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Model-Checking
Introduced in

[Clarke and Emerson, 1981, Queille and Sifakis, 1982]

Check M,s0 |= ϕ:
“do all executions of M starting in s0 follow ϕ?”

M finite states/transitions model
s0 initial state
ϕ the specification, in temporal logic

Limited by state explosion. Prevented by parametrisation.
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Regular Model-Checking
Introduced in [Kesten et al., 1997]

regular model-checking.

states → finite words
sets of states → finite-state automata

transitions → finite-state transducers, semi-Thue systems

q0 q1 q2
a

b

a ↔ {aa, aba, abba, . . . }

Automata provide finite, tractable symbolic representations
of infinite sets of states.
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Regular Model-Checking
Introduced in [Kesten et al., 1997]

tree regular model-checking.

states → finite trees
sets of states → tree automata

transitions → tree transducers, term rewriting systems

q0 q1 q2
a

b
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Automata provide finite, tractable symbolic representations
of infinite sets of states.
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Reachability Analysis (in TRMC)
e.g. [Feuillade et al., 2004, Bouajjani and Touili, 2002]

S0 initial language tree automaton
B set of “bad” states tree automaton
R the transitions rewrite system or transducer

R∗(S0)bbad

B

?
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Reachability Analysis (in TRMC)
e.g. [Feuillade et al., 2004, Bouajjani and Touili, 2002]

S0 initial language tree automaton
B set of “bad” states tree automaton
R the transitions rewrite system or transducer

R∗(S0) Approxbbad

B

?
Regularity-preserving classes, context-free step,. . .
Regular over- or under-approximations.
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Variations on Reachability Analysis
With Rewriting: e.g.

[Meseguer, 1992, Boyer and Genet, 2009, Courbis et al., 2009]

S0

B

Reachability analysis = �¬B.
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Variations on Reachability Analysis
With Rewriting: e.g.

[Meseguer, 1992, Boyer and Genet, 2009, Courbis et al., 2009]

S0
X

X

X

Y

Reachability analysis = �¬B. More general: e.g. �(X⇒ ◦Y).
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Variations on Reachability Analysis
With Rewriting: e.g.

[Meseguer, 1992, Boyer and Genet, 2009, Courbis et al., 2009]

S0

Reachability analysis = �¬B. More general: e.g. �(X⇒ ◦Y).
Same on transitions: �(♠ ⇒ ◦♠).
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1 Model-Checking LTL on Rewrite Sequences
Statement of the Central Problem
Our Approach: An Overview

2 TAGE With a Bounded Number of Constraints
Global Equality Constraints
Overview of the Results

3 Other Works and Some Perspectives
Results on SAT & Tree-Walking Automata
Perspectives and Questions
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Model-Checking Rewrite Sequences
[Meseguer, 1992]

Order of application of rewrite rules.

Check R,Π |= ϕ, with

R a term rewriting system (TRS)
Π the initial (regular) tree language
ϕ a linear temporal logic (LTL) formula

Example: ϕ = �(X⇒ •Y)

X, Y ⊆ R are sets of rules
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Model-Checking Rewrite Sequences
[Meseguer, 1992]

t0 ∈ Π

ti

tj

. . .

tn

ui

uj

. . .

un

vi

vj

. . .

vn

X

X
X

X

R∗

R∗

R∗

R∗

ri ∈ X

rj ∈ X

rk ∈ X

rn ∈ X

r ′i ∈ Y

r ′j ∈ Y

r ′k ∈ Y

r ′n ∈ Y

ϕ = �(X⇒ •Y)
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Model-Checking Rewrite Sequences
[Meseguer, 1992]

Order of application of rewrite rules.

Check R,Π |= ϕ, with

R a term rewriting system (TRS)
Π the initial (regular) tree language
ϕ a linear temporal logic (LTL) formula

Example: ϕ = �(X⇒ •Y)

X, Y ⊆ R are sets of rules
X = “ask PIN code” = { ask }

Y = “authenticate or cancel” = { auth1, auth2, can }
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Model-Checking Rewrite Sequences
Overview of the Model-Checking Process

Whether R,Π |= ϕ is undecidable.

R Π ϕ

To Rew. Prop. To Approx. R, Π |= ϕ ?π δ1, . . . , δn

Two-step positive approximated decision [Courbis et al., 2009]:
π a rewrite proposition – language equation
δk TAGE-based approximated procedures

TAGE tree automata with constraints: more precision

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 6/24



Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Model-Checking Rewrite Sequences
Prior work [Courbis et al., 2009]

“The system R satisfies the property”. . .

R, Π |= �(X⇒ •Y)

. . . is equivalent to the rewrite proposition. . .

[R \ Y](X(R∗(Π))) = ∅ ∧ X(R∗(Π)) ⊆ Y−1(T)

. . . approximated with TAGE by, assuming Y is left-linear,

IsEmpty(OneStep(R \ Y, Approx(A,R)), X) and
Subset(OneStep(X, Approx(A,R)), Backward(Y)),
where L(A) = Π, L(Approx(A,R)) ⊇ R∗(L(A))
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Model-Checking Rewrite Sequences
Prior work [Courbis et al., 2009], and New Goals

1 R,Π |= �(X⇒ •Y)

[R \ Y](X(R∗(Π))) = ∅ ∧ X(R∗(Π)) ⊆ Y−1(T)

2 R,Π |= ¬Y ∧ �(•Y ⇒ X)

Y(Π) = ∅ ∧ Y([R \ X](R∗(Π))) = ∅

3 R,Π |= �(X⇒ ◦�¬Y)

Y(R∗(X(R∗(Π)))) = ∅
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Model-Checking Rewrite Sequences
Prior work [Courbis et al., 2009], and New Goals

Main goal: from manual to automatic translations.

R Π ϕ

To Rew. Prop. To Approx. R, Π |= ϕ ?π δ1, . . . , δn

Sub-goal: efficient procedures =⇒ TAGE complexity study.
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Intuitions for the Translation
1 R,Π |= ¬X:

“The first transition, if it occurs, is not by X”

π1 ≡ X(Π) = ∅

2 X: π2 ≡ [R \ X](Π) = ∅ ∧ Π ⊆ X−1(T)
3 �¬X: π3 ≡ X(R∗(Π)) = ∅ ≡ π1[R

∗(Π)/Π]
4 �X: π4 ≡ [R \ X](R∗(Π)) = ∅
5 Conjunction: if ϕ : π5 and ψ : π ′5 then ϕ ∧ψ : π5 ∧ π

′
5.

