Tree Automata, Approximations, and
Constraints for Verification

Ph.D. thesis defence for Vincent Hugot,
Supervised by O. Kouchnarenko and P.-C. Héam
{pheam, vhugot, okouchna}@femto-st.fr

University of Franche-Comté
DGA & Inria/CASSIS & FEMTO-ST (DISC)

August 1, 2014

0000000 (ele]e} 0000

Model-Checking

Introduced in
[Clarke and Emerson, 1981, Queille and Sifakis, 1982]

Check M, sp = @:
“do all executions of M starting in so follow @?"

M finite states/transitions model

So initial state
@ the specification, in temporal logic

Limited by state explosion. Prevented by parametrisation.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 1/24

0e000 00000 000 0000
0000000 000 0000

Regular Model-Checking

Introduced in [Kesten et al., 1997]
regular model-checking.

states — finite words
sets of states — finite-state automata
transitions — finite-state transducers, semi-Thue systems

b

] A)
—(o q1 @ + {aa,aba,abba,...}
N Q

Automata provide finite, tractable symbolic representations
of infinite sets of states.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 2/24

0e000 00000 000 0000
0000000 000 0000

Regular Model-Checking

Introduced in [Kesten et al., 1997]
tree regular model-checking.

states — finite trees
sets of states — tree automata
transitions — tree transducers, term rewriting systems

b

] /O\)
—(o q1 @ + {aa,aba,abba,...}
N @

Automata provide finite, tractable symbolic representations
of infinite sets of states.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 2/24

0000000 (ele]e} 0000

Reachability Analysis (in TRMC)

e.g. [Feuillade et al., 2004, Bouajjani and Touili, 2002]

So initial language tree automaton

B set of “bad” states tree automaton

R the transitions rewrite system or transducer
B

bpad R*(So) 7

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 3/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices
[e]e] le]e]

Reachability Analysis (in TRMC)

e.g. [Feuillade et al., 2004, Bouajjani and Touili, 2002]

So initial language tree automaton

B set of “bad” states tree automaton

R the transitions rewrite system or transducer
B

bpad R*(So) 7

@ Regularity-preserving classes, context-free step,. ..

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence

References

3/24

Preliminaries
00000

R

LTL Checking Bounded TAGE Other Works Appendices

Reachability Analysis (in TRMC)

e.g. [Feuillade et al., 2004, Bouajjani and Touili, 2002]

initial language tree automaton
set of “bad” states tree automaton
the transitions rewrite system or transducer
B
bpad R*(So) Approx J
e

@ Regularity-preserving classes, context-free step,. ..

@ Regular over- or under-approximations.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence

References

3/24

Variations on Reachability Analysis
With Rewriting: e.g.
[Meseguer, 1992, Boyer and Genet, 2009, Courbis et al., 2009]

B
90

So
Reachability analysis = [0 —3B.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 4/24

0000000 000 0000

Variations on Reachability Analysis
With Rewriting: e.g.
[Meseguer, 1992, Boyer and Genet, 2009, Courbis et al., 2009]

Reachability analysis = [0 —=B. More general: e.g. J(X = oY).

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 4/24

0000000 000 0000

Variations on Reachability Analysis
With Rewriting: e.g.
[Meseguer, 1992, Boyer and Genet, 2009, Courbis et al., 2009]

So

Reachability analysis = [J—B. More general: e.g. (X = oY).
Same on transitions: [J(# = o).

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 4/24

0000e 00000 000 0000
0000000 000 0000

@ Model-Checking LTL on Rewrite Sequences
@ Statement of the Central Problem
@ Our Approach: An Overview

© TAGE With a Bounded Number of Constraints
@ Global Equality Constraints
@ Overview of the Results

© Other Works and Some Perspectives
@ Results on SAT & Tree-Walking Automata
@ Perspectives and Questions

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 4/24

@ Model-Checking LTL on Rewrite Sequences
@ Statement of the Central Problem

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 4/24

00000 0@000 000 0000
0000000 000 0000

Model-Checking Rewrite Sequences
[Meseguer, 1992]

Order of application of rewrite rules.

Check R, TT = @, with

R a term rewriting system (TRS)
TT the initial (regular) tree language
@ a linear temporal logic (LTL) formula

Example: ¢ = O(X = eY)

X,Y C R are sets of rules

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 5/24

00000 0@000 000 0000
0000000 000 0000

Model-Checking Rewrite Sequences
[Meseguer, 1992]

/

T‘iEX T'iEY
R*/,——-’ t-i, >(Uyq > Vi f------ >
. T]’EX m TJ-,GY
o @ o\ @ ----- -

N\ =
\\ 5%;\\\‘
gi;\“-->

¢ =0O(X = eY)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 5/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

0O@000

Model-Checking Rewrite Sequences
[Meseguer, 1992]

Order of application of rewrite rules.
Check R, TT = @, with

R a term rewriting system (TRS)
TT the initial (regular) tree language
@ a linear temporal logic (LTL) formula

Example: ¢ = 0O(X = ¢Y)

X,Y C R are sets of rules
X = “ask PIN code"” = {ask}
Y = “authenticate or cancel” = {authj, authy, can}

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 5/24

00000 00e00 000 0000
0000000 000 0000

Model-Checking Rewrite Sequences

Overview of the Model-Checking Process

Whether R, TT = ¢ is undecidable.

¢

To Rew. Prop.

81y...,0
To Approxj. Do on RITE o ?

Two-step positive approximated decision [Courbis et al., 2009]:

T a rewrite proposition — language equation
dx TAGE-based approximated procedures
TAGE tree automata with constraints: more precision

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 6/24

Model-Checking Rewrite Sequences
Prior work [Courbis et al., 2009]

“The system R satisfies the property”. ..

R, = OX = oY)

. is equivalent to the rewrite proposition. ..

[RAYIX(R*(TT)) =@ A X(R*(IT) €Y (T)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 7/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References
00080

Model-Checking Rewrite Sequences
Prior work [Courbis et al., 2009]

“The system R satisfies the property". ..

R,ITE OX = oY)
. is equivalent to the rewrite proposition. ..
RAVIX(R*(M)) =& A X(R*(T) €Y~ (T)

. approximated with TAGE by, assuming Y is left-linear,

IsEmpty(OneStep(R \ Y, Approx(A,R)), X) and
Subset(0OneStep(X, Approx(A,R)), Backward(Y)),

where L(A) =TI, L(Approx(A,R)) 2 R*(L(A))

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 7/24

0000000 000 0000

Model-Checking Rewrite Sequences
Prior work [Courbis et al., 2009], and New Goals

QO R ITE OX = eY)
[RAVIX(R* (M) =2 A X(R*(T) €Y~ (T)
Q@ R, TITE =AY A O(eY = X)
Y(M =2 A YIR\XI(R*(M)) = 2
Q@ RTME OX=onY)

Y(R*(X(R*(M))) = @

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 8/24

00000 0000e 000 0000
0000000 000 0000

Model-Checking Rewrite Sequences
Prior work [Courbis et al., 2009], and New Goals

Main goal: from manual to automatic translations.

@99

O01y...40
To Rew. Prop. n To Approx. Dornfn

Sub-goal: efficient procedures =—> TAGE complexity study.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 8/24

@ Model-Checking LTL on Rewrite Sequences

@ Our Approach: An Overview

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 8/24

Intuitions for the Translation
QO RITE =X:

“The first transition, if it occurs, is not by X"

m = X(IM =g

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

Intuitions for the Translation
Q —-X:
“The first transition, if it occurs, is not by X"

m = X(IM =g
QX:

“There is a first transition, and it is by X"

o= RA\XI(M =27

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

Intuitions for the Translation
Q —-X:
“The first transition, if it occurs, is not by X"

m = X(IM =g

“There is a first transition, and it is by X"

m = R\X|(M=g ATCX (T

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

0O@00000 000 0000

Intuitions for the Translation

Q —-X:
“The first transition, if it occurs, is not by X"
m = X(IM =g
Q X:
“There is a first transition, and it is by X"
m = [R\X(M=2 ATTCX (T
Q O-X:

“No transition that occurs is by X"

n3 = X(R*(M) =2

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

0O®00000 000 0000

Intuitions for the Translation

Q —-X: m = X(IMM =g
Q9 X: m = [R\X(M=2 ATTCX (T
e D_IX:

“No transition that occurs is by X"

3 = X(R*(M) =2 = 7y [R*(1) /]
Q OX:

“All transitions that occur are by X"

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

0O@00000 ele]e} 0000

Intuitions for the Translation

o -X: m = X(IMM =g
Qo X: m = [R\X(M=2 ATTCX (T
e D_IX:

“No transition that occurs is by X"

3 = X(R*(M) =2 = 7y [R*(1) /]
Q OX:

“All transitions that occur are by X"

70 [R* (1) /TT]
[RAX(R*(M) =2 A R*(IT) € X~ (T)

T4

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

0O@00000 ele]e} 0000

Intuitions for the Translation

o -X: m = X(IMM =g
Qo X: m = [R\X(M=2 ATTCX (T
e D_IX:

“No transition that occurs is by X"

3 = X(R*(M) =2 = 7y [R*(1) /]
Q OX:

“All transitions that occur are by X"

70 [R* (1) /TT]
[RAX(R*(M) =2 A R*(IT) € X~ (T)

T4

?
w-language! Too strong

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

0O@00000 000 0000

Intuitions for the Translation

Q —-X: m = X(IMM =g
Q9 X: m = [R\X(M=2 ATTCX (T
e D_IX:

“No transition that occurs is by X"

3 = X(R*(M) =2 = 7y [R*(1) /]
Q OX:

“All transitions that occur are by X"

g = [RAX|(R*(IT) =2

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

O®@00000

Intuitions for the Translation

9 -X: m = X(I) =2

Q X: m = [R\X(M=2 ATTCX (T
Q OI-X: 3 = X(R*(MN) =@ = m;[R*(1T) /1]
Q OX: iy = [RAX]|(R*(M) =2

@ Conjunction: if @ : 715 and VP : 7t then @ A : 75 A 7TE.

