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Model-Checking

Introduced in
[Clarke and Emerson, 1981, Queille and Sifakis, 1982]

Check M, sp = @:
“do all executions of M starting in so follow @?"

M finite states/transitions model

So initial state
@ the specification, in temporal logic

Limited by state explosion. Prevented by parametrisation.
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Regular Model-Checking

Introduced in [Kesten et al., 1997]
regular model-checking.

states — finite words
sets of states — finite-state automata
transitions — finite-state transducers, semi-Thue systems

b

] A )
—( o q1 @ + {aa,aba,abba,...}
N Q

Automata provide finite, tractable symbolic representations
of infinite sets of states.
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Regular Model-Checking

Introduced in [Kesten et al., 1997]
tree regular model-checking.

states — finite trees
sets of states — tree automata
transitions — tree transducers, term rewriting systems

b

] /O\ )
—( o q1 @ + {aa,aba,abba,...}
N @

Automata provide finite, tractable symbolic representations
of infinite sets of states.
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Reachability Analysis (in TRMC)

e.g. [Feuillade et al., 2004, Bouajjani and Touili, 2002]

So initial language tree automaton

B set of “bad” states tree automaton

R the transitions rewrite system or transducer
B

bpad R*(So) 7
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Reachability Analysis (in TRMC)

e.g. [Feuillade et al., 2004, Bouajjani and Touili, 2002]

So initial language tree automaton

B  set of “bad” states tree automaton

R the transitions rewrite system or transducer
B

bpad R*(So) 7

@ Regularity-preserving classes, context-free step,. ..
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Reachability Analysis (in TRMC)

e.g. [Feuillade et al., 2004, Bouajjani and Touili, 2002]

initial language tree automaton
set of “bad” states tree automaton
the transitions rewrite system or transducer
B
bpad R*(So) Approx J
e

@ Regularity-preserving classes, context-free step,. ..

@ Regular over- or under-approximations.
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Variations on Reachability Analysis
With Rewriting: e.g.
[Meseguer, 1992, Boyer and Genet, 2009, Courbis et al., 2009]

B
90

So
Reachability analysis = [0 —3B.
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Variations on Reachability Analysis
With Rewriting: e.g.
[Meseguer, 1992, Boyer and Genet, 2009, Courbis et al., 2009]

Reachability analysis = [0 —=B. More general: e.g. J(X = oY).
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Variations on Reachability Analysis
With Rewriting: e.g.
[Meseguer, 1992, Boyer and Genet, 2009, Courbis et al., 2009]

So

Reachability analysis = [J—B. More general: e.g. (X = oY).
Same on transitions: [J(# = o).
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@ Model-Checking LTL on Rewrite Sequences
@ Statement of the Central Problem
@ Our Approach: An Overview

© TAGE With a Bounded Number of Constraints
@ Global Equality Constraints
@ Overview of the Results

© Other Works and Some Perspectives
@ Results on SAT & Tree-Walking Automata
@ Perspectives and Questions
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@ Model-Checking LTL on Rewrite Sequences
@ Statement of the Central Problem
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Model-Checking Rewrite Sequences
[Meseguer, 1992]

Order of application of rewrite rules.

Check R, TT = @, with

R a term rewriting system (TRS)
TT the initial (regular) tree language
@ a linear temporal logic (LTL) formula

Example: ¢ = O(X = eY)

X,Y C R are sets of rules
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Model-Checking Rewrite Sequences
[Meseguer, 1992]

/

T‘iEX T'iEY
R*/,——-’ t-i, >( Uyq > Vi f------ >
. T]’EX m TJ-,GY
o @ o\ @ ----- -

N\ =
\\ 5%;\\\‘
gi;\“-->

¢ =0O(X = eY)
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Model-Checking Rewrite Sequences
[Meseguer, 1992]

Order of application of rewrite rules.
Check R, TT = @, with

R a term rewriting system (TRS)
TT the initial (regular) tree language
@ a linear temporal logic (LTL) formula

Example: ¢ = 0O(X = ¢Y)

X,Y C R are sets of rules
X = “ask PIN code"” = {ask}
Y = “authenticate or cancel” = {authj, authy, can}
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Model-Checking Rewrite Sequences

Overview of the Model-Checking Process

Whether R, TT = ¢ is undecidable.

¢

To Rew. Prop.

81y...,0
To Approxj. Do on RITE o ?

Two-step positive approximated decision [Courbis et al., 2009]:

T a rewrite proposition — language equation
dx TAGE-based approximated procedures
TAGE tree automata with constraints: more precision
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Model-Checking Rewrite Sequences
Prior work [Courbis et al., 2009]

“The system R satisfies the property”. ..

R, = OX = oY)

. is equivalent to the rewrite proposition. ..

[RAYIX(R*(TT)) =@ A X(R*(IT) €Y (T)
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Model-Checking Rewrite Sequences
Prior work [Courbis et al., 2009]

“The system R satisfies the property". ..

R,ITE OX = oY)
. is equivalent to the rewrite proposition. ..
RAVIX(R*(M)) =& A X(R*(T) €Y~ (T)

. approximated with TAGE by, assuming Y is left-linear,

IsEmpty(OneStep(R \ Y, Approx(A,R)), X) and
Subset(0OneStep(X, Approx(A,R)), Backward(Y)),

where L(A) =TI, L(Approx(A,R)) 2 R*(L(A))
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Model-Checking Rewrite Sequences
Prior work [Courbis et al., 2009], and New Goals

QO R ITE OX = eY)
[RAVIX(R* (M) =2 A X(R*(T) €Y~ (T)
Q@ R, TITE =AY A O(eY = X)
Y(M =2 A YIR\XI(R*(M)) = 2
Q@ RTME OX=onY)

Y(R*(X(R*(M))) = @
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Model-Checking Rewrite Sequences
Prior work [Courbis et al., 2009], and New Goals

Main goal: from manual to automatic translations.