6 Disjunction: π6 ∨ π ′6 =⇒ R, Π |= ϕ ∨ψ
7 Negation: R, Π |=/ ϕ 6= R, Π |= ¬ϕ : “NNF” required
8 Implication: X⇒ •Y:
π7 ≡ [R \ Y](X(Π)) = ∅ ∧ X(Π) ⊆ Y−1(T)

X : π2, Y : π ′2 ≡ π2[Y/X], π7 ≡ π ′2[X(Π)/Π]

�(X⇒ •Y) : π0 ≡ π7[R
∗(Π)/Π]

What about •Y ⇒ X ? Other techniques (signatures,. . . )
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Translation Rules, by Examples
A dozen rules, e.g. conjunction:

l
〈Π # σ  ϕ ∧ψ〉

〈Π # σ  ϕ〉 ∧ 〈Π # σ  ψ〉

always (simplest case):

l
〈Π # ε  �ϕ〉
〈R∗(Π) # ?ε  ϕ〉

positive literal:

l
〈Π # σ  X〉 (σ \ X) C  h(σ \ X) = ε

Π
 h(σ\X)
σ\X

= ∅ ∧

 h(σ\X)−1∧
k∈∇σ,k=0

Πkσ\X ⊆ R−1(T)
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LTL → Rewrite Proposition
Derivation Tree

Derivation tree: automatic translation and proof

l
〈Π # ε  �(X⇒ •Y)〉

l
〈R∗(Π) # ?ε  X⇒ •Y〉

l
〈R∗(Π) # HX # R | N1I  •Y〉

l
〈R∗(Π) # HX # R | N1I  ◦Y〉

l
〈X(R∗(Π)) # ?ε  Y〉
[R \ Y](X(R∗(Π))) = ∅

∧ X(R∗(Π)) ⊆ R−1(T) .

Optional global optimisation phase: R−1(T)→ Y−1(T).
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Translatable Fragment

Exactly rewrite-translatable fragment:

X ∈ ℘(R), m ∈ N

ϕ := > | ⊥ | X | ¬X | ϕ ∧ϕ | ψ⇒ ϕ | •ϕ | ◦ϕ | �ϕ

ψ := > | ⊥ | X | ¬X | ψ ∨ψ | ψ ∧ψ | •ψ | ◦ψ | Φ

Φ := at least ε-stabilisable �ϕ

Practical pre-experimental evaluation:
good partial support of [Dwyer et al., 1999] patterns.
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LTL on Rewrite Sequences
Perspectives (Translation Into Rewrite Proposition)

R Π ϕ

To Rew. Prop. To Approx. R, Π |= ϕ ?π δ1, . . . , δn

[Héam et al., 2012a] Int. Conf. IJCAR’12, Manchester

Extensions: Past-Time and Existential LTL
Dealing with eventuality by studying “exhaustion”:
e.g. ♦¬{f(x)→ x} holds with bounded f-height & no intro
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LTL on Rewrite Sequences
Perspectives (Approximated Decision Procedures)

R Π ϕ

To Rew. Prop. To Approx. R, Π |= ϕ ?π δ1, . . . , δn

Coping with more non-linearity – e.g. protocols, rewrite steps
e.g. f(x, x)→ g(x), f(x)→ g(x, x),. . .
Tractable algorithmic toolbox for TAGE

Last points ⇒ closer study of TAGE complexity
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1 Model-Checking LTL on Rewrite Sequences
Statement of the Central Problem
Our Approach: An Overview

2 TAGE With a Bounded Number of Constraints
Global Equality Constraints
Overview of the Results

3 Other Works and Some Perspectives
Results on SAT & Tree-Walking Automata
Perspectives and Questions
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

TAGE, TA=, Positive TAGED, A = 〈A,Q, F,∆,u〉 :

〈A,Q, F,∆〉 vanilla tree automaton ta(A)
u equality constraints, u ⊆ Q2

Constraint puq :

run ρ of A on t:
run of ta(A) on t
satisfying u: ∀α,β ∈ P(t); ρ(α)uρ(β)⇒ t|α = t|β

accepting run: accepting for ta(A)
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A = {a/0, f/2 }, Q = {q, q̂, qf }, F = {qf }, q̂u q̂, and

∆ = { f(q̂, q̂)→ qf, f(q, q)→ q, f(q, q)→ q̂, a→ q, a→ q̂ }

u = f

f

aa

f

aa

and v = f

af

aa
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TA= versus TA=
k

Restriction on the kind of constraints: Rigid Automata (RTA)

Same expressive power as TA=

Less compact representations
Linear emptiness / finiteness tests, vs. ExpTime-complete
Applications: [Jacquemard et al., 2009, Vacher, 2010]

What of the number of constraints? TA=
k A = 〈Σ,Q, F,∆,u〉 :

〈Σ,Q, F,∆,u〉 TA= A

u such that Card(u) 6 k
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Summary of Results

[Héam et al., 2012c] Int. Conf. CIAA’12, Porto

Strict hierarchy of powers: L(TA=
k ) ⊂ L(TA=

k+1)

Emptiness linear for TA=
1 , ExpTime-complete TA=

2

Finiteness polynomial for TA=
1 , ExpTime-complete for TA=

2

NP-complete membership becomes polynomial if k fixed.
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Summary of Results

[Héam et al., 2012c] Int. Conf. CIAA’12, Porto

Strict hierarchy of powers: L(TA=
k ) ⊂ L(TA=

k+1)

Emptiness linear for TA=
1 , ExpTime-complete TA=

2

Finiteness polynomial for TA=
1 , ExpTime-complete for TA=

2

Reduction of emptiness to finiteness.

NP-complete membership becomes polynomial if k fixed.
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Summary of Results
NP-complete membership becomes polynomial if k fixed.

GP St←− h ∈ HtP −→

G1 = {p, q }

G2 = { r, s, t }

G3 = {qx}

Gn

...

CG1

CG2

CG1

CGn

•

• •

CG3
• • • •

• • • • • • • •
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TAGE SAT & Tree-Walking Overloops
[Héam et al., 2010] Int. Workshop CSTVA’10, Paris
[Héam et al., 2011] Int. Conf. CIAA’11, Blois
[Héam et al., 2012b] Int. Journal Theo. Comp. Sci.

SAT Encoding for TAGE membership & optimisations.
Formal treatment of tree-walking loops for transformation into
bottom-up TA; revealed missing factor in space Σ× T× 2Q2 .
Introduced tree-walking overloops: restores T× 2Q2 , smaller
automata in practice in extensive random tests.
Shown overloops upper-bound is |T| · 2|Q| log2(|Q|+1) in the
deterministic case. Note that exponential is unavoidable.
Polynomial overloops-based approximation to TWA
emptiness, vs. ExpTime-c. Very precise in random tests.
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Polynomial Approximation for Emptiness
Random tests

1 Ad-hoc scheme: ≈ 20 000 TWA, 2 6 |Q| 6 20, |∆| ≈ 3× |Q|,
75% of empty languages, only two Unknown instead of Empty.

2 Uniform scheme [Héam et al., 2009], REGAL back-end for FSA
generation [Bassino et al., 2007]. 2 000 deterministic and
complete TWA uniformly generated for each 2 6 |Q| 6 25.
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Polynomial Approximation for Emptiness
Random tests
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Size Comparison: Loops vs. Overloops
One Example & Uniform Generation Scheme

For X: loops ‖Bl‖ = 1986; overloops ‖Bo‖ = 95; deterministic
minimal ‖Bm‖ = 56; smallest known non-deterministic ‖Bs‖ = 34.

Loops 60 times worse than manual optimal; overloops 3 times.

Orthogonal to post-processing cleanup:
∥∥B ′l ∥∥ = 1617, ‖B ′o‖ = 78.

