheme: $\approx 20\,000$ TWA, $2 \le |Q| \le 20$, $|\Delta| \approx 3 \times |Q|$, 75% of empty languages, only two *Unknown* instead of *Empty*.
- ② Uniform scheme [Héam et al., 2009], REGAL back-end for FSA generation [Bassino et al., 2007]. 2 000 deterministic and complete TWA uniformly generated for each 2 ≤ |Q| ≤ 25.

Preliminaries	LTL Checking	Bounded TAGE	Other Works	Appendices	Refere

Polynomial Approximation for Emptiness Random tests

Preliminaries

CTL Checking

Bounded TAC

Other Works

Appendices

References

Size Comparison: Loops vs. Overloops One Example & Uniform Generation Scheme

For \mathfrak{X} : loops $||\mathfrak{B}_1|| = 1986$; overloops $||\mathfrak{B}_0|| = 95$; deterministic minimal $||\mathfrak{B}_m|| = 56$; smallest known non-deterministic $||\mathfrak{B}_s|| = 34$. Loops **60 times** worse than manual optimal; overloops **3 times**.

Orthogonal to **post-processing** cleanup: $||\mathcal{B}'_1|| = 1617$, $||\mathcal{B}'_0|| = 78$.

$$\frac{\|\mathcal{B}_{l}\|}{\|\mathcal{B}_{o}\|} \approx 20.9 \quad \text{and} \quad \frac{\|\mathcal{B}_{l}'\|}{\|\mathcal{B}_{o}'\|} \approx 20.7 \quad \text{and} \quad \frac{\|\mathcal{B}_{l}\|}{\|\mathcal{B}_{l}'\|} \approx \frac{\|\mathcal{B}_{o}\|}{\|\mathcal{B}_{o}'\|} \approx 1.2 \; .$$

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 77/24

Preliminaries

LTL Checking

Bounded TAGE

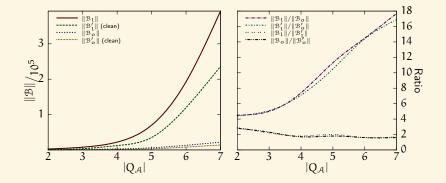
Other Works

Appendices

References

Size Comparison: Loops vs. Overloops

One Example & Uniform Generation Scheme



ninaries	LTL Checking

Bounded TA

Other Works

Appendices

References

References I

Aho, A. and Ullman, J. (1969). Translations on a context free grammar. Information and Control, 19(5):439–475.

Bassino, F., David, J., and Nicaud, C. (2007). REGAL : A library to randomly and exhaustively generate automata.

In CIAA, LNCS 4783, pages 303-305.

- Bojańczyk, M. (2008).
 Tree-Walking Automata.
 LATA'08 (tutorial), LNCS, 5196.
- Bojańczyk, M. and Colcombet, T. (2005).
 Tree-walking automata do not recognize all regular languages.
 STOC '05, pages 234–243. ACM.

Preliminaries

LTL Checking

Bounded TA

Other Works

ppendices

References

References II

- Bojańczyk, M. and Colcombet, T. (2006).
 Tree-walking automata cannot be determinized.
 Theoretical Computer Science, 350(2-3):164–173.
- Bouajjani, A. and Touili, T. (2002).
 Extrapolating tree transformations.
 In Brinksma, E. and Larsen, K. G., editors, *Computer Aided Verification, CAV'02*, volume 2404 of *Lecture Notes in Computer Science*, pages 539–554. Springer-Verlag.
- Boyer, B. and Genet, T. (2009).
 Verifying Temporal Regular Properties of Abstractions of Term Rewriting Systems.
 In *RULE*, volume 21 of *EPTCS*, pages 99–108.

ninaries LTL Checking

Bounded TA

Other Works

Appendices

References

References III

- Brüggemann-Klein, A. and Wood, D. (2000).
 Caterpillars: A context specification technique.
 Markup Languages, 2(1):81–106.
- Clarke, E. M. and Emerson, E. A. (1981).
 Design and synthesis of synchronization skeletons using branching-time temporal logic.
 In Kozen, D., editor, *Logic of Programs*, volume 131 of *Lecture Notes in Computer Science*, pages 52–71. Springer.
- Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., and Tommasi, M. (2008). *Tree Automata Techniques and Applications*. release November 18, 2008.

- Courbis, R., Héam, P.-C., and Kouchnarenko, O. (2009).
 TAGED Approximations for Temporal Properties Model-Checking.
 In [Maneth, 2009], pages 135–144.
- Dwyer, M., Avrunin, G., and Corbett, J. (1999).
 Patterns in property specifications for finite-state verification.
 In *ICSE'99*, pages 411–420. IEEE.

Feuillade, G., Genet, T., and Tong, V. V. T. (2004). Reachability analysis over term rewriting systems. *J. Autom. Reasoning*, 33(3-4):341–383.