@99

O01y...40
To Rew. Prop. n To Approx. Dornfn

Sub-goal: efficient procedures =—> TAGE complexity study.
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@ Model-Checking LTL on Rewrite Sequences

@ Our Approach: An Overview
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Intuitions for the Translation
QO RITE =X:

“The first transition, if it occurs, is not by X"

m = X(IM =g
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Intuitions for the Translation
Q —-X:
“The first transition, if it occurs, is not by X"

m = X(IM =g
QX:

“There is a first transition, and it is by X"

o= RA\XI(M =27
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Intuitions for the Translation
Q —-X:
“The first transition, if it occurs, is not by X"

m = X(IM =g

“There is a first transition, and it is by X"

m = R\X|(M=g ATCX (T
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Intuitions for the Translation

Q —-X:
“The first transition, if it occurs, is not by X"
m = X(IM =g
Q X:
“There is a first transition, and it is by X"
m = [R\X(M=2 ATTCX (T
Q O-X:

“No transition that occurs is by X"

n3 = X(R*(M) =2
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Intuitions for the Translation

Q —-X: m = X(IMM =g
Q9 X: m = [R\X(M=2 ATTCX (T
e D_IX:

“No transition that occurs is by X"

3 = X(R*(M) =2 = 7y [R*(1) /]
Q OX:

“All transitions that occur are by X"
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Intuitions for the Translation

o -X: m = X(IMM =g
Qo X: m = [R\X(M=2 ATTCX (T
e D_IX:

“No transition that occurs is by X"

3 = X(R*(M) =2 = 7y [R*(1) /]
Q OX:

“All transitions that occur are by X"

70 [R* (1) /TT]
[RAX(R*(M) =2 A R*(IT) € X~ (T)

T4
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Intuitions for the Translation

o -X: m = X(IMM =g
Qo X: m = [R\X(M=2 ATTCX (T
e D_IX:

“No transition that occurs is by X"

3 = X(R*(M) =2 = 7y [R*(1) /]
Q OX:

“All transitions that occur are by X"

70 [R* (1) /TT]
[RAX(R*(M) =2 A R*(IT) € X~ (T)

T4

?
w-language! Too strong
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Intuitions for the Translation

Q —-X: m = X(IMM =g
Q9 X: m = [R\X(M=2 ATTCX (T
e D_IX:

“No transition that occurs is by X"

3 = X(R*(M) =2 = 7y [R*(1) /]
Q OX:

“All transitions that occur are by X"

g = [RAX|(R*(IT) =2
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Intuitions for the Translation

9 -X: m = X(I) =2

Q X: m = [R\X(M=2 ATTCX (T
Q OI-X: 3 = X(R*(MN) =@ = m;[R*(1T) /1]
Q OX: iy = [RAX]|(R*(M) =2

@ Conjunction: if @ : 715 and VP : 7t then @ A : 75 A 7TE.

@:m="RTIE @ is translated by 7"
“for all executions, @ is satisfied”

Vx.P(x) A ¥x.Q(x) < V¥x.(P(x) A Q(x))

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24
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Intuitions for the Translation

o -X: m = X(IMM =g

Q X: m = R\X(M=a ATCX (T
Q O-X: 3 = X(R*(MN) =@ = m;[R*(1T) /1]
Q OX: g = [RAX|(R*(T) =2

@ Conjunction: if ¢ : 75 and P : 7 then @ A : 75 A 7L

Vx.P(x) A ¥x.Q(x) < V¥x.(P(x) A Q(x))

@ Disjunction: mg V7, = R,TTE= @ VY

Vx.P(x) V ¥x.Q(x) = V¥x.(P(x) V Q(x))
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Intuitions for the Translation

9 -X: m = X(I) =2

Q X: m = [R\X(M=2 ATTCX (T
Q OI-X: 3 = X(R*(MN) =@ = m;[R*(1T) /1]
Q OX: iy = [RAX]|(R*(M) =2

@ Conjunction: if @ : 715 and VP : 7t then @ A : 75 A 7TE.

Vx.P(x) A ¥x.Q(x) < V¥x.(P(x) A Q(x))

@ Disjunction: mg V7, = R,TTE= @ V1

Vx.P(x) V ¥x.Q(x) = V¥x.(P(x) V Q(x))
@ Negation: R, TTH @ # R,1TE= =@ : “NNF" required

Vx.=P(x) # =VYx.P(x)
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Intuitions for the Translation

Qo -X: m = X(I =g

Qo X: m = R\XI(M=a ATCX (T
Q O-X: 3 = X(R*(IN) =@ = my [R*(TT)/T1]
Q OX: iy = [RAX|(R*(TT)) =@

@ Conjunction: if ¢ : 75 and P : 7L then @ AP : 75 A 7L,
@ Disjunction: gV, = R,TTE= @ V1

@ Negation: R,TTE ¢ # R, 1T - : "NNF" required
@ Implication: X = oY:
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Intuitions for the Translation

Q —-X: m = X(I =g

Q X: m = R\XI(M=a ATCX (T
Q@ 1-X: 3 = X(R*(IN) =@ = my [R*(TT)/T1]
Q OX: iy = [RAX|(R*(TT)) =@

@ Conjunction: if @ : 75 and P : 75 then @ A : 715 A 7L
@ Disjunction: mg V7, = R,TTE= @ VY
@ Negation: R,TTH ¢ # R,ITE -¢ : “NNF” required
© Implication: X = eY:

;= [R\YIX(M) =2 A X(TT) Y (T)
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Intuitions for the Translation

0 -X: m ()
Q0 X: my = [R\X () meX—1(7)
@ O-X: T3 = ( (M) =2 = mI[R*(11)/M]

Q OX: g = [R\X](R*(TT ))

@ Conjunction: if @ : 75 and P : 75 then @ A : 715 A 7L
@ Disjunction: mg Vi, = R,TTE= @ VY
@ Negation: R,TTH ¢ # R,ITE ¢ : “NNF” required
© Implication: X = eY:

;= [R\YIX(M) =2 A X(TT) Y (T)

X:imy, Y, = mlY/X], n; = wS[X(1T)/T]
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Intuitions for the Translation

0 -X: m o= X() =
Q0 X: thE[ \ X () meX—1(7)
@ O-X: 3 = X(R*(M) =2 = m[R*(T1)/T]

Q OX: g = [R\X](R*(TT ))

@ Conjunction: if ¢ : 75 and P : 7 then @ A : 75 A 7L,
@ Disjunction: gV, = R,TTE= @ V1
@ Negation: R,TTH ¢ # R, 1T - : "NNF" required
© Implication: X = oY:

;= [R\YIX(M) =2 A X(TT) Y (T)

X:mp, Y, = mo[Y/X], n; = wh[X(1T)/T]
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Intuitions for the Translation

0 -X: m o= X() =
Q0 X: thE[ \ X () meX—1(7)
@ O-X: 3 = X(R*(M) =2 = m[R*(T1)/T]

Q OX: g = [R\X](R*(TT ))