‖Bl‖
‖Bo‖

≈ 20.9 and
∥∥B ′l ∥∥
‖B ′o‖

≈ 20.7 and ‖Bl‖∥∥B ′l ∥∥ ≈ ‖Bo‖
‖B ′o‖

≈ 1.2 .
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Conclusion / Summary

Generalisation of the translation

R Π ϕ

To Rew. Prop. To Approx. R, Π |= ϕ ?π δ1, . . . , δn

Study of complexity of bounded global constraints

Improved loops-based methods for tree-walking automata
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Perspectives

Full TAGE may not be required for X(Π); flat constraints ensure
polynomial emptiness decision; are they enough?

Implemented algorithmic toolbox for these automata.

Rewrite propositions go beyond LTL (e.g. ∃-LTL).
What is their full expressive power?

Intermix state and transition-based properties.
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Questions ?
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Supported Fragment, In Practice
Partially Supported Patterns From [Dwyer et al., 1999]

Scope

Pattern Global Before After Between Until Support

Absence 41 5 12 18 9 48%
Universality 110 1 5 2 1 96%
Existence 12 1 4 8 1 0%
Bound Exist. 0 0 0 1 0 0%
Response 241 1 3 0 0 99%
Precedence 25 0 1 0 0 96%
Resp. Chain 8 0 0 0 0 0%
Prec. Chain 1 0 0 0 0 0%

Support 95% 0% 32% 0% 0% 83%
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Formal Tools for Verification
Reliable Software

Software failure is undesirable. . .

Ariane 5, Therac-25, Mariner I, Phobos I, XA/21 USA & Canada
Northeast 2003 blackout, MIM-104 Patriot anti-missile, Mars
Climate Orbiter, Mars Polar Lander, Mars Global Surveyor space
probes,. . .

. . . hence the need for formal verification methods.

E.G. With Hoare logic, correctness is a mathematical theorem.

Precondition, code, post-condition: {> } x := y { x = y }.

Manual proofs require mathematical ingenuity. Automation?
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Model-Checking Rewrite Sequences
Coding the Behaviour of the System: �(X⇒ •Y)

t0 ∈ Π

ti

tj

. . .

tn

ui

uj

. . .

un

vi

vj

. . .

vn

X

X
X

X

R∗

R∗

R∗

R∗

ri ∈ X

rj ∈ X

rk ∈ X

rn ∈ X

r ′i ∈ Y

r ′j ∈ Y

r ′k ∈ Y

r ′n ∈ Y
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Maximal Rewrite Words
Coding the Behaviour of the System

t0 ∈ Π

ti

tj

. . .

tn

ui

uj

. . .

un

vi

vj

. . .

vn

X

X
X

X

R∗

R∗

R∗

R∗

ri ∈ X

rj ∈ X

rk ∈ X

rn ∈ X

r ′i ∈ Y

r ′j ∈ Y

r ′k ∈ Y

r ′n ∈ Y

Executions may or may not terminate: finite and infinite words.
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Maximal Rewrite Words
Coding the Behaviour of the System

Finite or infinite words on R:

N = N ∪ {+∞} W =
⋃
n∈N

(
J1, nK→ R

)
Notation: length #w ∈ N : #w = Card(domw).

Maximal rewrite words of R, originating in Π:

LΠM is the set of words w ∈W such that

∃u0 ∈ Π : ∃u1, . . . , u#w ∈ T : ∀k ∈ domw,
uk−1

w(k)−−−→ uk ∧ #w ∈ N⇒ R({u#w}) = ∅
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Syntax and Semantics for LTL
Close to Finite-LTL [Manna and Pnueli, 1995]

ϕ := X | ¬ϕ | ϕ ∧ϕ | •mϕ | ◦mϕ | ϕUϕ X ∈ ℘(R)

> | ⊥ | ϕ ∨ϕ | ϕ⇒ ϕ | ♦ϕ | �ϕ m ∈ N .

(w, i) |= X ⇔ i ∈ domw and w(i) ∈ X
(w, i) |= ¬ϕ ⇔ (w, i) |=/ ϕ
(w, i) |= (ϕ ∧ψ) ⇔ (w, i) |= ϕ and (w, i) |= ψ
(w, i) |= •mϕ ⇔ i+m ∈ domw and (w, i+m) |= ϕ
(w, i) |= ◦mϕ ⇔ i+m /∈ domw or (w, i+m) |= ϕ

(w, i) |= ϕUψ ⇔
{
∃j ∈ domw : j > i ∧ (w, j) |= ψ
∧ ∀k ∈ Ji, j− 1K, (w, k) |= ϕ

For any w ∈W, i ∈ N1, m ∈ N and X ∈ ℘(R).
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> | ⊥ | ϕ ∨ϕ | ϕ⇒ ϕ | ♦ϕ | �ϕ m ∈ N .

(w, i) |= X ⇔ i ∈ domw and w(i) ∈ X
(w, i) |= ¬ϕ ⇔ (w, i) |=/ ϕ
(w, i) |= (ϕ ∧ψ) ⇔ (w, i) |= ϕ and (w, i) |= ψ
(w, i) |= •mϕ ⇔ i+m ∈ domw and (w, i+m) |= ϕ
(w, i) |= ◦mϕ ⇔ i+m /∈ domw or (w, i+m) |= ϕ
(w, i) |= �ϕ ⇔ ∀j ∈ domw, j > i⇒ (w, j) |= ϕ

For any w ∈W, i ∈ N1, m ∈ N and X ∈ ℘(R).
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Syntax and Semantics for LTL
Close to Finite-LTL [Manna and Pnueli, 1995]

(w, i) |= X ⇔ i ∈ domw and w(i) ∈ X
(w, i) |= ¬ϕ ⇔ (w, i) |=/ ϕ
(w, i) |= (ϕ ∧ψ) ⇔ (w, i) |= ϕ and (w, i) |= ψ
(w, i) |= •mϕ ⇔ i+m ∈ domw and (w, i+m) |= ϕ
(w, i) |= ◦mϕ ⇔ i+m /∈ domw or (w, i+m) |= ϕ
(w, i) |= �ϕ ⇔ ∀j ∈ domw, j > i⇒ (w, j) |= ϕ

For any w ∈W, i ∈ N1, m ∈ N and X ∈ ℘(R).

Satisfaction:

w |= ϕ ⇐⇒ (w, 1) |= ϕ

R, Π |= ϕ ⇐⇒ ∀w ∈ LΠM, w |= ϕ
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Rewrite Propositions
Problem Statement: First Translation Step

Rewrite proposition π on R, from Π; has a trivial truth value

π := γ | γ ∧ γ | γ ∨ γ γ := ` = ∅ | ` ⊆ `

X ∈ ℘(R) ` := Π | T | X(`) | X−1(`) | X∗(`)

Problem statement: translations into RP

Input: R, ϕ ∈ LTL, Π ⊆ T Output: RP π such that:
R,Π |= ϕ ⇐⇒ π (exact translation)
R,Π |= ϕ ⇐= π (under-approximated translation)
R,Π |= ϕ =⇒ π (over-approximated translation)
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Intuitions for the Translation
Boundaries of the Translatable Fragment

R∗(Π) hides traces:
♦X probably untranslatable. So are {♦,U,W,R, . . . } .

Formulæ in sanitised form: negation on literals. Not exactly NNF.