@:m="RTIE @ is translated by 7"
“for all executions, @ is satisfied”

Vx.P(x) A ¥x.Q(x) < V¥x.(P(x) A Q(x))

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

00000 00000 (elele} 0000
0O@00000 ele]e} 0000

Intuitions for the Translation

o -X: m = X(IMM =g

Q X: m = R\X(M=a ATCX (T
Q O-X: 3 = X(R*(MN) =@ = m;[R*(1T) /1]
Q OX: g = [RAX|(R*(T) =2

@ Conjunction: if ¢ : 75 and P : 7 then @ A : 75 A 7L

Vx.P(x) A ¥x.Q(x) < V¥x.(P(x) A Q(x))

@ Disjunction: mg V7, = R,TTE= @ VY

Vx.P(x) V ¥x.Q(x) = V¥x.(P(x) V Q(x))

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

O®@00000

Intuitions for the Translation

9 -X: m = X(I) =2

Q X: m = [R\X(M=2 ATTCX (T
Q OI-X: 3 = X(R*(MN) =@ = m;[R*(1T) /1]
Q OX: iy = [RAX]|(R*(M) =2

@ Conjunction: if @ : 715 and VP : 7t then @ A : 75 A 7TE.

Vx.P(x) A ¥x.Q(x) < V¥x.(P(x) A Q(x))

@ Disjunction: mg V7, = R,TTE= @ V1

Vx.P(x) V ¥x.Q(x) = V¥x.(P(x) V Q(x))
@ Negation: R, TTH @ # R,1TE= =@ : “NNF" required

Vx.=P(x) # =VYx.P(x)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

00000 00000 000 0000
0O@00000 ele]e} 0000

Intuitions for the Translation

Qo -X: m = X(I =g

Qo X: m = R\XI(M=a ATCX (T
Q O-X: 3 = X(R*(IN) =@ = my [R*(TT)/T1]
Q OX: iy = [RAX|(R*(TT)) =@

@ Conjunction: if ¢ : 75 and P : 7L then @ AP : 75 A 7L,
@ Disjunction: gV, = R,TTE= @ V1

@ Negation: R,TTE ¢ # R, 1T - : "NNF" required
@ Implication: X = oY:

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

00000 00000 000 0000
0O@00000 ele]e} 0000

Intuitions for the Translation

Q —-X: m = X(I =g

Q X: m = R\XI(M=a ATCX (T
Q@ 1-X: 3 = X(R*(IN) =@ = my [R*(TT)/T1]
Q OX: iy = [RAX|(R*(TT)) =@

@ Conjunction: if @ : 75 and P : 75 then @ A : 715 A 7L
@ Disjunction: mg V7, = R,TTE= @ VY
@ Negation: R,TTH ¢ # R,ITE -¢ : “NNF” required
© Implication: X = eY:

;= [R\YIX(M) =2 A X(TT) Y (T)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

00000 00000 000 0000
0O@00000 ele]e} 0000

Intuitions for the Translation

0 -X: m ()
Q0 X: my = [R\X () meX—1(7)
@ O-X: T3 = ((M) =2 = mI[R*(11)/M]

Q OX: g = [R\X](R*(TT))

@ Conjunction: if @ : 75 and P : 75 then @ A : 715 A 7L
@ Disjunction: mg Vi, = R,TTE= @ VY
@ Negation: R,TTH ¢ # R,ITE ¢ : “NNF” required
© Implication: X = eY:

;= [R\YIX(M) =2 A X(TT) Y (T)

X:imy, Y, = mlY/X], n; = wS[X(1T)/T]

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

00000 00000 (elele} 0000
0O@00000 ele]e} 0000

Intuitions for the Translation

0 -X: m o= X() =
Q0 X: thE[\ X () meX—1(7)
@ O-X: 3 = X(R*(M) =2 = m[R*(T1)/T]

Q OX: g = [R\X](R*(TT))

@ Conjunction: if ¢ : 75 and P : 7 then @ A : 75 A 7L,
@ Disjunction: gV, = R,TTE= @ V1
@ Negation: R,TTH ¢ # R, 1T - : "NNF" required
© Implication: X = oY:

;= [R\YIX(M) =2 A X(TT) Y (T)

X:mp, Y, = mo[Y/X], n; = wh[X(1T)/T]

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

00000 00000 (elele} 0000
0O@00000 ele]e} 0000

Intuitions for the Translation

0 -X: m o= X() =
Q0 X: thE[\ X () meX—1(7)
@ O-X: 3 = X(R*(M) =2 = m[R*(T1)/T]

Q OX: g = [R\X](R*(TT))

@ Conjunction: if ¢ : 75 and P : 7 then @ A : 75 A 7L,
@ Disjunction: gV, = R,TTE= @ V1

@ Negation: R,TTH ¢ # R, 1T - : "NNF" required
© Implication: X = oY:

7 = [RA\YIX(M) =2 A X1 <Y (T)
X:mp, Y, = m[Y/X], ny = 7 ()/TT]

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

O®@00000

Intuitions for the Translation

=X: m = X(T) =2

X: m = R\XI(M=a ATCX (T
0 =X: niz3 = X(R*(M) =@ = m;[R*(M)/T]
OX: g = [R\X|(R*(TT)) =@

Conjunction: if ¢ : 715 and \ : 7f then @ A : 5 A TIL.
Disjunction: mg V7, = R,ITE @ V1Y

Negation: R, TTH @ # R,TTE - : “NNF" required
Implication: X = oY:

;= [RA\YIX(M) =2 A X(IT) Y 1 (T)

X:mp, Yim, = mlY/X], n; = wb[X(1T)/M]

OX = eY):my = 77 [R*(TT)/T]

©00000O0CO

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

O®@00000

Intuitions for the Translation

=X: m = X(T) =2

X: m = R\XI(M=a ATCX (T
0 =X: niz3 = X(R*(M) =@ = m;[R*(M)/T]
OX: g = [R\X|(R*(TT)) =@

Conjunction: if ¢ : 715 and \ : 7f then @ A : 5 A TIL.
Disjunction: mg V7, = R,ITE @ V1Y

Negation: R,TTE ¢ # R, TTE= - : "NNF" required
Implication: X = oY:

m; = [RAYIX(M) =2 A X(IM Y (T)

X:mp, Yim, = mlY/X], = 7t} [X(IT)/TT]

D(X = .Y) 1Ty = Ty R*()/ﬂ

What about eY = X 7

©00000O0CO

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

O®@00000

Intuitions for the Translation

= X: m = X(I =g

X: m = R\XI(M=a ATCX (T
0 =X: niz3 = X(R*(M) =@ = m;[R*(M)/T]
OX: g = [R\X|(R*(TT)) =@

Conjunction: if ¢ : 715 and \ : 7f then @ A : 5 A TIL.
Disjunction: mg V7, = R,ITE @ V1Y

Negation: R, TTH @ # R,TTE - : “NNF" required
Implication: X = oY:

;= [RA\YIX(M) =2 A X(IT) Y 1 (T)

X:mp, Yim, = mlY/X], = 7t} [X(IT)/TT]

D(X = .Y) 1Ty = Ty R*()/ﬂ

What about @Y = X ? Other techniques (signatures,...)

©00000O0CO

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24

00@0000 000 0000

Translation Rules, by Examples

A dozen rules, e.g. conjunction:

(Mo IF @ AD)
i(ﬂ;cr I @) A (TTgo IF V)

always (simplest case):

(Mse IF Oo)
i@*(ﬂ)s*e IO

positive literal:

(Mso IF X) (G\X)<lh(G\X):s

$ h(o\X)—
h(o\X) _
g5 =2 A /\ no\x 17
keVo, k=0

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 10/24

0008000 ele]e} 0000

LTL — Rewrite Proposition

Derivation Tree

Derivation tree: automatic translation and proof

(Mse Ik OX = oY)
(R*(M) 5 xe |- X = oY)
t (R*(M 5 IX3RIN:§ |- oY)
t (R*(M) 3 zx iRIl\hj I oY)
t i<X sxe |- Y)
[R\Y((“(M)) = o

!

AX(R*(TT)) S R-T(T) .

Optional global optimisation phase: R~ (T) — Y~ 1(7).

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 11/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices

0O000@00

Translatable Fragment

Exactly rewrite-translatable fragment:

Xep(R), meN

e =T[L|X|=X[oA@[b=0¢|ep|op|[Oe
Ye=TI[L[X[=X[PVY[OAYP|ep|op|D
@ := at least e-stabilisable [J ¢

Practical pre-experimental evaluation:
good partial support of [Dwyer et al., 1999] patterns.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence

References

12/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

0000080

LTL on Rewrite Sequences

Perspectives (Translation Into Rewrite Proposition)

@99

To Rew. Prop.

B0 0cq B

o [Héam et al., 2012a] Int. Conf. IJCAR'12, Manchester

o Extensions: Past-Time and Existential LTL

@ Dealing with eventuality by studying “exhaustion”:
e.g. O ={f(x) — x} holds with bounded f-height & no intro

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 13/24

00000 00000 000 0000
000000e ele]e} 0000

LTL on Rewrite Sequences

Perspectives (Approximated Decision Procedures)

O01y...y0
To Rew. Prop. s To Approg. Do fn RIMME@?