@ Conjunction: if ¢ : 75 and P : 7 then @ A : 75 A 7L,
@ Disjunction: gV, = R,TTE= @ V1

@ Negation: R,TTH ¢ # R, 1T - : "NNF" required
© Implication: X = oY:

7 = [RA\YIX(M) =2 A X1 <Y (T)
X:mp, Y, = m[Y/X], ny = 7 ( )/TT]
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Intuitions for the Translation

=X: m = X(T) =2

X: m = R\XI(M=a ATCX (T
0 =X: niz3 = X(R*(M) =@ = m;[R*(M)/T]
OX: g = [R\X|(R*(TT)) =@

Conjunction: if ¢ : 715 and \ : 7f then @ A : 5 A TIL.
Disjunction: mg V7, = R,ITE @ V1Y

Negation: R, TTH @ # R,TTE - : “NNF" required
Implication: X = oY:

;= [RA\YIX(M) =2 A X(IT) Y 1 (T)

X:mp, Yim, = mlY/X], n; = wb[X(1T)/M]

OX = eY):my = 77 [R*(TT)/T]

©00000O0CO
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Intuitions for the Translation

=X: m = X(T) =2

X: m = R\XI(M=a ATCX (T
0 =X: niz3 = X(R*(M) =@ = m;[R*(M)/T]
OX: g = [R\X|(R*(TT)) =@

Conjunction: if ¢ : 715 and \ : 7f then @ A : 5 A TIL.
Disjunction: mg V7, = R,ITE @ V1Y

Negation: R,TTE ¢ # R, TTE= - : "NNF" required
Implication: X = oY:

m; = [RAYIX(M) =2 A X(IM Y (T)

X:mp, Yim, = mlY/X], = 7t} [X(IT)/TT]

D(X = .Y) 1Ty = Ty R*( )/ﬂ

What about eY = X 7

©00000O0CO

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 9/24



Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

O®@00000

Intuitions for the Translation

= X: m = X(I =g

X: m = R\XI(M=a ATCX (T
0 =X: niz3 = X(R*(M) =@ = m;[R*(M)/T]
OX: g = [R\X|(R*(TT)) =@

Conjunction: if ¢ : 715 and \ : 7f then @ A : 5 A TIL.
Disjunction: mg V7, = R,ITE @ V1Y

Negation: R, TTH @ # R,TTE - : “NNF" required
Implication: X = oY:

;= [RA\YIX(M) =2 A X(IT) Y 1 (T)

X:mp, Yim, = mlY/X], = 7t} [X(IT)/TT]

D(X = .Y) 1Ty = Ty R*( )/ﬂ

What about @Y = X ? Other techniques (signatures,...)

©00000O0CO
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Translation Rules, by Examples

A dozen rules, e.g. conjunction:

(Mo IF @ AD)
i(ﬂ;cr I @) A (TTgo IF V)

always (simplest case):

(Mse IF Oo)
i@*(ﬂ)s*e IO

positive literal:

(Mso IF X) (G\X)<lh(G\X):s

$ h(o\X)—
h(o\X) _
g5 =2 A /\ no\x 17
keVo, k=0
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LTL — Rewrite Proposition

Derivation Tree

Derivation tree: automatic translation and proof

(Mse Ik OX = oY)
(R*(M) 5 xe |- X = oY)
t (R*(M 5 IX3RIN:§ |- oY)
t (R*(M) 3 zx iRIl\hj I oY)
t i<X sxe |- Y)
[R\Y( ( “(M)) = o

!

AX(R*(TT)) S R-T(T) .

Optional global optimisation phase: R~ (T) — Y~ 1(7).
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Translatable Fragment

Exactly rewrite-translatable fragment:

Xep(R), meN

e =T[L|X|=X[oA@[b=0¢|ep|op|[Oe
Ye=TI[L[X[=X[PVY[OAYP|ep|op|D
@ := at least e-stabilisable [J ¢

Practical pre-experimental evaluation:
good partial support of [Dwyer et al., 1999] patterns.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence
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LTL on Rewrite Sequences

Perspectives (Translation Into Rewrite Proposition)

@99

To Rew. Prop.

B0 0cq B

o [Héam et al., 2012a] Int. Conf. IJCAR'12, Manchester

o Extensions: Past-Time and Existential LTL

@ Dealing with eventuality by studying “exhaustion”:
e.g. O ={f(x) — x} holds with bounded f-height & no intro

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 13/24
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LTL on Rewrite Sequences

Perspectives (Approximated Decision Procedures)

O01y...y0
To Rew. Prop. s To Approg. Do fn RIMME@?

@ Coping with more non-linearity — e.g. protocols, rewrite steps
e.g. f(x,x) = g(x), f(x) — g(x,x),...
@ Tractable algorithmic toolbox for TAGE

Last points = closer study of TAGE complexity

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 14/24



© TAGE With a Bounded Number of Constraints
@ Global Equality Constraints
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

TAGE, TA=, Positive TAGED, A = (A, Q,F, A, =) :

(A, Q,F,A) vanilla tree automaton ta(A)

~ equality constraints, = C Q2
Constraint p= q :

run p of A on t:

@ run of ta(A) on t

o satisfying =: Va,B € P(t); p(x)=p(B) = tla = tip
accepting run: accepting for ta(A)

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 15/24



Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A={a/o,f/2}, Q=1{q,G,q9r} F={qr}, §=4q, and
A ={f(4,49) — qs, f(q,9) = q, f(q,9) =4, a = q, a =G}

u= f and v = f
/\ /\
f f f a

a/ a a/\a a/\a

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 16/24
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A={a/o,f/2}, Q=1{q,G,q9r}, F={qr}, §=4q, and

A ={f(q,9) — qs, f(q,9) = q, f(9,9) > q, a—q, a = q}

U, pu = f gr and v= f
/N /\
fq fq f o

/N /N /\
aqaqagqadg a a
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A={a/o,f/2}, Q=1{q,q,q9¢} F={q¢}, §=4q, and
A ={f(q,9) — qs, f(q,9) = q, f(9,9) > q, a—q, a = q}

u= f and v,p, =

qr
\
a g

.Q\—h
B AN o

a a a a a
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Statement of the Central Problem
Our Approach: An Overview

© TAGE With a Bounded Number of Constraints
Global Equality Constraints
@ Overview of the Results

Results on SAT & Tree-Walking Automata
Perspectives and Questions
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TA™ versus TA,

Restriction on the kind of constraints: Rigid Automata (RTA)