(A ∨ B)⇒ C (A⇒ C) ∧ (B⇒ C) (¬A ∧ ¬B) ∨ C

Preprocessing to fit translatable “antecedent/consequent” form.
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Signatures
Implication: Girdling the Future

Idea: ϕ⇒ ψ ? ϕ as an assumption, i.e. a model of ϕ: ξ(ϕ)

Σ =
⋃
n∈N

[(
J1, nK ∪ {ω}

)
→ ℘(R)

]
× ℘(N) .

Notations: σ ∈ Σ
compactly as σ = *f | S+ = *∂σ | ∇σ+,
or in extenso as Hf(1), f(2), . . . , f(#σ) # f(ω) | SI.

Example: ξ
(
X ∧ ◦1Y ∧ ◦2�Z

)
= HX, Y # Z | N1I
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Signatures
Implication: Girdling the Future

Σ =
⋃
n∈N

[(
J1, nK ∪ {ω}

)
→ ℘(R)

]
× ℘(N) .

Notations: σ ∈ Σ
compactly as σ = *f | S+ = *∂σ | ∇σ+,
or in extenso as Hf(1), f(2), . . . , f(#σ) # f(ω) | SI.

Example: ξ
(
X ∧ ◦1Y ∧ ◦2�Z

)
= HX, Y # Z | N1I

Constrained Words:
LΠ # σM = {w ∈ LΠM | #w ∈ ∇σ ∧ ∀k ∈ domw, w(k) ∈ σ[k] }
∀ Π ⊆ T, ϕ ∈ A-LTL, LΠ # ξ(ϕ)M = {w ∈ LΠM | w |= ϕ }
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Signatures: the Transformation ξ(·)
Modelling the Antecedent to Girdle the Future

ξ(>) = H#R | NI = ε ξ(⊥) = H#∅ | ∅I

ξ(X) = HX # R | N1I ξ(¬X) = HR \ X # R | NI

ξ(•mϕ) = ξ(ϕ) I m ξ(◦mϕ) = ξ(ϕ) B m

ξ(ϕ ∧ψ) = ξ(ϕ)� ξ(ψ) ξ(�ϕ) =
∞⊗
m=0

[
ξ(ϕ) B m

]
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Signatures: the Transformation ξ(·)
Modelling the Antecedent to Girdle the Future

ξ(>) = H#R | NI = ε ξ(⊥) = H#∅ | ∅I

ξ(X) = HX # R | N1I ξ(¬X) = HR \ X # R | NI

ξ(•mϕ) = ξ(ϕ) I m ξ(◦mϕ) = ξ(ϕ) B m

ξ(ϕ ∧ψ) = ξ(ϕ)� ξ(ψ) ξ(�ϕ) =
∞⊗
m=0

[
ξ(ϕ) B m

]

σ Im = Strong Shift Right =
HR1, . . . ,Rm, ∂σ(1), . . . , ∂σ(#σ) # ∂σ(ω) | (∇σ \ {0}) +mI
σ Bm = Weak Shift Right =
HR1, . . . ,Rm, ∂σ(1), . . . , ∂σ(#σ) #∂σ(ω) | J0,mK∪ (∇σ+m)I
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Signatures: the Transformation ξ(·)
Modelling the Antecedent to Girdle the Future

ξ(>) = H#R | NI = ε ξ(⊥) = H#∅ | ∅I

ξ(X) = HX # R | N1I ξ(¬X) = HR \ X # R | NI

ξ(•mϕ) = ξ(ϕ) I m ξ(◦mϕ) = ξ(ϕ) B m

ξ(ϕ ∧ψ) = ξ(ϕ)� ξ(ψ) ξ(�ϕ) =
∞⊗
m=0

[
ξ(ϕ) B m

]
Product Property: LΠ # σ� σ ′M = LΠ # σM ∩ LΠ # σ ′M
Example: σ = HX, Y # Z | N2I ρ = HX ′ # Z ′ | N3I

σ� ρ = HX ∩ X ′, Y ∩ Z ′ # Z ∩ Z ′ | N3I
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Signatures: the Transformation ξ(·)
Modelling the Antecedent to Girdle the Future

ξ(>) = H#R | NI = ε ξ(⊥) = H#∅ | ∅I

ξ(X) = HX # R | N1I ξ(¬X) = HR \ X # R | NI

ξ(•mϕ) = ξ(ϕ) I m ξ(◦mϕ) = ξ(ϕ) B m

ξ(ϕ ∧ψ) = ξ(ϕ)� ξ(ψ) ξ(�ϕ) =
∞⊗
m=0

[
ξ(ϕ) B m

]

�ϕ⇔
∞∧
m=0

◦
mϕ LΠ #

∞⊗
n=0

σnM =
∞⋂
n=0

LΠ # σnM

∞⊗
n=0

[
σ I n

]
and

∞⊗
n=0

[
σ B n

]
converge ∀σ ∈ Σ
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Rewrite Proposition → Procedure
automatic kind inference and generation rules

Kind inference: expressiveness required & assumptions

α : TA ` X(α) : TA= C α : TA, X : reg-pres ` X(α) : TA
` X−1(T) : TA= C X : left-lin ` X−1(T) : TA

α : TA ` \α : TA α : TA=
` \α : TA, \α : +++

Procedure Generation: from languages to automata

Γ # X−1(T)⇒ Γ, 〈X : left-lin〉 # X−1(T)

Γ # [`� ∆,α] # ∆ `∗ α : TA # X(`)⇒ Γ, ∆, 〈X : reg-pres〉 # X(α)
Γ # [`� ∆,α] # ∆ `∗ α : TA= # X(`)⇒ Γ, ∆, 〈X : reg-pres〉 # X(\α)
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Supported Fragment, In Practice
Partially Supported Patterns From [Dwyer et al., 1999]

Scope

Pattern Global Before After Between Until Support

Absence 41 5 12 18 9 48%
Universality 110 1 5 2 1 96%
Existence 12 1 4 8 1 0%
Bound Exist. 0 0 0 1 0 0%
Response 241 1 3 0 0 99%
Precedence 25 0 1 0 0 96%
Resp. Chain 8 0 0 0 0 0%
Prec. Chain 1 0 0 0 0 0%

Support 95% 0% 32% 0% 0% 83%
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Tree Automata
[Comon et al., 2008]

Introduced in the fifties; regular tree languages:

model-checking: programs, protocols,. . .
automated theorem-proving
XML schema and (esp. variants) query languages
. . . and so much more

Doesn’t deal with comparisons and non-linearity:

{ f(u, u) | u ∈ T(Σ) } e.g. password verification
{ f(u, v) | u, v ∈ T(Σ), u 6= v } e.g. primary keys
R(`), ` regular, R a TRS e.g. {g(x)→ f(x, x) }(T(A))
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Tree Automata
Bottom-Up, Non-Deterministic, Finite

Tree Automaton A = 〈A,Q, F,∆〉 :

A finite ranked alphabet
Q finite set of states
F final states, F ⊆ Q
∆ finite set of transitions

Transition r ∈ ∆ :

σ(q1, . . . , qn)→ q σ ∈ An q1, . . . , qn, q ∈ Q
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Tree Automata
Bottom-Up, Non-Deterministic, Finite