@ Coping with more non-linearity — e.g. protocols, rewrite steps
e.g. f(x,x) = g(x), f(x) — g(x,x),...
@ Tractable algorithmic toolbox for TAGE

Last points = closer study of TAGE complexity

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 14/24

© TAGE With a Bounded Number of Constraints
@ Global Equality Constraints

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 14/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References
(o] le}

Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

TAGE, TA=, Positive TAGED, A = (A, Q,F, A, =) :

(A, Q,F,A) vanilla tree automaton ta(A)

~ equality constraints, = C Q2
Constraint p= q :

run p of A on t:

@ run of ta(A) on t

o satisfying =: Va,B € P(t); p(x)=p(B) = tla = tip
accepting run: accepting for ta(A)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 15/24

Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A={a/o,f/2}, Q=1{q,G,q9r} F={qr}, §=4q, and
A ={f(4,49) — qs, f(q,9) = q, f(q,9) =4, a = q, a =G}

u= f and v = f
/\ /\
f f f a

a/ a a/\a a/\a

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 16/24

0000000 000 0000

Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A={a/o,f/2}, Q=1{q,G,q9r}, F={qr}, §=4q, and

A ={f(q,9) — qs, f(q,9) = q, f(9,9) > q, a—q, a = q}

U, pu = f gr and v= f
/N /\
fq fq f o

/N /N /\
aqaqagqadg a a

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 16/24

Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A={a/o,f/2}, Q=1{q,q,q9¢} F={q¢}, §=4q, and
A ={f(q,9) — qs, f(q,9) = q, f(9,9) > q, a—q, a = q}

u= f and v,p, =

qr
\
a g

.Q\—h
B AN o

a a a a a

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 16/24

Statement of the Central Problem
Our Approach: An Overview

© TAGE With a Bounded Number of Constraints
Global Equality Constraints
@ Overview of the Results

Results on SAT & Tree-Walking Automata
Perspectives and Questions

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 16/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

oeo

TA™ versus TA,

Restriction on the kind of constraints: Rigid Automata (RTA)

@ Same expressive power as TA=

@ Less compact representations

o Linear emptiness / finiteness tests, vs. EXPTIME-complete
o Applications: [Jacquemard et al., 2009, Vacher, 2010]

What of the number of constraints? TA, A= (X, Q,F A=

(Z,Q,FA =) TA= A
~ such that Card(=) < k

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 17/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

ooe

Summary of Results

o [Héam et al., 2012¢] Int. Conf. CIAA'12, Porto

e Strict hierarchy of powers: £(TAY) C L(TA)
e Emptiness linear for TAT, ExpTime-complete TAS
o Finiteness polynomial for TAT, ExpTime-complete for TAS

@ NP-complete membership becomes polynomial if k fixed.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 18/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices

ooe

Summary of Results
o [Héam et al., 2012¢] Int. Conf. CIAA'12, Porto

@ Strict hierarchy of powers: £(TA) € L(TA 1)

N,
A

Ukg—1 Uk

ug € (.T(Ai) Vi

(0
/1N
u; uy; L,

e Emptiness linear for TAT, ExpTime-complete TAS

o Finiteness polynomial for TAT, ExpTime-complete for TAS

@ NP-complete membership becomes polynomial if k fixed.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence

References

18/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices

Summary of Results

o [Héam et al., 2012¢] Int. Conf. CIAA'12, Porto

e Strict hierarchy of powers: L(TAY) c L(TA)
e Emptiness linear for TAT, ExpTime-complete TAS

0O—0—0— +++— 0 — Up
] |
o U uy us3 Un—1
\O'HO'HO'—M —0—u
[|
u u u u

o Finiteness polynomial for TAT, ExpTime-complete for TAS
@ NP-complete membership becomes polynomial if k fixed.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence

References

18/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

ooe

Summary of Results

©

[Héam et al., 2012c] Int. Conf. CIAA'12, Porto

Strict hierarchy of powers: £(TAY) C L(TA 1)
e Emptiness linear for TAT, ExpTime-complete TAS

o Finiteness polynomial for TAT, ExpTime-complete for TAS

Reduction of emptiness to finiteness.

@ NP-complete membership becomes polynomial if k fixed.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 18/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices

ooe

Summary of Results

@ NP-complete membership becomes polynomial if k fixed.

Gp +— heH, — St
[]

5

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence

References

18/24

© Other Works and Some Perspectives
@ Results on SAT & Tree-Walking Automata

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 18/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References
0@00

TAGE SAT & Tree-Walking Overloops

o [Héam et al., 2010] Int. Workshop CSTVA'10, Paris
o [Héam et al., 2011] Int. Conf. CIAA'11, Blois
o [Héam et al., 2012b] Int. Journal Theo. Comp. Sci.

@ SAT Encoding for TAGE membership & optimisations.

@ Formal treatment of tree-walking loops for transformation into
2 o 0 2
bottom-up TA; revealed missing factor in space £ x T x 2Q".

. 2
@ Introduced tree-walking overloops: restores T X 2Q% smaller
automata in practice in extensive random tests.

@ Shown overloops upper-bound is |T| - 2!Ql1e&2(IQI+1) i the
deterministic case. Note that exponential is unavoidable.

@ Polynomial overloops-based approximation to TWA
emptiness, vs. EXPTIME-c. Very precise in random tests.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 19/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References
[e]e] o]

Polynomial Approximation for Emptiness

Random tests

@ Ad-hoc scheme: =~ 20000 TWA, 2 < |QJ < 20, |Al =3 x|Q|,
75% of empty languages, only two Unknown instead of Empty.

@ Uniform scheme [Héam et al., 2009], REGAL back-end for FSA

generation [Bassino et al., 2007]. 2000 deterministic and
complete TWA uniformly generated for each 2 < |Q| < 25.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 20/24

0000000 (ele]e} 0000

Polynomial Approximation for Emptiness

Random tests

| P:Rproxim;)tion - 2IOOO samlples
50 R pproximation — 200 samples -------
l Exact — 200 samples -=------

2 4 6 8 10 12 16 18 20 22 24

14
Q|

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 20/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References
[e]ele] }

Size Comparison: Loops vs. Overloops

One Example & Uniform Generation Scheme

For X: loops ||B|| = 1986; overloops ||B.|| = 95; deterministic
minimal ||Bm|| = 56; smallest known non-deterministic || Bs|| = 34.

Loops 60 times worse than manual optimal; overloops 3 times.

Orthogonal to post-processing cleanup: ||B/|| = 1617, ||B}|| = 78.

/

~ ~1.2.
1Bo |l 1Bsll IB/]| 1Bl

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 21/24

0000

0000000 000

Size Comparison: Loops vs. Overloops

One Example & Uniform Generation Scheme

. T T T T i . . s
1B IBL/[Boll y
HB;{H (clean) r ||B’t\|/|\3;,\| e
IBo - 1B /IB 1 y
| o 17 1B I/12% | e 114
: 112
3 | 1103
: (=
a i
: 16
| - 14
_»"" - 2
T R | :
7

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 21/24

Statement of the Central Problem
Our Approach: An Overview

Global Equality Constraints
Overview of the Results

© Other Works and Some Perspectives
Results on SAT & Tree-Walking Automata
@ Perspectives and Questions

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 21/24

00000 00000 000 0000
0000000 000 0@00

Conclusion / Summary

Generalisation of the translation

01y...,0
To Approx. Dernfn RIMTE@?

Study of complexity of bounded global constraints

Improved loops-based methods for tree-walking automata

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 22/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Ocoeo

Perspectives

Full TAGE may not be required for X(TT); flat constraints ensure
polynomial emptiness decision; are they enough?

Implemented algorithmic toolbox for these automata.

Rewrite propositions go beyond LTL (e.g. 3-LTL).
What is their full expressive power?

Intermix state and transition-based properties.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 23/24

Questions ?

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 24/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Supported Fragment, In Practice
Partially Supported Patterns From [Dwyer et al., 1999]

Scope
Pattern Global Before After Between Until Support
Absence 41 5 12 18 9 48%
Universality 110 1 5 2 1 96%
Existence 12 1 4 8 1 0%
Bound Exist. 0 0 0 1 0 0%
Response 241 1 3 0 0 99%
Precedence 25 0 1 0 0 96%
Resp. Chain 8 0 0 0 0 0%
Prec. Chain 1 0 0 0 0 0%
Support 95% 0% 32% 0% 0% 83%

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 25/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Formal Tools for Verification
Reliable Software

Software failure is undesirable. . .

Ariane 5, Therac-25, Mariner |, Phobos |, XA/21 USA & Canada
Northeast 2003 blackout, MIM-104 Patriot anti-missile, Mars
Climate Orbiter, Mars Polar Lander, Mars Global Surveyor space
probes,. ..

... hence the need for formal verification methods.
E.G. With Hoare logic, correctness is a mathematical theorem.

Precondition, code, post-condition: { T} x:=y{x=y}.

Manual proofs require mathematical ingenuity. Automation?

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 26/24

0000000 000 0000

Model-Checking Rewrite Sequences
Coding the Behaviour of the System: [J(X = eY)

i €X T{EY
R* _-->(ti >(Uy > - - - - - - >
e TjEX m rjIEY
SR @ o\ ’@ “““ g

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 27/24

0000000 000 0000

Maximal Rewrite Words
Coding the Behaviour of the System

Executions may or may not terminate: finite and infinite words.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 28/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices

Maximal Rewrite Words
Coding the Behaviour of the System

Finite or infinite words on R:

N=NU{+cc} W=]J([1,n] >R)

neN
Notation: length #w € N : #w = Card(domw).
Maximal rewrite words of R, originating in TT:
(TT) is the set of words w € W such that

Jup €1T: Juq,...,upy €7 Vkedomw,
Uk 1 (—>uk A #WENiR({u#W})

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence

References

28/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Syntax and Semantics for LTL
Close to Finite-LTL [Manna and Pnueli, 1995]

p=X|-0loAp|eTp|oMp|oUqo X € p(R)

TlLleVele=¢|0¢|0¢ meN.