@ Same expressive power as TA=

@ Less compact representations

o Linear emptiness / finiteness tests, vs. EXPTIME-complete
o Applications: [Jacquemard et al., 2009, Vacher, 2010]

What of the number of constraints? TA, A= (X, Q,F A=

(Z,Q,FA =) TA= A
~ such that Card(=) < k
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Summary of Results

o [Héam et al., 2012¢] Int. Conf. CIAA'12, Porto

e Strict hierarchy of powers: £(TAY) C L(TA )
e Emptiness linear for TAT, ExpTime-complete TAS
o Finiteness polynomial for TAT, ExpTime-complete for TAS

@ NP-complete membership becomes polynomial if k fixed.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 18/24



Preliminaries LTL Checking Bounded TAGE Other Works Appendices

ooe

Summary of Results
o [Héam et al., 2012¢] Int. Conf. CIAA'12, Porto
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ooe

Summary of Results

©

[Héam et al., 2012c] Int. Conf. CIAA'12, Porto

Strict hierarchy of powers: £(TAY) C L(TA 1)
e Emptiness linear for TAT, ExpTime-complete TAS

o Finiteness polynomial for TAT, ExpTime-complete for TAS

Reduction of emptiness to finiteness.

@ NP-complete membership becomes polynomial if k fixed.
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Summary of Results

@ NP-complete membership becomes polynomial if k fixed.

Gp +— heH, — St
[ ]

5

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence

References

18/24



© Other Works and Some Perspectives
@ Results on SAT & Tree-Walking Automata

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 18/24



Preliminaries LTL Checking Bounded TAGE Other Works Appendices References
0@00

TAGE SAT & Tree-Walking Overloops

o [Héam et al., 2010] Int. Workshop CSTVA'10, Paris
o [Héam et al., 2011] Int. Conf. CIAA'11, Blois
o [Héam et al., 2012b] Int. Journal Theo. Comp. Sci.

@ SAT Encoding for TAGE membership & optimisations.

@ Formal treatment of tree-walking loops for transformation into
2 o 0 2
bottom-up TA; revealed missing factor in space £ x T x 2Q".

. 2
@ Introduced tree-walking overloops: restores T X 2Q% smaller
automata in practice in extensive random tests.

@ Shown overloops upper-bound is |T| - 2!Ql1e&2(IQI+1) i the
deterministic case. Note that exponential is unavoidable.

@ Polynomial overloops-based approximation to TWA
emptiness, vs. EXPTIME-c. Very precise in random tests.
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[e]e] o]

Polynomial Approximation for Emptiness

Random tests

@ Ad-hoc scheme: =~ 20000 TWA, 2 < |QJ < 20, |Al =3 x|Q|,
75% of empty languages, only two Unknown instead of Empty.

@ Uniform scheme [Héam et al., 2009], REGAL back-end for FSA

generation [Bassino et al., 2007]. 2000 deterministic and
complete TWA uniformly generated for each 2 < |Q| < 25.
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Polynomial Approximation for Emptiness

Random tests

| P:Rproxim;)tion - 2IOOO samlples
50 R pproximation — 200 samples -------
l Exact — 200 samples -=------

2 4 6 8 10 12 16 18 20 22 24

14
Q|
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[e]ele] }

Size Comparison: Loops vs. Overloops

One Example & Uniform Generation Scheme

For X: loops ||B|| = 1986; overloops ||B.|| = 95; deterministic
minimal ||Bm|| = 56; smallest known non-deterministic || Bs|| = 34.

Loops 60 times worse than manual optimal; overloops 3 times.

Orthogonal to post-processing cleanup: ||B/|| = 1617, ||B}|| = 78.

/

~ ~1.2.
1Bo |l 1Bsll IB/]| 1Bl
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Size Comparison: Loops vs. Overloops

One Example & Uniform Generation Scheme
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1B IBL/[Boll y
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Statement of the Central Problem
Our Approach: An Overview

Global Equality Constraints
Overview of the Results

© Other Works and Some Perspectives
Results on SAT & Tree-Walking Automata
@ Perspectives and Questions
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Conclusion / Summary

Generalisation of the translation

01y...,0
To Approx. Dernfn RIMTE@?

Study of complexity of bounded global constraints

Improved loops-based methods for tree-walking automata
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Perspectives

Full TAGE may not be required for X(TT); flat constraints ensure
polynomial emptiness decision; are they enough?

Implemented algorithmic toolbox for these automata.

Rewrite propositions go beyond LTL (e.g. 3-LTL).
What is their full expressive power?

Intermix state and transition-based properties.
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Supported Fragment, In Practice
Partially Supported Patterns From [Dwyer et al., 1999]

Scope
Pattern Global Before  After Between  Until  Support
Absence 41 5 12 18 9 48%
Universality 110 1 5 2 1 96%
Existence 12 1 4 8 1 0%
Bound Exist. 0 0 0 1 0 0%
Response 241 1 3 0 0 99%
Precedence 25 0 1 0 0 96%
Resp. Chain 8 0 0 0 0 0%
Prec. Chain 1 0 0 0 0 0%
Support 95% 0% 32% 0% 0% 83%
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Formal Tools for Verification
Reliable Software

Software failure is undesirable. . .

Ariane 5, Therac-25, Mariner |, Phobos |, XA/21 USA & Canada
Northeast 2003 blackout, MIM-104 Patriot anti-missile, Mars
Climate Orbiter, Mars Polar Lander, Mars Global Surveyor space
probes,. ..

... hence the need for formal verification methods.
E.G. With Hoare logic, correctness is a mathematical theorem.

Precondition, code, post-condition: { T} x:=y{x=y}.

Manual proofs require mathematical ingenuity. Automation?
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Model-Checking Rewrite Sequences
Coding the Behaviour of the System: [J(X = eY)

i €X T{EY
R* _-->( ti >( Uy > - - - - - - >
e TjEX m rjIEY
SR @ o\ ’@ “““ g
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Maximal Rewrite Words
Coding the Behaviour of the System

Executions may or may not terminate: finite and infinite words.
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Maximal Rewrite Words
Coding the Behaviour of the System

Finite or infinite words on R:

N=NU{+cc} W= ]J([1,n] >R)

neN
Notation: length #w € N : #w = Card(domw).
Maximal rewrite words of R, originating in TT:
(TT) is the set of words w € W such that

Jup €1T: Juq,...,upy €7 Vkedomw,
Uk 1 (—>uk A #WENiR({u#W})

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence
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Syntax and Semantics for LTL
Close to Finite-LTL [Manna and Pnueli, 1995]

p=X|-0loAp|eTp|oMp|oUqo X € p(R)

TlLleVele=¢|0¢|0¢ meN.