A = {∧,∨/2,¬/1,>,⊥/0 }, Q = {q0, q1 }, F = {q1}, ∆ ={
>→ q1, ⊥→ q0, ¬(qb)→ q¬b
∧(qb, qb ′)→ qb∧b ′ , ∨(qb, qb ′)→ qb∨b ′

∣∣∣∣ b, b ′ ∈ { 0, 1 }}

t = ∧

∨

¬

⊥

⊥

¬

∧

>⊥
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Tree Automata
Bottom-Up, Non-Deterministic, Finite

∧

∨

¬

⊥

⊥

¬

∧

>⊥

→∗∆ ∧

∨

¬

q0

q0

¬

∧

q1q0

→∗∆ ∧

∨

q1q0

¬

q0

→∗∆

∧

q1q1

→∆ q1
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Tree Automata
Runs and Languages

The reduction t→∗∆ q1 is captured by the run:

q1

q1

q1

q0

q0

q1

q0

q1q0

decorated: ε ∧ q1

2 ∨ q1

22 ¬ q1

221 ⊥ q0

21 ⊥ q0

1 ¬ q1

11 ∧ q0

112 > q1111 ⊥ q0
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

TAGE, TA=, Positive TAGED, A = 〈A,Q, F,∆,u〉 :

〈A,Q, F,∆〉 vanilla tree automaton ta(A)
u equality constraints, u ⊆ Q2

Constraint puq :

run ρ of A on t:
run of ta(A) on t
satisfying u: ∀α,β ∈ P(t); ρ(α)uρ(β)⇒ t|α = t|β

accepting run: accepting for ta(A)
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A = {a/0, f/2 }, Q = {q, q̂, qf }, F = {qf }, q̂u q̂, and

∆ = { f(q̂, q̂)→ qf, f(q, q)→ q, f(q, q)→ q̂, a→ q, a→ q̂ }

u = f

f

aa

f

aa

and v = f

af

aa
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A = {a/0, f/2 }, Q = {q, q̂, qf }, F = {qf }, q̂u q̂, and

∆ = { f(q̂, q̂)→ qf, f(q, q)→ q, f(q, q)→ q̂, a→ q, a→ q̂ }

u, ρu = f qf

f q̂

a qa q

f q̂

a qa q

and v = f

af

aa
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A = {a/0, f/2 }, Q = {q, q̂, qf }, F = {qf }, q̂u q̂, and

∆ = { f(q̂, q̂)→ qf, f(q, q)→ q, f(q, q)→ q̂, a→ q, a→ q̂ }

u = f

f

aa

f

aa

and v, ρv = f qf

a q̂f q̂

a qa q
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A = {∧,∨/2,¬/1,>,⊥/0 } ] X, Q = {q0, q1 } ] { vx | x ∈ X } and
F = {q1}, new rules >→ vx, ⊥→ vx, x(q0, vx)→ q1,

x(vx, q1)→ q0 for each x ∈ X, vxu vx.

(x ∧ y) ∨ ¬x ≡ ∨

¬

x

>⊥

∧

y

>⊥

x

>⊥
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A = {∧,∨/2,¬/1,>,⊥/0 } ] X, Q = {q0, q1 } ] { vx | x ∈ X } and
F = {q1}, new rules >→ vx, ⊥→ vx, x(q0, vx)→ q1,

x(vx, q1)→ q0 for each x ∈ X, vxu vx.

(x ∧ y) ∨ ¬x ≡ ∨ q1

¬ q1

x q0

> q1⊥ vx

∧ q0

y q1

> vy⊥ q0

x q0

> q1⊥ vx
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TA versus RTA versus TA=

Closure, Complexity and Decidability

TA RTA (pup) TA=

∪ PTime PTime PTime
∩ PTime ExpTime ExpTime
¬ ExpTime ∅ ∅

t ∈ L(A) ? PTime NP-c NP-c (a)
L(A) = ∅ ? linear-time linear-time ExpTime-c
|L(A)| ∈ N ? PTime PTime ExpTime-c

L(A) = T(Σ) ? ExpTime-c undecidable undecidable
L(A) ⊆ L(B) ? ExpTime-c undecidable undecidable
L(
⋂
iAi) = ∅ ? ExpTime-c ExpTime-c ExpTime-c

(a)SAT solver approach: [Héam et al., 2010].
Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 43/24



Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

TA versus RTA versus TA=

Closure, Complexity and Decidability

TA RTA (pup) TA=

∪ PTime PTime PTime
∩ PTime ExpTime ExpTime
¬ ExpTime ∅ ∅

t ∈ L(A) ? PTime NP-c NP-c (a)
L(A) = ∅ ? linear-time linear-time ExpTime-c
|L(A)| ∈ N ? PTime PTime ExpTime-c

L(A) = T(Σ) ? ExpTime-c undecidable undecidable
L(A) ⊆ L(B) ? ExpTime-c undecidable undecidable
L(
⋂
iAi) = ∅ ? ExpTime-c ExpTime-c ExpTime-c

(a)SAT solver approach: [Héam et al., 2010].
Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 43/24



Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

TA= versus TA=
k

Restriction on the kind of constraints: Rigid Automata (RTA)

Same expressive power as TA=

Less compact representations
Linear emptiness / finiteness tests, vs. ExpTime-complete
Applications: [Jacquemard et al., 2009, Vacher, 2010]

What of the number of constraints? TA=
k A = 〈Σ,Q, F,∆,u〉 :

〈Σ,Q, F,∆,u〉 TA= A

u such that Card(u) 6 k
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Expressive Power
The Separation Languages L = (`k)k∈N [Hugot, 2013]

k⊎
i=1

Ai ] {σ/3,⊥/0 } Ai = {ai, bi/0, fi, gi/2 }

`0 = {⊥} ∀k > 1, `k = {σ(u, u, tk−1) | u ∈ T(Ak), tk−1 ∈ `k−1 }

σ

σ

σ

⊥ ,u1u1

uk−1uk−1

ukuk

ui ∈ T(Ai) ∀i
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Expressive Power
The Separation Languages L = (`k)k∈N [Hugot, 2013]

σ

σ

σ

⊥ ,u1u1

uk−1uk−1

ukuk

ui ∈ T(Ai) ∀i

`1 ∈ L(TA=
1 ) \ L(TA) ≈ ground instances of f(x, x).

`k ∈ L(TA=
k ) \ L(TA=

k−1), ∀k > 1.
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Expressive Power
Show `k ∈ L(TA=

k ) \ L(TA=
k−1) [Hugot, 2013]

Show `k ∈ L(TA=
k): Ak ∈ TA=

k such that L(Ak) = `k

Ui ∈ TA universal, Ui :F =
{
qui
}
, for all i. Ak is

Q = {qv0} ]
k⊎
i=1

Ui :Q ] {qvi} F = {qv1} qui uqui , ∀i ∈ J1, kK

∆ =
{
σ(qui , q

u
i , q

v
i−1)→ qvi

∣∣ i ∈ J1, kK} ∪ {⊥→ qv0 } .
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Expressive Power
Show `k ∈ L(TA=

k ) \ L(TA=
k−1) [Hugot, 2013]

Show `k /∈ L(TA=
k−1):

active constrained states:

acs ρ = { ρ(α) | α ∈ P(ρ),∃β ∈ P(ρ) \ {α} : ρ(α)u ρ(β) }
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k ) \ L(TA=
k−1) [Hugot, 2013]

Show `k /∈ L(TA=
k−1):

Assume `k ∈ L(TA=
k−1) i.e. ∃A ∈ TA=

k−1 : L(A) = `k

∀ρ, @α,β : α 6= β,α ∈ 3∗, ρ(α)u ρ(β)
Pick t ∈ `k such that

∣∣t|α∣∣ > |Q|, for all α ∈ 3∗(1+ 2)
∀α ∈ 3∗(1+ 2), ran ρ|α ∩ acs ρ 6= ∅
Each pair of ui needs its own fresh state(s) piuqi
A does not exist, contradiction.
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Pick t ∈ `k such that

∣∣t|α∣∣ > |Q|, for all α ∈ 3∗(1+ 2)
Suppose ∃α ∈ 3∗(1+ 2) such that ran ρ|α ∩ acs ρ = ∅. A acts
as BUTA wrt. t|α; pump ρ|α, get t ′ /∈ `k, but t ′ ∈ L(A).