(w, i) =X & i€ domw and w(i) € X
(w,i) = -o < w1 F ¢
wi)E(eAd) < (w,1) = ¢ and (w,1) E ¥
(w,i) =e™Me@ & i+medomw and (Ww,i+m) = @
(w,i) =oMe@ & i+mé&domwor (W,i+m)kE @

. djedomw:j=>1iA (wj) =V
(w1 = e U = { AVke[L,j—1], Wkl Ee@

For any we W, i e Ny, meN and X € p(R).

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 29/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Syntax and Semantics for LTL
Close to Finite-LTL [Manna and Pnueli, 1995]

p=X|-0loAp|eTp|oMp U@ X € p(R)

TlLleVele=¢|0¢|0¢ meN.
(w,i) =X = i€ domw and w(i) € X
(w,i) E —o < w1 F ¢
wi)E(eAY) < (w,1) = ¢ and (w,1) E Y
(w,i) =e™Meo & i+medomw and (Ww,i+m) E @
(w,i) =oMe & i+mégdomwor (w,i+m)E @
Wi Ede & Yjedomw, j>i= (w,j)E o

For any we W, 1e Ny, me N and X € p(R).

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 29/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Syntax and Semantics for LTL
Close to Finite-LTL [Manna and Pnueli, 1995]

(w,i) =X & i€ domw and w(i) € X

(w,i) E —o < W, 1) £ @

Wi E(eAY) < (w,1) = ¢ and (w,1) E ¥

(w,i) =e™Meo & i+medomw and (w,i+m) = @

(w,i) = oMo & i+mé¢domwor (w,i+m)E @

wi)Ele < Vj edomw, j >1i= (W,j)E o
For any we W, i e Nj, meN and X € p(R).

Satisfaction:

owkE@ = WllkEoe
e RITE @ < Ywe(l), wko

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 29/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Rewrite Propositions
Problem Statement: First Translation Step

Rewrite proposition 7t on R, from TT; has a trivial truth value

m=y|lyAylyvy vy=t{=0|lcl
X € p(R) C=TTT X | XT(0) [X*(0)

Problem statement: translations into RP

Input: R, @ € LTL, TTCT Output: RP 7t such that:

R,ITE @ <= m (exact translation)
R,MTE @ <= m (under-approximated translation)
R,MT =@ = 1 (over-approximated translation)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 30/24

0000000 000 0000

Intuitions for the Translation

Boundaries of the Translatable Fragment

R*(TT) hides traces:
O X probably untranslatable. So are {$,U,W,R,...} .

Formulz in sanitised form: negation on literals. Not exactly NNF.
(AVB)=C (A=C)A(B=C) (wAA-B)VC

Preprocessing to fit translatable “antecedent/consequent” form.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 31/24

00000 00000 000 0000
0000000 000 0000

Signatures
Implication: Girdling the Future

Idea: @ = 1 ? @ as an assumption, i.e. a model of @: &(@)

= J[(Imn] ufw) - o®)] x o) .

nen
Notations: o € X

e compactly as 0 = [f | S| = (00 | VoS,

@ or in extenso as (f(1),f(2),...,f(#0) ¢ f(w) | S§.

Example: £(XAo'YA02OZ) =X, Y$Z|N;S§

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 32/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Signatures
Implication: Girdling the Future

£ = J[(I1n] ufw)) - o(®)] x o)

neN
Notations: 0 € &
e compactly as 0 = [f | S| = {00 | VoS,
@ or in extenso as (f(1),f(2),...,f(#0) ¢ f(w) | S§.

Example: §(XA0'YA02OZ) =X, Y$Z|N;§
Constrained Words:

(Mgo) ={we ()| #w e Vo A Yk e domw, w(k) € olk]}
VITC T, € A-LTL, (Msé(@)) ={we (M |wk e}

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 32/24

0000000 000 0000

Signatures: the Transformation &/-)
Modelling the Antecedent to Girdle the Future

ET)=0GRINS=¢ E(L) =32 | 2§
E(X) = {X3R|N;§ E(=X) = (R\X§R[NS
E(e™p) =E(@) »pm E(o™p) =&(@)>m

HoAv)=&@) i) E0e)=) [&e) > m|

m=0

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 33/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Signatures: the Transformation &/-)
Modelling the Antecedent to Girdle the Future

ET)=0BRINS=¢ &(L) =52 | 2§
E(X) = {X3R|N;§ E(-X) = R\ X R[NS
E(e™p)=¢&(@)pm Ee™Mp) =&(@)>m

Honb) =E@)@EW) E0e) = @ [&l0) > m]

m=0

e o » m = Strong Shift Right =
(Riy...,Rm, 00(1),...,00(#0) 300(w) | (Vo \{0}) + m§
e o > m = Weak Shift Right =
(R1, .., Riny 80(1), .., d0(#0) 500(w) | [0, mJU (Vo+m)S$

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 33/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Signatures: the Transformation &/-)
Modelling the Antecedent to Girdle the Future

ET)=0GRINS=¢ E(L) =52 | 25
E(X) =({X3R|N;§ E(=X) =R\ X R|N§
E(e™p) =E(@) »pm E(o™p) =&(@)>m

Honb) =E@)@El) E0e) = @ [&le) > m]

m=0

Product Property: (Tso® c’) = (ITeo) N (T3 0’)
Example: 0 = {X,Y$Z|N;§ p={X"3Z"|N3§

o@p=(XNX,YNZ'sZNZ"|N3§

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 33/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices

Signatures: the Transformation &/-)
Modelling the Antecedent to Girdle the Future

T)=0GRIN§=¢ £(1) =39 | 25
(X) ={XsRIN;§ E(=X) =R\ X§R|N§
E(eMp) =E&(@) pm E(e™e) =&(@)>m

Hond) =E@)@El) E0e) = @ [&le) > m]

m=0
o o
Oe < /\om(P n9®5n :ﬂ (s on)
m=0 n=0
o o
® o» n and ® [0 > n} converge Yo € ¥
n=0 n=0

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence

References

33/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Rewrite Proposition — Procedure

automatic kind inference and generation rules
Kind inference: expressiveness required & assumptions

o: TAFX(ax) : TAT o TA X : reg-pres + X(«) : TA
FXTN(T): TAS < X : left-lin X~ (7): TA
o: TAFho: TA o TAT Fhoo: TA foc: +

Procedure Generation: from languages to automata

FeX~1(T) =T, (X: left-lin) g X' (7)
s— Al s AR o TA §X(0) = T, A, (X : reg-pres) § X(«)
s— Ajal s AT oo TAT s X(0) = T, A, (X : reg-pres) s X(fo)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 34/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Supported Fragment, In Practice
Partially Supported Patterns From [Dwyer et al., 1999]

Scope
Pattern Global Before After Between Until Support
Absence 41 5 12 18 9 48%
Universality 110 1 5 2 1 96%
Existence 12 1 4 8 1 0%
Bound Exist. 0 0 0 1 0 0%
Response 241 1 3 0 0 99%
Precedence 25 0 1 0 0 96%
Resp. Chain 8 0 0 0 0 0%
Prec. Chain 1 0 0 0 0 0%
Support 95% 0% 32% 0% 0% 83%

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 35/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices

Tree Automata
[Comon et al., 2008]

Introduced in the fifties; regular tree languages:

@ model-checking: programs, protocols,. ..
@ automated theorem-proving
@ XML schema and (esp. variants) query languages

@ ...and so much more

Doesn’t deal with comparisons and non-linearity:

References

o {flu,u) | ueT(X)} e.g. password verification
o {f(u,v) | u,veT(E),u#v} e.g. primary keys
o R(L), £ regular, R a TRS e.g. {g(x) — f(x,x) HT(A))
Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 36/24

0000000 000 0000

Tree Automata

Bottom-Up, Non-Deterministic, Finite

Tree Automaton A = (A, Q,F, A) :

finite ranked alphabet
finite set of states
final states, FC Q
finite set of transitions

b 1o >

Transition r € A ;

o(q1,...,q9n) = q 0€AL q1y---,9n,q€Q

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 37/24

Tree Automata

Bottom-Up, Non-Deterministic, Finite

A:{/\>V/Z)_'/h-r)J-/O}v Q:{q0>q1 }, F:{q1},A:

T—q1, L1—4qo, —(qv)— g-b ‘ ’ }
b,b" €{0,1
{ A(9by 9b’) = qoab’s V(9by Gb’) = quvb’ 0,13

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 38/24

Tree Automata

Bottom-Up, Non-Deterministic, Finite

A —A A —A A —A
I AN I N | PN
A 1L = A qo — dqo do (1
N I N |
1 T € do g1 qdo
A —A q1
q1 q1

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 38/24

Tree Automata

Runs and Languages

The reduction t —7, g7 is captured by the run:

q1 decorated: VN
/N PN
a1 q1 1= 2V qn
/) | /N
qo do q1 11 A qo 211 qo 22-(qq
/\ | /N |
do 91 qdo 1M1 Lqo 112T q 221 1L qo

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 39/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

TAGE, TA=, Positive TAGED, A = (A, Q,F, A, =) :

(A, Q,F,A) vanilla tree automaton ta(A)

~ equality constraints, = C Q2
Constraint p= q :

run p of A on t:

@ run of ta(A) on t

o satisfying =: Va,B € P(t); p(x)=p(B) = tla = tip
accepting run: accepting for ta(A)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 40/24

Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A={a/o,f/2}, Q=1{q,G,q9r} F={qr}, §=4q, and
A ={f(4,49) — qs, f(q,9) = q, f(q,9) =4, a = q, a =G}

u= f and v = f
/\ /\
f f f a

a/ a a/\a a/\a

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 41/24

Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A={a/o,f/2}, Q=1{q,G,q9r}, F={qr}, §=4q, and

A ={f(q,9) — qs, f(q,9) = q, f(9,9) > q, a—q, a = q}

U, pu = f gr and v= f
/N /\
fq fq f o

/N /N /\
aqaqagqadg a a

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 41/24

Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A={a/o,f/2}, Q=1{q,q,q9¢} F={q¢}, §=4q, and
A ={f(q,9) — qs, f(q,9) = q, f(9,9) > q, a—q, a = q}

u= f and v,p, =

qr
\
a g

.Q\—h
B AN o

a a a a a

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 41/24

0000000 000 0000

Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A:{A)V/Z)_'/DT)J-/O}&JXy Q={q<)>Q1 }&J{VX I xeX}and
F={q1}, new rules T — vy, L — vy, x(qo,Vx) = q1,
x(Vx, q1) — qo for each x € X, vy R vy.