(w, i) =X & i€ domw and w(i) € X
(w,i) = -o < w1 F ¢
wi)E(eAd) < (w,1) = ¢ and (w,1) E ¥
(w,i) =e™Me@ & i+medomw and (Ww,i+m) = @
(w,i) =oMe@ & i+mé&domwor (W,i+m)kE @

. djedomw:j=>1iA (wj) =V
(w1 = e U = { AVke[L,j—1], Wkl Ee@

For any we W, i e Ny, meN and X € p(R).
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p=X|-0loAp|eTp|oMp U@ X € p(R)

TlLleVele=¢|0¢|0¢ meN.
(w,i) =X = i€ domw and w(i) € X
(w,i) E —o < w1 F ¢
wi)E(eAY) < (w,1) = ¢ and (w,1) E Y
(w,i) =e™Meo & i+medomw and (Ww,i+m) E @
(w,i) =oMe & i+mégdomwor (w,i+m)E @
Wi Ede & Yjedomw, j>i= (w,j)E o

For any we W, 1e Ny, me N and X € p(R).
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Syntax and Semantics for LTL
Close to Finite-LTL [Manna and Pnueli, 1995]

(w,i) =X & i€ domw and w(i) € X

(w,i) E —o < W, 1) £ @

Wi E(eAY) < (w,1) = ¢ and (w,1) E ¥

(w,i) =e™Meo & i+medomw and (w,i+m) = @

(w,i) = oMo & i+mé¢domwor (w,i+m)E @

wi)Ele < Vj edomw, j >1i= (W,j)E o
For any we W, i e Nj, meN and X € p(R).

Satisfaction:

owkE@ = WllkEoe
e RITE @ < Ywe(l), wko
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Rewrite Propositions
Problem Statement: First Translation Step

Rewrite proposition 7t on R, from TT; has a trivial truth value

m=y|lyAylyvy vy=t{=0|lcl
X € p(R) C=TTT X | XT(0) [ X*(0)

Problem statement: translations into RP

Input: R, @ € LTL, TTCT Output: RP 7t such that:

R,ITE @ <= m (exact translation)
R,MTE @ <= m (under-approximated translation)
R,MT =@ = 1 (over-approximated translation)
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Intuitions for the Translation

Boundaries of the Translatable Fragment

R*(TT) hides traces:
O X probably untranslatable. So are {$,U,W,R,...} .

Formulz in sanitised form: negation on literals. Not exactly NNF.
(AVB)=C (A=C)A(B=C) (wAA-B)VC

Preprocessing to fit translatable “antecedent/consequent” form.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 31/24
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Signatures
Implication: Girdling the Future

Idea: @ = 1 ? @ as an assumption, i.e. a model of @: &(@)

= J[(Imn] ufw) - o®)] x o) .

nen
Notations: o € X

e compactly as 0 = [f | S| = (00 | VoS,

@ or in extenso as (f(1),f(2),...,f(#0) ¢ f(w) | S§.

Example: £(XAo'YA02OZ) =X, Y$Z|N;S§
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Signatures
Implication: Girdling the Future

£ = J[(I1n] ufw)) - o(®)] x o)

neN
Notations: 0 € &
e compactly as 0 = [f | S| = {00 | VoS,
@ or in extenso as (f(1),f(2),...,f(#0) ¢ f(w) | S§.

Example: §(XA0'YA02OZ) =X, Y$Z|N;§
Constrained Words:

(Mgo) ={we ()| #w e Vo A Yk e domw, w(k) € olk]}
VITC T, € A-LTL, (Msé(@)) ={we (M |wk e}
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Signatures: the Transformation &/-)
Modelling the Antecedent to Girdle the Future

ET)=0GRINS=¢ E(L) =32 | 2§
E(X) = {X3R|N;§ E(=X) = (R\X§R[NS
E(e™p) =E(@) »pm E(o™p) =&(@)>m

HoAv)=&@) i)  E0e)= ) [&e) > m|

m=0
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Signatures: the Transformation &/-)
Modelling the Antecedent to Girdle the Future

ET)=0BRINS=¢ &(L) =52 | 2§
E(X) = {X3R|N;§ E(-X) = R\ X R[NS
E(e™p)=¢&(@)pm Ee™Mp) =&(@)>m

Honb) =E@)@EW)  E0e) = @ [&l0) > m]

m=0

e o » m = Strong Shift Right =
(Riy...,Rm, 00(1),...,00(#0) 300(w) | (Vo \{0}) + m§
e o > m = Weak Shift Right =
(R1, .., Riny 80(1), .., d0(#0) 500(w) | [0, mJU (Vo+m)S$
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Signatures: the Transformation &/-)
Modelling the Antecedent to Girdle the Future

ET)=0GRINS=¢ E(L) =52 | 25
E(X) =({X3R|N;§ E(=X) =R\ X R|N§
E(e™p) =E(@) »pm E(o™p) =&(@)>m

Honb) =E@)@El)  E0e) = @ [&le) > m]

m=0

Product Property: (Tso® c’) = (ITeo) N (T3 0’)
Example: 0 = {X,Y$Z|N;§ p={X"3Z"|N3§

o@p=(XNX,YNZ'sZNZ"|N3§
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Signatures: the Transformation &/-)
Modelling the Antecedent to Girdle the Future

T)=0GRIN§=¢ £(1) =39 | 25
(X) ={XsRIN;§ E(=X) =R\ X§R|N§
E(eMp) =E&(@) pm E(e™e) =&(@)>m

Hond) =E@)@El)  E0e) = @ [&le) > m]

m=0
o o
Oe < /\om(P n9®5n :ﬂ (s on)
m=0 n=0
o o
® o» n and ® [0 > n} converge Yo € ¥
n=0 n=0
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Rewrite Proposition — Procedure

automatic kind inference and generation rules
Kind inference: expressiveness required & assumptions

o: TAFX(ax) : TAT o TA X : reg-pres + X(«) : TA
FXTN(T): TAS < X : left-lin X~ (7): TA
o: TAFho: TA o TAT Fhoo: TA foc: +