Each pair of ui needs its own fresh state(s) piuqi
A does not exist, contradiction.
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∣∣t|α∣∣ > |Q|, for all α ∈ 3∗(1+ 2)
∀α ∈ 3∗(1+ 2), ran ρ|α ∩ acs ρ 6= ∅
i 6= j, pi acs for ui, pj for uj. ∃ acsqi, qj : piuqi, pjuqj.
Suppose qi in subrun of uj. Then ∃si E ui, sj E uj, si = sj.
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A does not exist, contradiction.
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The Membership Problem
General Idea & Strategy

Membership complexity : t ∈ L(A) ?

NP-complete for TA=

PTime for TA=
k , ∀k ∈ N

Proof Strategy :
Choose each P ⊆ domu = {p | ∃q : puq or qup }
Given P, turn u into an equivalence relation �P
Try all possible “housings” of the u-classes into t
For each housing, try to build an accepting run
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u is Not an Equivalence
(but we can pretend it is)

Example: Given pu r and ruq, what of puq ?

Does r actually appear in the run ?

yes : puq implied
no : pu r and ruq are moot.

Fix P ⊆ domu. Any run ρ such that (ranρ)∩ (domu) = P
is accepting for A iff it is so for

AP = *A | u :=
(
u∩P2

)≡
+ ,

symmetric, transitive, reflexive closure under dom(u∩P2).
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Groups & Similarity Classes

Groups GP : set of u-equivalence classes (given P)

GP = dom(u∩P2)
(u∩P2)≡

= dom(u∩P2)
�P

Similarity Classes St of t :

∀α,β ∈ P(t); α ∼ β ⇐⇒ t|α = t|β
classes St = P(t)/∼
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Housings
And Their Compatibility with the Constraints

Characterisation of Satisfaction of u :

∀G ∈ GP; ∃CG ∈ St : ρ−1(G) ⊆ CG

Housings HtP of P within t :

The map G 7→ CG is a P-housing of ρ in t, compatible with ρ

HtP = GP → St

is the set of all possible P-housings on t.
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GP St←− h ∈ HtP −→

G1 = {p, q }

G2 = { r, s, t }

G3 = {qx}

Gn

...

CG1

CG2

CG1

CGn

•

• •

CG3
• • • •

• • • • • • • •
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Proof Outline
For TA=

k

Operations Needed :
Choose P: 22k possible P ⊆ domu
Choose housing:

∣∣StGP ∣∣ = |St|
|GP| 6 ‖t‖2k P-housings on t

⇒ 4k · ‖t‖2k tests in total

# polynomial compatibility test = variant of reachability

Is a final state reachable if states q ∈ P can only go in h([q]�P)?
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Compatibility Test
In Polynomial Time

Simple variant of reachability algorithm:

Given P and h ∈ HtP, there exists a compatible run iff

ΦP,ht (ε) ∩ F 6= ∅ ,

where

ΦP,ht (α) =

q ∈ Q
∣∣∣∣∣∣∣∣
t(α)(p1, . . . , pn)→ q ∈ ∆

∀i ∈ J1, nK, pi ∈ ΦP,ht (α.i)
q ∈

⋃
GP =⇒ α ∈ h([q]�P)

q /∈ dom(u) \ P

 .
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Rigidification
Problem : Given TA= A, build equivalent RTA B.

General Result [Filiot, 2008, Lem. 5.3.5]

Exponential construction: ‖B‖ 6 O(2‖A‖2)

In the case of TA=
1 :

Polynomial construction: ‖B‖ 6 O(‖A‖2)

Idea : Simulate a constraint puq, p 6= q by a TA intersection
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Rigidification: Construction

B = B¬p ]B¬q ] *A | Q′, ∆′, qfuqf+

B¬p = *A | Q \ {p}+ B¬q = *A | Q \ {q}+

Q ′ = (Q \ {p, q}) ] (Bpq :Q) ∆ ′ = ∆qf
pq ] (Bpq :∆)

Bpq = Bp �Bq qf = (p, q)

Bp = *B¬q | F := {p}, ∆ := ∆p+ Bq = *B¬p | F := {q}, ∆ := ∆q+
∆p = B¬q :∆ \ { . . . p . . .→ . . . } ∆q = B¬p :∆ \ { . . . q . . .→ . . . }

∆
qf
pq is A :∆ from which all left-hand side occurrences of p or q

have been replaced by qf.
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Emptiness
Outline of the Result and Proof

Complexity of Emptiness : L(A) = ∅ ?

PTime (quadratic) for TA=
1

ExpTime-complete for TA=
k , k > 2

TA=
1 : immediate by rigidification. Emptiness for RTA: linear time

TA=
2 : Reduction of intersection-emptiness of n TA A1, . . . ,An.

Generalisation of the usual argument [Filiot et al., 2008, Thm. 1]
from “unlimited constraints” to “two constraints”
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L = ∅ ⇐⇒
n⋂
i=1

L(Ai) = ∅

σ

σ

u1

σ

u2

σ

u3

. . . σ

un−1

un

σ

u

σ

u

σ

u

. . . σ

u

u

Figure : Reduction of intersection-emptiness: the language.

where ∀i, xi ∈ L(Ai) and x = xi
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Finiteness
Outline of the Result and Proof

Complexity of Finiteness : |L(A)| ∈ N ?

PTime for TA=
1

ExpTime-complete for TA=
k , k > 2

TA=
1 : immediate by rigidification. Finiteness for RTA is PTime

TA=
2 : Reduction of Emptiness for TA=

2 .
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Finiteness
Outline of the Result and Proof

A ′ = *A | Q ] {p}, F := {p}, Σ ] {σ/1}, ∆
′+

where ∆ ′ = ∆ ∪ {σ(qf)→ p | qf ∈ F } ∪ {σ(p)→ p }

if L(A) = ∅ then L(A ′) = ∅
if t ∈ L(A) then σ+(t) ⊆ L(A ′)

L(A ′) is finite ⇐⇒ L(A) is empty
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Summary
and Perspectives

Refined complexity and expressiveness results:

Expressiveness: TA=
k form a strict hierarchy

Membership: NP-c for TA=, but PTime for TA=
k , ∀k

Emptiness: quadratic for TA=
1 , ExpTime-complete for TA=

2

Finiteness: PTime for TA=
1 , ExpTime-complete for TA=

2

Left to do:

Effects of 6u, flat constraints, efficient heuristics, etcetera.
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Tree Walking Automata
in a Few Words

Not a new formalism [Aho and Ullman, 1969]
Sequential model, as opposed to branching tree automata
Less extensively studied model until ≈ 2000
[Bojańczyk and Colcombet, 2005, Bojańczyk and Colcombet, 2006]
Recent surge in interest, due mostly to connection to XML:

Caterpillar expressions [Brüggemann-Klein and Wood, 2000]
Streaming XML documents [Segoufin and Vianu, 2002]
type-checking XML-QL, XSLT,. . . [Milo et al., 2003]

Rich variants: pebbles, marbles,. . .
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Tree Walking Automata
in a Few Words

Existing research focused on fundamental problems:
expressive power, determinisability,. . .