Preliminaries	LTL Checking 00000 0000000	Bounded TAGE	Other Works	Appendices	References
			Refe	erences V	

Filiot, E. (2008).

Logics for n-ary queries in trees. PhD thesis, Université des Sciences et Technologie de Lille -Lille I.

 Filiot, E., Talbot, J.-M., and Tison, S. (2008).
 Tree automata with global constraints.
 In Developments in Language Theory, volume 5257 of Lecture Notes in Computer Science, pages 314–326. Springer.

 Héam, P., Hugot, V., and Kouchnarenko, O. (2010).
 SAT Solvers for Queries over Tree Automata with Constraints. In Third International Conference on Software Testing, Verification, and Validation Workshops, pages 343–348. IEEE.
 Preliminaries
 LTL Checking
 Bounded TAGE
 Other Works
 Appendices
 References

 00000
 0000
 0000
 0000
 0000
 0000
 0000

 00000
 0000
 0000
 0000
 0000
 0000

References VI

- Héam, P.-C., Hugot, V., and Kouchnarenko, O. (2011).
 Loops and overloops for tree walking automata.
 In CIAA'11, LNCS 6807, pages 166–177.
- Héam, P.-C., Hugot, V., and Kouchnarenko, O. (2012a).
 From linear temporal logic properties to rewrite propositions.
 In Gramlich, B., Miller, D., and Sattler, U., editors, *IJCAR'12*, volume 7364 of *Lecture Notes in Computer Science*, pages 316–331. Springer.
- Héam, P.-C., Hugot, V., and Kouchnarenko, O. (2012b).
 Loops and overloops for tree-walking automata.
 Theoretical Computer Science, 450:43–53.

 Preliminaries
 LTL Checking
 Bounded TAGE
 Other Works
 Appendices

 00000
 0000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000</td

es

References VII

- Héam, P.-C., Hugot, V., and Kouchnarenko, O. (2012c).
 On positive TAGED with a bounded number of constraints.
 In Moreira, N. and Reis, R., editors, CIAA, volume 7381 of Lecture Notes in Computer Science, pages 329–336. Springer.
- Héam, P.-C., Nicaud, C., and Schmitz, S. (2009).
 Random generation of deterministic tree (walking) automata.
 In [Maneth, 2009], pages 115–124.
- 🗎 Hı

Hugot, V. (2013). *Tree Automata, Approximations, and Constraints for Verification – Tree (Not Quite) Regular Model-Checking.* Ph.D. thesis (to be defended), Université de Franche-Comté.
 Preliminaries
 LTL Checking
 Bounded TAGE
 Other Works
 Appendices
 References

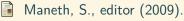
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0

References VIII

Jacquemard, F., Klay, F., and Vacher, C. (2009). Rigid tree automata.

In Horia Dediu, A., Mihai Ionescu, A., and Martín-Vide, C., editors, *Proceedings of the 3rd International Conference on Language and Automata Theory and Applications (LATA'09)*, volume 5457 of *Lecture Notes in Computer Science*, pages 446–457, Tarragona, Spain. Springer.

Kesten, Y., Maler, O., Marcus, M., Pnueli, A., and Shahar, E. (1997).
 Symbolic model checking with rich assertional languages.
 In Grumberg, O., editor, CAV, volume 1254 of Lecture Notes in Computer Science, pages 424–435. Springer.



Implementation and Application of Automata, 14th International Conference, CIAA 2009, Sydney, Australia, July 14-17, 2009. Proceedings, volume 5642 of Lecture Notes in Computer Science. Springer.

- Manna, Z. and Pnueli, A. (1995). Temporal Verification of Reactive Systems - Safety. Springer.
- Meseguer, J. (1992).
 Conditioned rewriting logic as a unified model of concurrency. Theoretical Computer Science, 96(1):73–155.

 Preliminaries
 LTL Checking
 Bounded TAGE
 Other Works

 00000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Appendices

References

References X

Milo, T., Suciu, D., and Vianu, V. (2003).
 Typechecking for XML transformers.
 J. Comput. Syst. Sci., 66(1):66–97.

 Queille, J.-P. and Sifakis, J. (1982).
 Specification and verification of concurrent systems in CESAR.
 In Dezani-Ciancaglini, M. and Montanari, U., editors,
 Symposium on Programming, volume 137 of Lecture Notes in Computer Science, pages 337–351. Springer.

Samuelides, M. (2007).
 Automates d'arbres à jetons.
 PhD thesis, Université Paris-Diderot - Paris VII.

Preliminaries

LTL Checking

Bounded TAC

Other Works

ppendices

References

References XI

- Segoufin, L. and Vianu, V. (2002).
 Validating Streaming XML Documents.
 In *PODS*, pages 53–64. ACM.
 - Vacher, C. (2010).

Tree automata with global constraints for the verification of security properties. Ph.D. thesis, ENS Cachan.