(x Ay) V —x = v

/\/ \—.
x/ \y J(

J_/ \T J_/ \T J_/ \T

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 42/24

0000000 000 0000

Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A:{A)V/Z)_'/hT)J-/O}L'HXr Qz{qm(h }L'H{Vx I xeX}and
F=1{q1}, new rules T — vy, L — vy, x(qo,vx) — q1,
X(Vx, q1) — qo for each x € X, vy X vy.

(x Ay)V —x = q

V (1
PN
A qo - q1
VRN |
X qo Y 1 X qo

/ \ / N\ / \

Tree (Not Quite) Regular Model-Checking

Vincent HUGOT Ph.D. Defence 42/24

Preliminaries LTL Checking Bounded TAGE

TA versus RTA versus TA=

Closure, Complexity and Decidability

TA
U PTiME
N PTIME

- ExpTIME

teL(A)? PTIME
L(A)=a 7 linear-time

|[L(A) eN? PTIME
LA)=T(X)? ExPTIME-c
L() C () ExPTIME-c
L(N;Ai) =27 EXpPTIME-c

(ASAT solver approach: [Héam et al.,
Tree (Not Quite) Regular Model-Checking

Other Works

RTA (p=p)

PTiME
ExpTIME
%]

NP-c
linear-time
PTiME
undecidable
undecidable
ExpTIME-c

2010].

Vincent HUGOT

Appendices

TA=

PTiME
ExpTIME
%]

NP-c (2
ExpPTIME-c
ExXPTIME-c
undecidable
undecidable
ExPTIME-c

Ph.D. Defence

References

43/24

00000 00000 (elele} 0000
0000000 000 0000

TA versus RTA versus TA=

Closure, Complexity and Decidability

TA RTA (p=p) TA=
U PTiME PTIME PTiME
N PTiME ExpTIME ExpTIME
- EXPTIME o 16
teL(A)? PTIME NP-c NP-c(
L(A)=2 7?7 linear-time linear-time ExpTime-c
|[L(A) eN? PTIME PTime ExpTime-c

L(A)=T(X)? EXPTIME-c undecidable undecidable
L(A)CL(B)? EXPTIME-c undecidable undecidable
L(MN;Ai) =27 ExpTiME-c EXPTIME-c EXPTIME-c

()SAT solver approach: [Héam et al., 2010].
Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 43/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

TA™ versus TA,

Restriction on the kind of constraints: Rigid Automata (RTA)

@ Same expressive power as TA=

@ Less compact representations

o Linear emptiness / finiteness tests, vs. EXPTIME-complete
o Applications: [Jacquemard et al., 2009, Vacher, 2010]

What of the number of constraints? TA, A= (X, Q,F A=

(Z,Q,FA =) TA= A
~ such that Card(=) < k

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 44/24

0000000 000 0000

Expressive Power
The Separation Languages L = (£)xen [Hugot, 2013]

i
HA16{0/3>L/0} A; ={ai,bi/0,fi,9i/2}

i=1

bo={1} Vk>T1,b ={ouu,tx_1) [ueT(Ay),tk—1 €li_1}

u; € T(Ai) Vi

Uk {/ \
Uy 1/kaz1

/N

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 45/24

0000000 000 0000

Expressive Power
The Separation Languages L = (£)xen [Hugot, 2013]

ug € T(Ai) Vi

N,
A

Uk—1 Uk—1 /(IT\

ur u L,

€1 € L(TAT)\ L(TA) ~ ground instances of f(x,x).
b € L(TAL)\L(TAL), Vk=>1.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 45/24

0000000 (ele]e} 0000

Expressive Power
Show &, € £(TAZ)\ £(TAL ;) [Hugot, 2013]

Show €y € L(TAY): Ak € TAL such that £(Ay) = €

Ui € TA universal, Ui:F = {q{}, for all i. Ay is

k
Q={qp}w [U:Qu{q} F={qy} a¥=qy, Vie[l,K]
i=1

A:{G(q$>q$,q\{—1)_>q\{|iG[[],k]]}U{J__)q‘(’)}_

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 46/24

Expressive Power
Show &, € £(TAZ)\ £(TAL ;) [Hugot, 2013]

Show €y € £(TAL_1):
active constrained states:

acsp ={p(a) | «€P(p),AB € P(p) \{o}: p(ex) =p(B) }

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 46/24

Expressive Power
Show &, € £(TAZ)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

o Assume & € L(TAL ;) ie. JA € TAL_; : L(A) = €

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 46/24

Expressive Power
Show &, € £(TAZ)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

o Assume & € L(TAL ;) ie. JA € TAL_; : L(A) = €
o Vp, o, B o # By o€ 3, pa) = p(B)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 46/24

0000000 000 0000

Expressive Power
Show &, € £(TAZ)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

@ Assume { € L(TA) ie. JA € TAL 1 : L(A) =k

o Vp, Box,B:x# B, x €3*, p(x)=p(B)
@ Pick t € {y such that |t|o¢| > |Q], for all & € 3*(1+42)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 46/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Expressive Power
Show &, € £(TAT)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

@ Assume { € L(TA_;) ie. FA e TAL_; : L(A) =k
o Vp, flo, B: o # By € 3%, p() = p(B)
@ Pick t € €y such that ‘tIa‘ > |Q], for all & € 3*(1 + 2)

@ Suppose dox € 3*(1 + 2) such that ran plx« Nacsp = &. A acts
as BUTA wrt. t|«; pump pla, get t’/ € £, but t’ € L(A).

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 46/24

0000000 (ele]e} 0000

Expressive Power
Show &, € £(TAZ)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

@ Assume { € L(TA_¢) ie. JA € TAL 1 : L(A) =k
o Vp, flo, B: o # B, € 3%, p(a) = p(B)

@ Pick t € £y such that |t|o¢| > |Q], for all & € 3*(1+42)
@ Yo € 3*(1 4+ 2), ranpla Nacsp # &

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 46/24

Preliminaries

Expressive Power
Show &, € £(TAT)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

@ Assume { € L(TA_¢) ie. JA e TA_; : L(A) = {x
o Vp, fo, B:ox # B, x € 3%, p(o) = p(B)

@ Pick t € £y such that ‘tIa‘ > |Q|, for all o € 3*(1 4 2)
@ Yau € 3*(1 4+ 2), ranpla Nacsp # &

@ i#j, pi acs for ui, pj for uj. dacs qi, g; : pi = qi, Pj = qj-
Suppose q; in subrun of u;. Then ds; Juy,s; Juj, s; = s;j.
But u; € T(Ay) and uj € ‘.T(Aj), thus s; € T(A;) and
Sj € T(Aj). T(A) N ‘I(/A\j) = g, thus s; = Sj € J.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence

LTL Checking Bounded TAGE Other Works Appendices References

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Expressive Power
Show &, € £(TAT)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

@ Assume {, € L(TA_¢) ie. JA e TAL_;: L(A) = U
o Vp, o, B:x# B, e 3% pa) =p(B)

o Pick t € &y such that |t|«| > [Q], for all & € 3*(1 +2)
@ Yo € 3*(1 4+ 2), ranpla Nacsp # &

@ Each pair of u; needs its own fresh state(s) pi & q;

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 46/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Expressive Power
Show &, € £(TAT)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

Assume € € L(TA_¢) ie. JA e TAL ;1 : L(A) = U
Vo, o, B # B, o€ 3% p(a) = p(B)

Pick t € € such that [tla| > |Q], for all € 3*(1+2)
Yoo e 3*(1+2), ranple Nacsp # &

Each pair of u; needs its own fresh state(s) pi & q;

A does not exist, contradiction.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 46/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

The Membership Problem

General Idea & Strategy
Membership complexity : t € L(A) ?

NP-complete for TA=
PTime for TA, VkeN

Proof Strategy :
@ Choose each P Cdom=={p|dq:p=qorq=p}
@ Given P, turn = into an equivalence relation =<p
@ Try all possible “housings” of the =-classes into t

@ For each housing, try to build an accepting run

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 47/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices

~ is Not an Equivalence

(but we can pretend it is)
Example: Given p=r and r=q, what of p=q ?
Does r actually appear in the run ?

yes : p=q implied
no : p=T1 and r = q are moot.

Fix P C dom=. Any run p such that (ranp) N (dom=) =P
is accepting for A iff it is so for

Ap =A== (=nP?)7§

symmetric, transitive, reflexive closure under dom (= NP?2).