We study practical, efficient algorithms

In particular: the transformation from TWA to BUTA
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Preliminaries
Definition of Tree Walking Automata

A Tree-Walking Automaton is a tuple A = 〈Σ,Q, I, F, ∆〉

∆ ⊆ Σ×Q× { ?, 0, 1 }︸ ︷︷ ︸
T : types

× { ↑,	,↙,↘ }︸ ︷︷ ︸
M : moves

×Q

“〈f, p, τ→ µ, q〉” written for the tuple (f, p, τ, µ, q) ∈ ∆.
〈Σ2, p,T→ 	, q〉 = { (σ, p, τ,	, q) | σ ∈ Σ2, τ ∈ T }

Remarks
Ranked (binary) vs. unranked alphabet
〈Σ0, Q,T→ {↙,↘ }, Q〉 ∪ 〈Σ,Q, ?→ ↑, Q〉 invalid
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Preliminaries
Example Tree Walking Automaton

A very simple example TWA: X = 〈Σ,Q, I, F, ∆〉

Σ0 = {a, b, c } and Σ2 = { f, g, h }

Q = {q`, qu }, I = {q`}, F = {qu}

∆ = 〈a, q`, { ?, 0 }→ 	, qu〉
∪ 〈Σ, qu, 0→ ↑, qu〉

∪ 〈Σ2, q`, { ?, 0 }→↙, q`〉

X accepts exactly all trees whose left-most leaf is labelled by a —
and the tree a itself.
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Preliminaries
Example Tree Walking Automaton

Q = {q`, qu }, I = {q`}, F = {qu}

∆ = 〈a, q`, { ?, 0 }→ 	, qu〉
∪ 〈Σ, qu, 0→ ↑, qu〉

∪ 〈Σ2, q`, { ?, 0 }→↙, q`〉

f

h

a b

a
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Preliminaries
Example Tree Walking Automaton

Q = {q`, qu }, I = {q`}, F = {qu}

∆ = 〈a, q`, { ?, 0 }→ 	, qu〉
∪ 〈Σ, qu, 0→ ↑, qu〉

∪ 〈Σ2, q`, {?, 0 }→↙, q`〉

f[q`]

h

a b

a
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TWA to BUTA Transformation
Given a TWA A, build an equivalent BUTA B

Solution outlined in [Bojańczyk, 2008] and [Samuelides, 2007]
Based on the idea of tree loops
Claims resulting states for B: T× 2Q2 — or det. (2Q2)T

Only proof sketches. No explicit algorithm is given.
We argue that things are slightly less straightforward:

Needed states space: Σ× T× 2Q2 — or det. Σ× (2Q
2

)T

Existing implementations: almost correct [dtwa-tools]
We introduce tree overloops

This time we really have T× 2Q2 — or det. (2Q2

)T

Nicer upper bound if A is deterministic: |T| · 2|Q| log2(|Q|+1)
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The Idea of Tree Loops
With Pretty Pictures

(pin, pout) ∈ Q
2 is a loop of A on t|α if there exists a run which

starts in pin,
ends in pout — at the local root α,
and always stays in the subtree

pin · pout

··

.
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The Idea of Tree Loops
By Example

Recall that X visits the left-most leaf and goes back up if it is a.

f

h

a b

a

Loops of X on. . .
t: {}
t|0: {}
t|0.0: {}
t|0.1: {}
t|1: {}
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Computing Tree Loops
Loops Decomposition

A loop is a simple loop on t|α if there is a run which forms it and
reaches α exactly twice — i.e. simple looping run

Proposition: loops decomposition

If S ⊆ Q2 is the set of all simple loops of A on a given subtree
u = t|α, then S∗ is the set of all loops of A on u.

So to compute all loops, it suffices to compute simple loops.
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Computing Tree Loops
fτ(u) = set of loops of A on a subtree u of type τ

On leaves u = a ∈ Σ0

Simple looping run = (α, p)� (α, q) only.

Hτσ = { (p, q) | 〈σ, p, τ→ 	, q〉 ∈ ∆ } fτ(a) = (Hτa)
∗

On inner nodes u = f(u0, u1) : by first move

↑ — impossible: leaves the subtree u
	 — all computed in Hτf

↙ — (ε, p), (0, p0), (β1, s1), . . . , (βn, sn), (0, q0), (ε, q),
with all βk E 0. So (p0, q0) ∈ f0(u0)

↘ —(ε, p), (1, p1), (β1, s1), . . . , (βn, sn), (1, q1), (ε, q),
with all βk E 1. So (p1, q1) ∈ f1(u1)
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Computing Tree Loops
fτ(u) = set of loops of A on a subtree u of type τ

On leaves u = a ∈ Σ0

Simple looping run = (α, p)� (α, q) only.

Hτσ = { (p, q) | 〈σ, p, τ→ 	, q〉 ∈ ∆ } fτ(a) = (Hτa)
∗

On inner nodes u = f(u0, u1)

1 choose a side: θ ∈ S = { 0, 1 }
2 find an existing loop on that side: (pθ, qθ) ∈ fθ(uθ)
3 such that one can connect beginning and end

1 〈f, p, τ→ χ(θ), pθ〉 ∈ ∆a and
2 〈uθ(ε), qθ, θ→ ↑, q〉 ∈ ∆

aχ(·) : S→ {↙,↘ } such that χ(0) =↙ and χ(1) =↘
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Computing Tree Loops
fτ(u) = set of loops of A on a subtree u of type τ

On leaves u = a ∈ Σ0

Simple looping run = (α, p)� (α, q) only.

Hτσ = { (p, q) | 〈σ, p, τ→ 	, q〉 ∈ ∆ } fτ(a) = (Hτa)
∗

On inner nodes u = f(u0, u1)(
Hτf ∪

{
(p, q)

∣∣∣∣ ∃θ ∈ S :
∃(pθ, qθ) ∈ fθ(uθ)

:
〈f, p, τ→ χ(θ), pθ〉 ∈ ∆
〈uθ(ε), qθ, θ→ ↑, q〉 ∈ ∆

})∗
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Loops-Based Transformation Into BUTA

0 Input: A TWA A = 〈Σ,Q, I, F, ∆〉
1 Initialise States and Rules to ∅
2 for each a ∈ Σ0, τ ∈ T do

let P = (a, τ,Hτa
∗)

add a→ P to Rules and P to States
3 repeat until Rules remain unchanged

for each f ∈ Σ2, τ ∈ T do
add every f(P0, P1)→ P to Rules and P to States where
P0, P1 ∈ States such that P0 = (σ0, 0, S0) and P1 = (σ1, 1, S1)
and P = (f, τ, (Hτ

f ∪ S)∗),
with S the set of simple loops built on the sons.