Procedure Generation: from languages to automata

FeX~1(T) =T, (X: left-lin) g X' (7)
s— Al s AR o TA §X(0) = T, A, (X : reg-pres) § X(«)
s— Ajal s AT oo TAT s X(0) = T, A, (X : reg-pres) s X(fo)
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Supported Fragment, In Practice
Partially Supported Patterns From [Dwyer et al., 1999]

Scope
Pattern Global Before  After Between  Until  Support
Absence 41 5 12 18 9 48%
Universality 110 1 5 2 1 96%
Existence 12 1 4 8 1 0%
Bound Exist. 0 0 0 1 0 0%
Response 241 1 3 0 0 99%
Precedence 25 0 1 0 0 96%
Resp. Chain 8 0 0 0 0 0%
Prec. Chain 1 0 0 0 0 0%
Support 95% 0% 32% 0% 0% 83%
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Tree Automata
[Comon et al., 2008]

Introduced in the fifties; regular tree languages:

@ model-checking: programs, protocols,. ..
@ automated theorem-proving
@ XML schema and (esp. variants) query languages

@ ...and so much more

Doesn’t deal with comparisons and non-linearity:

References

o {flu,u) | ueT(X)} e.g. password verification
o {f(u,v) | u,veT(E),u#v} e.g. primary keys
o R(L), £ regular, R a TRS e.g. {g(x) — f(x,x) HT(A))
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Tree Automata

Bottom-Up, Non-Deterministic, Finite

Tree Automaton A = (A, Q,F, A) :

finite ranked alphabet
finite set of states
final states, FC Q
finite set of transitions

b 1o >

Transition r € A ;

o(q1,...,q9n) = q 0€AL q1y---,9n,q€Q

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 37/24



Tree Automata

Bottom-Up, Non-Deterministic, Finite

A:{/\>V/Z)_'/h-r)J-/O}v Q:{q0>q1 }, F:{q1},A:

T—q1, L1—4qo, —(qv)— g-b ‘ ’ }
b,b" €{0,1
{ A(9by 9b’) = qoab’s  V(9by Gb’) = quvb’ 0,13
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Tree Automata

Bottom-Up, Non-Deterministic, Finite

A —A A —A A —A
I AN I N | PN
A 1L = A qo — dqo do (1
N I N |
1 T € do g1 qdo
A —A q1
q1 q1
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Tree Automata

Runs and Languages

The reduction t —7, g7 is captured by the run:

q1 decorated: VN
/N PN
a1 q1 1= 2V qn
/) | /N
qo do q1 11 A qo 211 qo 22-(qq
/\ | /N |
do 91 qdo 1M1 Lqo 112T q 221 1L qo
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

TAGE, TA=, Positive TAGED, A = (A, Q,F, A, =) :

(A, Q,F,A) vanilla tree automaton ta(A)

~ equality constraints, = C Q2
Constraint p= q :

run p of A on t:

@ run of ta(A) on t

o satisfying =: Va,B € P(t); p(x)=p(B) = tla = tip
accepting run: accepting for ta(A)
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A={a/o,f/2}, Q=1{q,G,q9r} F={qr}, §=4q, and
A ={f(4,49) — qs, f(q,9) = q, f(q,9) =4, a = q, a =G}

u= f and v = f
/\ /\
f f f a

a/ a a/\a a/\a
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A={a/o,f/2}, Q=1{q,G,q9r}, F={qr}, §=4q, and

A ={f(q,9) — qs, f(q,9) = q, f(9,9) > q, a—q, a = q}

U, pu = f gr and v= f
/N /\
fq fq f o

/N /N /\
aqaqagqadg a a
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A={a/o,f/2}, Q=1{q,q,q9¢} F={q¢}, §=4q, and
A ={f(q,9) — qs, f(q,9) = q, f(9,9) > q, a—q, a = q}

u= f and v,p, =

qr
\
a g

.Q\—h
B AN o

a a a a a
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A:{A)V/Z)_'/DT)J-/O}&JXy Q={q<)>Q1 }&J{VX I xeX}and
F={q1}, new rules T — vy, L — vy, x(qo,Vx) = q1,
x(Vx, q1) — qo for each x € X, vy R vy.

(x Ay) V —x = v

/\/ \—.
x/ \y J(

J_/ \T J_/ \T J_/ \T
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A:{A)V/Z)_'/hT)J-/O}L'HXr Qz{qm(h }L'H{Vx I xeX}and
F=1{q1}, new rules T — vy, L — vy, x(qo,vx) — q1,
X(Vx, q1) — qo for each x € X, vy X vy.

(x Ay)V —x = q

V (1
PN
A qo - q1
VRN |
X qo Y 1 X qo

/ \ / N\ / \
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TA versus RTA versus TA=

Closure, Complexity and Decidability

TA
U PTiME
N PTIME

- ExpTIME

teL(A)? PTIME
L(A)=a 7 linear-time

|[L(A) eN? PTIME
LA)=T(X)? ExPTIME-c
L( ) C ( ) ExPTIME-c
L(N;Ai) =27 EXpPTIME-c

(ASAT solver approach: [Héam et al.,
Tree (Not Quite) Regular Model-Checking

Other Works

RTA (p=p)

PTiME
ExpTIME
%]

NP-c
linear-time
PTiME
undecidable
undecidable
ExpTIME-c

2010].

Vincent HUGOT

Appendices

TA=

PTiME
ExpTIME
%]

NP-c (2
ExpPTIME-c
ExXPTIME-c
undecidable
undecidable
ExPTIME-c

Ph.D. Defence
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TA versus RTA versus TA=

Closure, Complexity and Decidability

TA RTA (p=p) TA=
U PTiME PTIME PTiME
N PTiME ExpTIME ExpTIME
- EXPTIME o 16
teL(A)? PTIME NP-c NP-c(
L(A)=2 7?7 linear-time linear-time  ExpTime-c
|[L(A) eN? PTIME PTime ExpTime-c

L(A)=T(X)? EXPTIME-c undecidable undecidable
L(A)CL(B)? EXPTIME-c undecidable  undecidable
L(MN;Ai) =27 ExpTiME-c EXPTIME-c EXPTIME-c

()SAT solver approach: [Héam et al., 2010].
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TA™ versus TA,

Restriction on the kind of constraints: Rigid Automata (RTA)

@ Same expressive power as TA=

@ Less compact representations

o Linear emptiness / finiteness tests, vs. EXPTIME-complete
o Applications: [Jacquemard et al., 2009, Vacher, 2010]