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence

References

48/24

0000000 000 0000

Groups & Similarity Classes

Groups Gp : set of =-equivalence classes (given P)

dom(=NP?) dom(=NP?)
GP pr— f—

(=NP2) =p

Similarity Classes St of t :

Yo, €P(t); a~p <= tla=tlp
classes S, = P(t)/_

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 49/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Housings
And Their Compatibility with the Constraints

Characterisation of Satisfaction of = :

VG eGp; ACg €St:p '(G) C Cq

Housings H}, of P within t :
The map G — Cg is a P-housing of p in t, compatible with p
Hb = Gp — S¢

is the set of all possible P-housings on t.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 50/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Gp +—heH}, — St

i

b

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 51/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Proof Outline

For TA,
Operations Needed :
@ Choose P: 22K possible P C dom =
@ Choose housing: }StGP‘ = |§t||G"‘ < ||t||2k P-housings on t

o = 4% . ||t]|** tests in total

% polynomial compatibility test = variant of reachability

Is a final state reachable if states q € P can only go in h([q]<,)?

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 52/24

0000000 (ele]e} 0000

Compatibility Test

In Polynomial Time
Simple variant of reachability algorithm:

Given P and h € H}, there exists a compatible run iff
OPMe)NF#£ 2,
where

t(o‘)(ph-'-)pn) — g€ A
Yie [1,n], pi € @D (oi)
qeJGp = aeh(lqlx,)
q ¢ dom(=)\ P

OPMa) =9 q€Q

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 53/24

0000000 000 0000

Compatibility Test

In Polynomial Time
Simple variant of reachability algorithm:

Given P and h € H}, there exists a compatible run iff
OPMe)NF#£ 2,
where

t(o‘)(ph-'-)p‘n)_}qEA

Yie [1,n], pi € ®P(oi)
qeJGp = aeh(lqlx,)
q ¢ dom(=)\ P

OPMa) =9 q€Q

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 53/24

0000000 000 0000

Compatibility Test

In Polynomial Time
Simple variant of reachability algorithm:

Given P and h € H}, there exists a compatible run iff
OPMe)NF#£ 2,
where

t(‘x)(Ph---»Pn)%qu

Yie [1,n], pi € ®P(oi)
qeJGp = aeh(lqlx,)
q ¢ dom(=)\ P

OPMa) =9 q€Q

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 53/24

0000000 000 0000

Compatibility Test

In Polynomial Time
Simple variant of reachability algorithm:

Given P and h € H}, there exists a compatible run iff
OPMe)NF#£ 2,
where

t(oc)(p1,...,pn)—>q€A

Yie [1,n], pi € @D (oi)
qeUGp = aeh(lqlx,)
q ¢ dom(=) \ P

OPMa) =9 q€Q

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 53/24

0000000 000 0000

Compatibility Test

In Polynomial Time
Simple variant of reachability algorithm:

Given P and h € H}, there exists a compatible run iff
OPMe)NF#£ 2,
where

t(o‘)(ph-'-)p‘n) — g€ A
Yie [1,n], pi € @D (oi)
qeJGp = aeh(lqlx,)
q ¢ dom(=)\ P

OPMa) =9 q€Q

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 53/24

Rigidification

Problem : Given TA= A, build equivalent RTA B.

General Result [Filiot, 2008, Lem. 5.3.5]

2
Exponential construction: ||B|| < O(2/117)

In the case of TAT :

Polynomial construction: ||B|| < O(||.A[|%)
Idea : Simulate a constraint p=q, p # q by a TA intersection

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 54/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Rigidification: Construction

B =By wBgwlA|Q, A qrxqsf

B, =1A1Q\{p}f Bg =1A1Q\{dq}S
Q' =(Q\{p,a) W (Bpq:Q) A" =AJ, W (Bpq:4)
Bpq =Bp ®Bq qr = (p,q)

Bp = 1B | F={phA:=Ap] Bq=1B, |F:={q},A:=A4]
Ap:Ba:A\{...p...%...} Aq :B;:A\{...q...—>...}

Agfq is A:A from which all left-hand side occurrences of p or ¢
have been replaced by gs.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 55/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Emptiness
Outline of the Result and Proof

Complexity of Emptiness : L(A) =2 ?

PTime (quadratic) for TAY
ExpTime-complete for TA, k> 2

TAT : immediate by rigidification. Emptiness for RTA: linear time

TA7S : Reduction of intersection-emptiness of n TA Aq,..., A,

Generalisation of the usual argument [Filiot et al., 2008, Thm. 1]
from “unlimited constraints” to “two constraints”

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 56/24

0000000 000 0000

—_— —_— — e — 00— U

o o o
u u u
Figure : Reduction of intersection-emptiness: the language.

where Vi, x; € L(A) and x = x4

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 57/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Finiteness
Outline of the Result and Proof

Complexity of Finiteness : [L(A)leN ?

PTime for TA7
ExpTime-complete for TA, k> 2

TAT : immediate by rigidification. Finiteness for RTA is PTIME
TAS : Reduction of Emptiness for TAS .

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 58/24

0000000 000 0000

Finiteness
Outline of the Result and Proof

:Z.A|Q&J{p},FI:{p},ZH’J{G/1},A,S
where A’ = AU{o(qs) = p| qre F}U{o(p) = p}

if ((A) =@ then L(A')=0
ifte L(A) then ot (t)C L(AY)

L(A") is finite — L(A) is empty

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 59/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Summary
and Perspectives
Refined complexity and expressiveness results:

Expressiveness: TA. form a strict hierarchy
Membership: NP-c for TA=, but PTIME for TA, Vk

°
°
o Emptiness: quadratic for TA7, ExPTIME-complete for TAS
°

Finiteness: PTIME for TAT, EXPTIME-complete for TAS

Left to do:

Effects of %, flat constraints, efficient heuristics, etcetera.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 60/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Tree Walking Automata

in a Few Words

Not a new formalism [Aho and Ullman, 1969]
Sequential model, as opposed to branching tree automata
Less extensively studied model until ~ 2000

[Bojaniczyk and Colcombet, 2005, Bojanczyk and Colcombet, 2006]
Recent surge in interest, due mostly to connection to XML:

o Caterpillar expressions [Briggemann-Klein and Wood, 2000]
o Streaming XML documents [Segoufin and Vianu, 2002]
o type-checking XML-QL, XSLT,... [Milo et al., 2003]

Rich variants: pebbles, marbles,. ..

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 61/24

000 0000

Tree Walking Automata

in a Few Words

Existing research focused on fundamental problems:
expressive power, determinisability,. . .

We study practical, efficient algorithms

In particular: the transformation from TWA to BUTA

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 61/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Preliminaries
Definition of Tree Walking Automata

A Tree-Walking Automaton is a tuple A = (£, Q, I, F, A)

A C ZxQx{%0,1} x {1,0,/,\}xQ
~— —

T : types M : moves
e “(f,p,T— W,q)" written for the tuple (f,p,T, 1, q) € A.

° <ZZ)P)-|]—% O>q> :{(G,p,T,O,q) | o€ ZZ>T€T}

Remarks

@ Ranked (binary) vs. unranked alphabet
° (20,Q, T = {/,\}, Q) U(Z,Q,x = 1, Q) invalid

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 62/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Preliminaries
Example Tree Walking Automaton

A very simple example TWA: X = (£, Q, L F A)

° X :{a,b,c}and L) :{fvgvh}
o Q={qe,qu} I={qe}, F={qu}

A= {a,q¢{*0}— O, qu)
U <Z) qua0 — T) qU>
U(Z2,qe,{%0} =, qe)

X accepts exactly all trees whose left-most leaf is labelled by a —
and the tree a itself.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 63/24

Preliminaries
Example Tree Walking Automaton

Q=1{4qe,qu} I ={qe}, F={qu}

A= (a,qe{x0}— O,qu)
U(Z, qu,0 = 1, qu)

U(Z2,qe,{%0} = ./, qe)
f
N\

(=)
[on

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 64/24

Preliminaries
Example Tree Walking Automaton

Q=1{qe,qu}, I={qe}, F={qu}

A= {a,q¢{*0}— O, qu)
U(Z, qu, 0 = 1, qu)
U <ZZ) Qe>{*,0} —)/) qe)

flqel
N\
/N

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 64/24

Preliminaries
Example Tree Walking Automaton

Q=1{qe,qu}, I={qe}, F={qu}

A= (a,qe{*0}— O,qu)
U(Z,qu, 0 — 1, qu)
@] <ZZ> Qe>{*,0} —)/) qe)

f
/N
hqe] a

N

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 64/24

Preliminaries
Example Tree Walking Automaton

Q=1{qe,qu}, I={qe}, F={qu}

A={(a,qe{*0}— O,du)
U <Z) qu)o — T) qu>

U(Z2,qe,{%0} = ., qe)
f
N\
alqe] b

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 64/24

Preliminaries
Example Tree Walking Automaton

Q=1{qe,qu}, I={qe}, F={qu}

A= {a,q¢{*0}— O, qu)
U <Z, qu,o _> T’ qu>
U(Z2,qe,{%0} = ./, qe)

a[qu] b

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 64/24

Preliminaries
Example Tree Walking Automaton

Q=1{qe,qu}, I={qe}, F={qu}

A= (a,qe{*0}— O,qu)
U <Z, qu)O _> T’ qu>
U(Z2,qe,{%0} = ./, qe)

f

/N

h[qu] a

/N

a b

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 64/24

Preliminaries
Example Tree Walking Automaton

Q=1{qe¢,qu}, I={qe}, F={qu}

A= {a,q¢{*0}— O, qu)
U(Z, qu, 0 = 1, qu)
U(Z2,qe,{*0} = ./, qe)

[=)
(on

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 64/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

TWA to BUTA Transformation

Given a TWA A, build an equivalent BUTA B

Solution outlined in [Bojanczyk, 2008] and [Samuelides, 2007]
Based on the idea of tree loops
Claims resulting states for B: T x 2Q° — or det. (2Q°)T

Only proof sketches. No explicit algorithm is given.