4 Output: A BUTA B equivalent to A:
B = 〈Σ, States, { (σ, ?, L) ∈ States | L ∩ (I× F) 6= ∅ },Rules〉

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 70/24



Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Loops-Based Transformation Into BUTA

0 Input: A TWA A = 〈Σ,Q, I, F, ∆〉
1 Initialise States and Rules to ∅
2 for each a ∈ Σ0, τ ∈ T do

let P = (a, τ,Hτa
∗)

add a→ P to Rules and P to States
3 repeat until Rules remain unchanged

for each f ∈ Σ2, τ ∈ T do
add every f(P0, P1)→ P to Rules and P to States where
P0, P1 ∈ States such that P0 = (σ0, 0, S0) and P1 = (σ1, 1, S1)
and P = (f, τ, (Hτ

f ∪ S)∗),
with S the set of simple loops built on the sons.

4 Output: A BUTA B equivalent to A:
B = 〈Σ, States, { (σ, ?, L) ∈ States | L ∩ (I× F) 6= ∅ },Rules〉

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 70/24



Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Loops-Based Transformation Into BUTA

add every f(P0, P1)→ P to Rules and P to States
where P0, P1 ∈ States such that

P0 = (σ0, 0, S0) and P1 = (σ1, 1, S1)
and P = (f, τ, (Hτf ∪ S)∗),
with S the set of simple loops built on the sons.

S =
{
(p, q)

∣∣∣∣ ∃θ ∈ S :
∃(pθ, qθ) ∈ Sθ

:
〈f, p, τ→ χ(θ), pθ〉 ∈ ∆
〈σθ, qθ, θ→ ↑, q〉 ∈ ∆

}
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Loops-Based Transformation Into BUTA

add every f(P0, P1)→ P to Rules and P to States
where P0, P1 ∈ States such that

P0 = (σ0, 0, S0) and P1 = (σ1, 1, S1)
and P = (f, τ, (Hτf ∪ S)∗),
with S the set of simple loops built on the sons.

S =
{
(p, q)

∣∣∣∣ ∃θ ∈ S :
∃(pθ, qθ) ∈ Sθ

:
〈f, p, τ→ χ(θ), pθ〉 ∈ ∆
〈σθ, qθ, θ→ ↑, q〉 ∈ ∆

}

The son’s symbol is needed to close the end of the loop!
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Loops-Based Transformation Into BUTA
The Real States Space

Sets of loops cannot be considered independently from the symbol
in which they are rooted.

Consider 〈{a, b }, p, τ→ 	, q〉 and 〈b, q, τ→ ↑, s ′〉 ∈ ∆. Then
fθ(a) = fθ(b) = {(p, q)}∗, but fτ(f(a, a)) 6= fτ(f(b, b)).

Needs states in Σ× T× 2Q2 instead of just T× 2Q2 .

Alphabet potentially large. How to get rid of it ?
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From Tree Loops to Tree Overloops
Tree overloops: slight alteration of loops, with advantages.

Fixes states space: T× 2Q2 instead of Σ× T× 2Q2 .
Deterministic case: |T| · 2|Q| log2(|Q|+1) better upper bound
2 to 100 times smaller BUTA in average in random tests.

pout

pin · q·
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From Tree Loops to Tree Overloops

Tree overloops: slight alteration of loops, with advantages.

Fixes states space: T× 2Q2 instead of Σ× T× 2Q2 .
Deterministic case: |T| · 2|Q| log2(|Q|+1) better upper bound
2 to 100 times smaller BUTA in average in random tests.

(p, q) ∈ Q2 is an overloop of A on t|α if there exists a run which
starts in p, ends in q at the parent of the root α, and always stays
in the subtree, except for the last configuration.

Parent of ε is ε. A TWA A must be escaped into
A ′ =

〈
Σ, Q ] {X}, I, F, ∆ ] 〈Σ, F, ?→ ↑,X〉

〉
.
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Overloops and Determinism

A TWA A = 〈Σ,Q, I, F, ∆〉 is deterministic if for all
σ ∈ Σ, p ∈ Q, τ ∈ T, |〈σ, p, τ→ M, Q〉 ∩ ∆| 6 1.

In general, the overloops-based BUTA has up to |T|× 2|Q|2 states.
However, it has at most |T| · 2|Q| log2(|Q|+1) states if A is a DTWA.

If A is deterministic, overloop sets are functional. Not like loops.
Partial functions versus relations.
At most |Q+ 1||Q| overloop sets, versus 2|Q|2 .
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Polynomial Approximation for Emptiness

Emptiness is ExpTime-complete

XML Queries / Caterpillar accessibility
Satisfiability of some XPath fragments
But also TWA model-checking. . .

Standard: TWA → BUTA (explosion) → linear test. Alternative:

An over-approximation; may detect emptiness
Polynomial time and space
Very – surprisingly – accurate in our random tests
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Polynomial Approximation for Emptiness

0 Input: An escaped TWA A = 〈Σ,Q, I, F, ∆〉
1 Initialise L0, L1, L? to ∅
2 for each a ∈ Σ0, τ ∈ T do

Lτ ← Lτ ∪ Uτa[H
τ
a
∗]

3 repeat until L0, L1, L? remain unchanged
for each f ∈ Σ2, τ ∈ T do

Lτ ← Lτ ∪ Uτf [(H
τ
f ∪ S)

∗]
with S the set of simple loops built on L0 and L1.

4 Output: Empty if L? ∩ (I× {X}) = ∅, else Unknown

coarsest with one bucket L; finest as full transformation (exp)
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Polynomial Approximation for Emptiness
Random tests

1 Ad-hoc scheme: ≈ 20 000 TWA, 2 6 |Q| 6 20, |∆| ≈ 3× |Q|,
75% of empty languages, only two Unknown instead of Empty.

2 Uniform scheme [Héam et al., 2009], REGAL back-end for FSA
generation [Bassino et al., 2007]. 2 000 deterministic and
complete TWA uniformly generated for each 2 6 |Q| 6 25.
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Polynomial Approximation for Emptiness
Random tests
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Size Comparison: Loops vs. Overloops
One Example & Uniform Generation Scheme

For X: loops ‖Bl‖ = 1986; overloops ‖Bo‖ = 95; deterministic
minimal ‖Bm‖ = 56; smallest known non-deterministic ‖Bs‖ = 34.

Loops 60 times worse than manual optimal; overloops 3 times.

Orthogonal to post-processing cleanup:
∥∥B ′l ∥∥ = 1617, ‖B ′o‖ = 78.

‖Bl‖
‖Bo‖

≈ 20.9 and
∥∥B ′l ∥∥
‖B ′o‖

≈ 20.7 and ‖Bl‖∥∥B ′l ∥∥ ≈ ‖Bo‖
‖B ′o‖

≈ 1.2 .
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Size Comparison: Loops vs. Overloops
One Example & Uniform Generation Scheme
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