What of the number of constraints? TA, A= (X, Q,F A=

(Z,Q,FA =) TA= A
~ such that Card(=) < k
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Expressive Power
The Separation Languages L = (£ )xen [Hugot, 2013]

i
HA16{0/3>L/0} A; ={ai,bi/0,fi,9i/2}

i=1

bo={1} Vk>T1,b ={ouu,tx_1) [ ueT(Ay),tk—1 €li_1}

u; € T(Ai) Vi

Uk {/ \
Uy 1/kaz1

/N
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Expressive Power
The Separation Languages L = (£ )xen [Hugot, 2013]

ug € T(Ai) Vi

N,
A

Uk—1 Uk—1 /(IT\

ur u L,

€1 € L(TAT)\ L(TA) ~ ground instances of f(x,x).
b € L(TAL)\L(TAL ), Vk=>1.
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Expressive Power
Show &, € £(TAZ)\ £(TAL ;) [Hugot, 2013]

Show €y € L(TAY): Ak € TAL such that £(Ay) = €

Ui € TA universal, Ui:F = {q{}, for all i. Ay is

k
Q={qp}w [ U:Qu{q} F={qy} a¥=qy, Vie[l,K]
i=1

A:{G(q$>q$,q\{—1)_>q\{|iG[[],k]]}U{J__)q‘(’)}_
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Expressive Power
Show &, € £(TAZ)\ £(TAL ;) [Hugot, 2013]

Show €y € £(TAL_1):
active constrained states:

acsp ={p(a) | «€P(p),AB € P(p) \{o}: p(ex) =p(B) }
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Expressive Power
Show &, € £(TAZ)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

o Assume & € L(TAL ;) ie. JA € TAL_; : L(A) = €
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Expressive Power
Show &, € £(TAZ)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

o Assume & € L(TAL ;) ie. JA € TAL_; : L(A) = €
o Vp, o, B o # By o€ 3, pa) = p(B)
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Expressive Power
Show &, € £(TAZ)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

@ Assume { € L(TA ) ie. JA € TAL 1 : L(A) =k

o Vp, Box,B:x# B, x €3*, p(x)=p(B)
@ Pick t € {y such that |t|o¢| > |Q], for all & € 3*(1+42)
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Preliminaries LTL Checking Bounded TAGE Other Works Appendices References

Expressive Power
Show &, € £(TAT)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

@ Assume { € L(TA_;) ie. FA e TAL_; : L(A) =k
o Vp, flo, B: o # By € 3%, p() = p(B)
@ Pick t € €y such that ‘tIa‘ > |Q], for all & € 3*(1 + 2)

@ Suppose dox € 3*(1 + 2) such that ran plx« Nacsp = &. A acts
as BUTA wrt. t|«; pump pla, get t’/ € £, but t’ € L(A).
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Expressive Power
Show &, € £(TAZ)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

@ Assume { € L(TA_¢) ie. JA € TAL 1 : L(A) =k
o Vp, flo, B: o # B, € 3%, p(a) = p(B)

@ Pick t € £y such that |t|o¢| > |Q], for all & € 3*(1+42)
@ Yo € 3*(1 4+ 2), ranpla Nacsp # &
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Expressive Power
Show &, € £(TAT)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

@ Assume { € L(TA_¢) ie. JA e TA_; : L(A) = {x
o Vp, fo, B:ox # B, x € 3%, p(o) = p(B)

@ Pick t € £y such that ‘tIa‘ > |Q|, for all o € 3*(1 4 2)
@ Yau € 3*(1 4+ 2), ranpla Nacsp # &

@ i#j, pi acs for ui, pj for uj. dacs qi, g; : pi = qi, Pj = qj-
Suppose q; in subrun of u;. Then ds; Juy,s; Juj, s; = s;j.
But u; € T(Ay) and uj € ‘.T(Aj), thus s; € T(A;) and
Sj € T(Aj). T(A) N ‘I(/A\j) = g, thus s; = Sj € J.

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence
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Expressive Power
Show &, € £(TAT)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

@ Assume {, € L(TA_¢) ie. JA e TAL_;: L(A) = U
o Vp, o, B:x# B, e 3% pa) =p(B)

o Pick t € &y such that |t|«| > [Q], for all & € 3*(1 +2)
@ Yo € 3*(1 4+ 2), ranpla Nacsp # &

@ Each pair of u; needs its own fresh state(s) pi & q;
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Expressive Power
Show &, € £(TAT)\ £(TAL ;) [Hugot, 2013]

Show & & £(TAT_,):

Assume € € L(TA_¢) ie. JA e TAL ;1 : L(A) = U
Vo, o, B # B, o€ 3% p(a) = p(B)

Pick t € € such that [tla| > |Q], for all € 3*(1+2)
Yoo e 3*(1+2), ranple Nacsp # &

Each pair of u; needs its own fresh state(s) pi & q;

A does not exist, contradiction.
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The Membership Problem

General Idea & Strategy
Membership complexity : t € L(A) ?

NP-complete for TA=
PTime for TA, VkeN

Proof Strategy :
@ Choose each P Cdom=={p|dq:p=qorq=p}
@ Given P, turn = into an equivalence relation =<p
@ Try all possible “housings” of the =-classes into t

@ For each housing, try to build an accepting run
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~ is Not an Equivalence

(but we can pretend it is)
Example: Given p=r and r=q, what of p=q ?
Does r actually appear in the run ?

yes : p=q implied
no : p=T1 and r = q are moot.

Fix P C dom=. Any run p such that (ranp) N (dom=) =P
is accepting for A iff it is so for

Ap =A== (=nP?)7§

symmetric, transitive, reflexive closure under dom (= NP?2).