We argue that things are slightly less straightforward:

o Needed states space: £ x T x 22° — or det. £ x (2Q%)T
o Existing implementations: almost correct [dtwa-tools]

(7]

(]

We introduce tree overloops

o This time we really have T x 2Q% — or det. (ZQZ)T
o Nicer upper bound if A is deterministic: |T| - 2/Qlles2(IQI+T)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 65/24

0000000 000 0000

The Idea of Tree Loops

With Pretty Pictures

(Pin, Pout) € Q2 is a loop of A on t|« if there exists a run which
@ starts in Ppjp,
@ ends in poyt — at the local root «,

@ and always stays in the subtree

Pin * Pout

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 66/24

0000000 000 0000

The Idea of Tree Loops

With Pretty Pictures

(Pin, Pout) € Q2 is a loop of A on t|« if there exists a run which
@ starts in Ppjp,
@ ends in poyt — at the local root «,

@ and always stays in the subtree

pln pOUt

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 66/24

The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

f Loops of X on...
A o t: {}
7 a o tlo: {}
o tlo.o: {}
A o tlo.1: {}
a b o tl: {}

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 67/24

The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

flqe] Loops of X on.
A o t: {(qe,), (Qe-Qe)}
o tlo: {}
N e tho O
A o tlo.1: {}
a b o th: {}

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 67/24

The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

f Loops of X on...
t: {(qe, 7), (CIz>Qe)}

ot 9 6
Mad @ t:z . ge) (de-de)}
A e tlo.1: {}
a b o tli: {}

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 67/24

0000000 000 0000

The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

f Loops of X on...
t: {(Cle, 7)) (qe, qf)}

; e tlo: {(qe, ?), (qe, qe)}
o tlo.o: {(qe,), (qde.qe)}
o tlo.1: {}
alqe] b o tli: {}

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 67/24

0000000 000 0000

The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

f Loops of X on...

t: {(de, 7, (qe, qe)}

tlo: {(qe, ?), (qe, qe)}

tlo.o: {(qe, du), (e, de)s (du,qu)}
tlo.1: {}

th: {}

alqu] b

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 67/24

0000000 000 0000

The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

f Loops of X on. ..
° t: {(qf,a ?)> (qE) Qe)}
h{qu] 3 o tlo: {(qe, qu), (de, qe)y (qu-qu)}

o tlo.o: {(qe, qu)y (de, qe)y (quy qu)?
A e tlo.1: {}

a b o t)1: {}

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 67/24

0000000 000 0000

The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

flqu] Loops of X on.
A ° t: {(Cle,qu (de, de)y (du.qu)}
7 > o tlo: {(de, qu), (de, qe), (qu, qu)}
o tlo.o: {(qe, qu), (de, qe), (qu, qu)}
A e tlo.1: {}
a b o t|i: {}

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 67/24

0000000 000 0000

The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

f Loops of X on. ..

t: {(de, qu), (de, de), (qu, qu)}
tlo: {(qe, qu), (e, de), (du,y qu)}
tlo.o: {(de, qu), (de, qe), (qu, qu)}
tlo.1: {(de, qe), (qu, qu)}

t|1: {(Qe,QeJ,(qu» qu)}

>

o)
(ep

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 67/24

00000 00000 (elele} 0000
0000000 000 0000

Computing Tree Loops

Loops Decomposition

A loop is a simple loop on t|« if there is a run which forms it and
reaches « exactly twice — i.e. simple looping run

Proposition: loops decomposition

If S C Q2 is the set of all simple loops of A on a given subtree
u = t|«, then S* is the set of all loops of A on wu.

So to compute all loops, it suffices to compute simple loops.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 68/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Computing Tree Loops
U™ (u) = set of loops of A on a subtree u of type T
On leaves u=a € ¥

Simple looping run = (&, p) — («, q) only.
He={(p,a) | (oyp,T = O,q) €A} UT(a) = (Hg)"
On inner nodes u = f(ug,uy) : by first move

o T — impossible: leaves the subtree u

o O — all computed in HF

° \/ — (€>'P)» (O)pO)) (B] y S1)) coog (Bn) Sn)) (0> qO)) (5) q)'
with all B < 0. So (po, qo) € U9 (ug)

° \—(8,) (»'Pl) (f)],S]) (Bn)sn))(1)q1))(8)q)r
with all Bx <1. So (p1,q1) € Ul(ul)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 69/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Computing Tree Loops

U™ (u) = set of loops of A on a subtree u of type T

On leaves u=a € X
Simple looping run = (e, p) — (&, q) only.

HE={(p,q) | (0,p,T— O, q) €A} U¥(a) = (HT)*
On inner nodes u = f(ug, uy)

Q choose aside: 0e€$S={0,1}

Q find an existing loop on that side: (pg,qo) € U°(ug)
© such that one can connect beginning and end

o (f,p,T— x(0),pe) € A? and
o <u9(5)>q9»9 =1 q> €A

() :S = {.,\} such that x(0) = and x(1) =Y,

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 69/24

0000000 000 0000

Computing Tree Loops

U™ (u) = set of loops of A on a subtree u of type T

On leaves u=a € X
Simple looping run = (e, p) — (&, q) only.

He={(p,d) | {o,p,T > O,q) €A} UT(a) = (Hg)"
On inner nodes u = f(ug,uy)

. 10€S: {f,p,T = x(0),pe) €A *
(Hf N { > a) ‘3(139»(]9) € U%(ug) (uple),qe,0 — 1,q) € A })

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 69/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Loops-Based Transformation Into BUTA

Q Input: ATWA A= (X,Q,[FA)
Q Initialise States and Rules to @
Q foreachae Xy, TeT do
o let P =(a,t,HT")
add a — P to Rules and P to States
© repeat until Rules remain unchanged

o foreach feX,;,TeT do
o add every f(Pg,P1) — P to Rules and P to States where
Po, P1 € States such that Py = (0p,0,So) and P; = (01,1, S;)
and P = (f, T, (HFf US)*),
with S the set of simple loops built on the sons.

@ Output: A BUTA B equivalent to A:
B = (X, States,{ (0, *,L) € States| LN (I x F) # @}, Rules)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 70/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Loops-Based Transformation Into BUTA

Q Input: ATWA A= (X,Q,[FA)
Q Initialise States and Rules to @
Q foreachae Xy, TeT do
o let P =(a,t,HT")
add a — P to Rules and P to States
© repeat until Rules remain unchanged

o foreach feX,;,TeT do
o add every f(Pg,P1) — P to Rules and P to States where
Po, P1 € States such that Py = (0p,0,So) and P; = (01,1, S;)
and P = (f, T, (HFf US)*),
with S the set of simple loops built on the sons.
@ Output: A BUTA B equivalent to A:
B = (X, States,{ (0, *,L) € States| LN (I x F) # @}, Rules)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 70/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Loops-Based Transformation Into BUTA

add every f(Pg,P1) — P to Rules and P to States
where Pg, P1 € States such that

e Pg = (00,0,So) and Py = (01,1, 51)
e and P = (f, T, (HF U S)*),

o with S the set of simple loops built on the sons.

S—{()‘ 0esS: ~{f,p,T = x(0),po) €A }
=\ P A(pe,qe) € Se ~ (00,9e,0 — 1,q) €A

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 70/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Loops-Based Transformation Into BUTA

add every f(Pg,P1) — P to Rules and P to States
where Pg, P1 € States such that

o Pg = (00,0, So) and Py = (01,1, 51)

e and P = (f, T, (Hf US)*),

o with S the set of simple loops built on the sons.

S—{()‘ ECRSESE ~(f,p,T = X(0),pe) €A }
P> 3(pe,qe) €Se * (06,q0,0 = 1,q) € A

The son’s symbol is needed to close the end of the loop!

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 70/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Loops-Based Transformation Into BUTA
The Real States Space

Sets of loops cannot be considered independently from the symbol
in which they are rooted.

Consider ({a,b},p,T — O, q) and (b,q,T— 1,s’) € A. Then
69(a) = B°(b) = {(p, q)}", but U (f(a,a)) # U*(f(b,b)).

Needs states in £ x T x 2Q” instead of just T x 2Q°.

Alphabet potentially large. How to get rid of it 7

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 71/24

0000000 000 0000

From Tree Loops to Tree Overloops
Tree overloops: slight alteration of loops, with advantages.

o Fixes states space: T x 2Q% instead of £ x T x 2Q°.
e Deterministic case: |T|-2/Qlleg2(IQI+1) petter upper bound

@ 2 to 100 times smaller BUTA in average in random tests.

VaNp

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 72/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

From Tree Loops to Tree Overloops

Tree overloops: slight alteration of loops, with advantages.
o Fixes states space: T x 2Q% instead of £ x T x 2Q°.
o Deterministic case: |T|-2/Qll&2(IQI+1) petter upper bound

@ 2 to 100 times smaller BUTA in average in random tests.

(p,q) € Q2 is an overloop of A on t|« if there exists a run which
starts in p, ends in q at the parent of the root «, and always stays
in the subtree, except for the last configuration.

Parent of ¢ is €. A TWA A must be escaped into
A'=(Z%, Qu{v}, LF AW (L F*x—1v)).

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 72/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Overloops and Determinism

ATWA A= (X,Q,,FA) is deterministic if for all
oceLpeQ,TeT, [(o,p, T >MQ)NA| 1.

In general, the overloops-based BUTA has up to |T| x 21Q states.
However, it has at most |T| - 2/Ql1eg2(IQI+1) gtates if A is a DTWA.

If A is deterministic, overloop sets are functional. Not like loops.
Partial functions versus relations.

At most |Q + 1|‘Q‘ overloop sets, versus 21Q1%,

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 73/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Polynomial Approximation for Emptiness

Emptiness is ExpTime-complete

o XML Queries / Caterpillar accessibility
@ Satisfiability of some XPath fragments
@ But also TWA model-checking. ..

Standard: TWA — BUTA (explosion) — linear test. Alternative:

o An over-approximation; may detect emptiness
@ Polynomial time and space

o Very — surprisingly — accurate in our random tests

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 74/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Polynomial Approximation for Emptiness

Q Input: An escaped TWA A = (%,Q,I,FA)
Q Initialise £y, £1, £, to @
Q foreach ae€ Xy, T€ T do
o Lo+ L UUT[HTY]
O repeat until £y, £1, £, remain unchanged
o foreach fe X,,T€ T do

o Lo+ Lo UUFI(HFUS)]
with S the set of simple loops built on £g and £;.

@ Output: Empty if L, N (I x {v'}) = @, else Unknown

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 75/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Polynomial Approximation for Emptiness

Q Input: An escaped TWA A = (%,Q,I,FA)
Q Initialise £y, £1, £, to @
Q foreach ae€ Xy, T€ T do

o Lo+ L UUT[HTY]
O repeat until £y, £1, £, remain unchanged

o for each fe £;,T€T do

o L+ Lo UUF(HFUS)
with S the set of simple loops built on £g and £;.

@ Output: Empty if L, N (I x {v'}) = @, else Unknown
coarsest with one bucket £; finest as full transformation (exp)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 75/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Polynomial Approximation for Emptiness

Random tests

@ Ad-hoc scheme: =~ 20000 TWA, 2 < |QJ < 20, |Al =3 x|Q|,
75% of empty languages, only two Unknown instead of Empty.

@ Uniform scheme [Héam et al., 2009], REGAL back-end for FSA

generation [Bassino et al., 2007]. 2000 deterministic and
complete TWA uniformly generated for each 2 < |Q| < 25.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 76/24

0000000 (ele]e} 0000

Polynomial Approximation for Emptiness

Random tests

| P:Rproxim;)tion - 2IOOO samlples
50 R pproximation — 200 samples -------
l Exact — 200 samples -=------

2 4 6 8 10 12 16 18 20 22 24

14
Q|

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 76/24

Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Size Comparison: Loops vs. Overloops

One Example & Uniform Generation Scheme

For X: loops ||B|| = 1986; overloops ||B.|| = 95; deterministic
minimal ||Bm|| = 56; smallest known non-deterministic || Bs|| = 34.

Loops 60 times worse than manual optimal; overloops 3 times.

Orthogonal to post-processing cleanup: ||B/|| = 1617, ||B}|| = 78.

/

~ ~1.2.
1Bo |l 1Bsll IB/]| 1Bl

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 77/24

0000

0000000 000

Size Comparison: Loops vs. Overloops

One Example & Uniform Generation Scheme

. T T T T i . . s
1B IBL/[Boll y
HB;{H (clean) r ||B’t\|/|\3;,\| e
IBo - 1B /IB 1 y
| o 17 1B I/12% | e 114
: 112
3 | 1103
: (=
a i
: 16
| - 14
_»"" - 2
T R | :
7

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 77/24

0000000 000 0000

References |

Aho, A. and Ullman, J. (1969).
Translations on a context free grammar.
Information and Control, 19(5):439-475.

Bassino, F., David, J., and Nicaud, C. (2007).
REGAL : A library to randomly and exhaustively generate
automata.
In CIAA, LNCS 4783, pages 303-305.

Bojanczyk, M. (2008).
Tree-Walking Automata.
LATA 08 (tutorial), LNCS, 5196.

Bojanczyk, M. and Colcombet, T. (2005).
Tree-walking automata do not recognize all regular languages.
STOC '05, pages 234-243. ACM.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 78/24

0000000 000 0000

References |l

Bojanczyk, M. and Colcombet, T. (2006).
Tree-walking automata cannot be determinized.
Theoretical Computer Science, 350(2-3):164-173.

Bouajjani, A. and Touili, T. (2002).

Extrapolating tree transformations.

In Brinksma, E. and Larsen, K. G., editors, Computer Aided
Verification, CAV'02, volume 2404 of Lecture Notes in
Computer Science, pages 539-554. Springer-Verlag.

Boyer, B. and Genet, T. (2009).

Verifying Temporal Regular Properties of Abstractions of Term
Rewriting Systems.

In RULE, volume 21 of EPTCS, pages 99-108.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 79/24

0000000 000 0000

References IlI

Briiggemann-Klein, A. and Wood, D. (2000).
Caterpillars: A context specification technique.
Markup Languages, 2(1):81-106.

Clarke, E. M. and Emerson, E. A. (1981).

Design and synthesis of synchronization skeletons using
branching-time temporal logic.

In Kozen, D., editor, Logic of Programs, volume 131 of Lecture
Notes in Computer Science, pages 52—71. Springer.

Comon, H., Dauchet, M., Gilleron, R., Léding, C., Jacquemard,
F., Lugiez, D., Tison, S., and Tommasi, M. (2008).

Tree Automata Techniques and Applications.

release November 18, 2008.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 80/24

0000000 000 0000

References IV

Courbis, R., Héam, P.-C., and Kouchnarenko, O. (2009).
TAGED Approximations for Temporal Properties
Model-Checking.

In [Maneth, 2009], pages 135-144.

Dwyer, M., Avrunin, G., and Corbett, J. (1999).
Patterns in property specifications for finite-state verification.
In ICSE'99, pages 411-420. |EEE.

Feuillade, G., Genet, T., and Tong, V. V. T. (2004).
Reachability analysis over term rewriting systems.
J. Autom. Reasoning, 33(3-4):341-383.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 81/24

References V

Filiot, E. (2008).
Logics for n-ary queries in trees.
PhD thesis, Université des Sciences et Technologie de Lille -
Lille 1.

Filiot, E., Talbot, J.-M., and Tison, S. (2008).
Tree automata with global constraints.

In Developments in Language Theory, volume 5257 of Lecture
Notes in Computer Science, pages 314-326. Springer.

Héam, P., Hugot, V., and Kouchnarenko, O. (2010).
SAT Solvers for Queries over Tree Automata with Constraints.
In Third International Conference on Software Testing,
Verification, and Validation Workshops, pages 343—-348. IEEE.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 82/24

0000000 000 0000

References VI

Héam, P.-C., Hugot, V., and Kouchnarenko, O. (2011).
Loops and overloops for tree walking automata.
In CIAA’11, LNCS 6807, pages 166—177.

Héam, P.-C., Hugot, V., and Kouchnarenko, O. (2012a).
From linear temporal logic properties to rewrite propositions.
In Gramlich, B., Miller, D., and Sattler, U., editors, IJCAR’'12,
volume 7364 of Lecture Notes in Computer Science, pages
316-331. Springer.

Héam, P.-C., Hugot, V., and Kouchnarenko, O. (2012b).
Loops and overloops for tree-walking automata.
Theoretical Computer Science, 450:43-53.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 83/24

0000000 000 0000

References VII

Héam, P.-C., Hugot, V., and Kouchnarenko, O. (2012c).
On positive TAGED with a bounded number of constraints.
In Moreira, N. and Reis, R., editors, CIAA, volume 7381 of
Lecture Notes in Computer Science, pages 329-336. Springer.

Héam, P.-C., Nicaud, C., and Schmitz, S. (2009).
Random generation of deterministic tree (walking) automata.
In [Maneth, 2009], pages 115-124.

Hugot, V. (2013).
Tree Automata, Approximations, and Constraints for
Verification — Tree (Not Quite) Regular Model-Checking.
Ph.D. thesis (to be defended), Université de Franche-Comté.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 84/24

References VIII

Jacquemard, F., Klay, F., and Vacher, C. (2009).
Rigid tree automata.
In Horia Dediu, A., Mihai lonescu, A., and Martin-Vide, C.,
editors, Proceedings of the 3rd International Conference on
Language and Automata Theory and Applications (LATA'09),
volume 5457 of Lecture Notes in Computer Science, pages
446-457, Tarragona, Spain. Springer.

Kesten, Y., Maler, O., Marcus, M., Pnueli, A., and Shahar, E.
(1997).
Symbolic model checking with rich assertional languages.

In Grumberg, O., editor, CAV, volume 1254 of Lecture Notes in
Computer Science, pages 424—435. Springer.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 85/24

0000000 000 0000

References IX

Maneth, S., editor (2009).
Implementation and Application of Automata, 14th
International Conference, CIAA 2009, Sydney, Australia, July
14-17, 2009. Proceedings, volume 5642 of Lecture Notes in
Computer Science. Springer.

Manna, Z. and Pnueli, A. (1995).
Temporal Verification of Reactive Systems - Safety.
Springer.

Meseguer, J. (1992).
Conditioned rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73-155.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 86/24

References X

Milo, T., Suciu, D., and Vianu, V. (2003).
Typechecking for XML transformers.
J. Comput. Syst. Sci., 66(1):66-97.

Queille, J.-P. and Sifakis, J. (1982).
Specification and verification of concurrent systems in CESAR.
In Dezani-Ciancaglini, M. and Montanari, U., editors,
Symposium on Programming, volume 137 of Lecture Notes in
Computer Science, pages 337—-351. Springer.

Samuelides, M. (2007).
Automates d’arbres a jetons.
PhD thesis, Université Paris-Diderot - Paris VII.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 87/24

References Xl

Segoufin, L. and Vianu, V. (2002).
Validating Streaming XML Documents.
In PODS, pages 53-64. ACM.

Vacher, C. (2010).
Tree automata with global constraints for the verification of

security properties.
Ph.D. thesis, ENS Cachan.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 88/24

	Model-Checking LTL on Rewrite Sequences
	TAGE With a Bounded Number of Constraints
	Other Works and Some Perspectives