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence

References

48/24



0000000 000 0000

Groups & Similarity Classes

Groups Gp : set of =-equivalence classes (given P)

dom(=NP?)  dom(=NP?)
GP pr— f—

(=NP2) =p

Similarity Classes St of t :

Yo, €P(t); a~p <= tla=tlp
classes S, = P(t)/_
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Housings
And Their Compatibility with the Constraints

Characterisation of Satisfaction of = :

VG eGp; ACg €St:p '(G) C Cq

Housings H}, of P within t :
The map G — Cg is a P-housing of p in t, compatible with p
Hb = Gp — S¢

is the set of all possible P-housings on t.
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Gp +—heH}, — St

i

b
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Proof Outline

For TA,
Operations Needed :
@ Choose P: 22K possible P C dom =
@ Choose housing: }StGP‘ = |§t||G"‘ < ||t||2k P-housings on t

o = 4% . ||t]|** tests in total

% polynomial compatibility test = variant of reachability

Is a final state reachable if states q € P can only go in h([q]<,)?
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Compatibility Test

In Polynomial Time
Simple variant of reachability algorithm:

Given P and h € H}, there exists a compatible run iff
OPMe)NF#£ 2,
where

t(o‘)(ph-'-)pn) — g€ A
Yie [1,n], pi € @D (oi)
qeJGp = aeh(lqlx,)
q ¢ dom(=)\ P

OPMa) =9 q€Q
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In Polynomial Time
Simple variant of reachability algorithm:

Given P and h € H}, there exists a compatible run iff
OPMe)NF#£ 2,
where

t(o‘)(ph-'-)p‘n)_}qEA

Yie [1,n], pi € ®P(oi)
qeJGp = aeh(lqlx,)
q ¢ dom(=)\ P

OPMa) =9 q€Q
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Compatibility Test

In Polynomial Time
Simple variant of reachability algorithm:

Given P and h € H}, there exists a compatible run iff
OPMe)NF#£ 2,
where

t(‘x)(Ph---»Pn)%qu

Yie [1,n], pi € ®P(oi)
qeJGp = aeh(lqlx,)
q ¢ dom(=)\ P

OPMa) =9 q€Q
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Compatibility Test

In Polynomial Time
Simple variant of reachability algorithm:

Given P and h € H}, there exists a compatible run iff
OPMe)NF#£ 2,
where

t(oc)(p1,...,pn)—>q€A

Yie [1,n], pi € @D (oi)
qeUGp = aeh(lqlx,)
q ¢ dom(=) \ P

OPMa) =9 q€Q
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Compatibility Test

In Polynomial Time
Simple variant of reachability algorithm:

Given P and h € H}, there exists a compatible run iff
OPMe)NF#£ 2,
where

t(o‘)(ph-'-)p‘n) — g€ A
Yie [1,n], pi € @D (oi)
qeJGp = aeh(lqlx,)
q ¢ dom(=)\ P

OPMa) =9 q€Q
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Rigidification

Problem : Given TA= A, build equivalent RTA B.

General Result [Filiot, 2008, Lem. 5.3.5]

2
Exponential construction: ||B|| < O(2/117)

In the case of TAT :

Polynomial construction: ||B|| < O(||.A[|%)
Idea : Simulate a constraint p=q, p # q by a TA intersection
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Rigidification: Construction

B =By wBgwlA|Q, A qrxqsf

B, =1A1Q\{p}f Bg =1A1Q\{dq}S
Q' =(Q\{p,a) W (Bpq:Q) A" =AJ, W (Bpq:4)
Bpq =Bp ®Bq qr = (p,q)

Bp = 1B | F={phA:=Ap] Bq=1B, |F:={q},A:=A4]
Ap:Ba:A\{...p...%...} Aq :B;:A\{...q...—>...}

Agfq is A:A from which all left-hand side occurrences of p or ¢
have been replaced by gs.
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Emptiness
Outline of the Result and Proof

Complexity of Emptiness : L(A) =2 ?

PTime (quadratic) for TAY
ExpTime-complete for TA, k> 2

TAT : immediate by rigidification. Emptiness for RTA: linear time

TA7S : Reduction of intersection-emptiness of n TA Aq,..., A,

Generalisation of the usual argument [Filiot et al., 2008, Thm. 1]
from “unlimited constraints” to “two constraints”
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—_— —_— — e — 00— U

o o o
u u u
Figure : Reduction of intersection-emptiness: the language.

where Vi, x; € L(A) and x = x4
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Finiteness
Outline of the Result and Proof

Complexity of Finiteness : [L(A)leN ?

PTime for TA7
ExpTime-complete for TA, k> 2

TAT : immediate by rigidification. Finiteness for RTA is PTIME
TAS : Reduction of Emptiness for TAS .
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Finiteness
Outline of the Result and Proof

:Z.A|Q&J{p},FI:{p},ZH’J{G/1},A,S
where A’ = AU{o(qs) = p| qre F}U{o(p) = p}

if ((A) =@ then L(A')=0
ifte L(A) then ot (t)C L(AY)

L(A") is finite — L(A) is empty
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Summary
and Perspectives
Refined complexity and expressiveness results:

Expressiveness: TA. form a strict hierarchy
Membership: NP-c for TA=, but PTIME for TA, Vk

°
°
o Emptiness: quadratic for TA7, ExPTIME-complete for TAS
°

Finiteness: PTIME for TAT, EXPTIME-complete for TAS

Left to do:

Effects of %, flat constraints, efficient heuristics, etcetera.
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Tree Walking Automata

in a Few Words

Not a new formalism [Aho and Ullman, 1969]
Sequential model, as opposed to branching tree automata
Less extensively studied model until ~ 2000

[Bojaniczyk and Colcombet, 2005, Bojanczyk and Colcombet, 2006]
Recent surge in interest, due mostly to connection to XML:

o Caterpillar expressions [Briggemann-Klein and Wood, 2000]
o Streaming XML documents [Segoufin and Vianu, 2002]
o type-checking XML-QL, XSLT,... [Milo et al., 2003]

Rich variants: pebbles, marbles,. ..
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Tree Walking Automata

in a Few Words

Existing research focused on fundamental problems:
expressive power, determinisability,. . .

We study practical, efficient algorithms

In particular: the transformation from TWA to BUTA
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Preliminaries
Definition of Tree Walking Automata

A Tree-Walking Automaton is a tuple A = (£, Q, I, F, A)

A C ZxQx{%0,1} x {1,0,/,\}xQ
~— —

T : types M : moves
e “(f,p,T— W,q)" written for the tuple (f,p,T, 1, q) € A.

° <ZZ)P)-|]—% O>q> :{(G,p,T,O,q) | o€ ZZ>T€T}

Remarks

@ Ranked (binary) vs. unranked alphabet
° (20,Q, T = {/,\}, Q) U(Z,Q,x = 1, Q) invalid
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Preliminaries
Example Tree Walking Automaton

A very simple example TWA: X = (£, Q, L F A)

° X :{a,b,c}and L) :{fvgvh}
o Q={qe,qu} I={qe}, F={qu}

A= {a,q¢{*0}— O, qu)
U <Z) qua0 — T) qU>
U(Z2,qe,{%0} =, qe)

X accepts exactly all trees whose left-most leaf is labelled by a —
and the tree a itself.
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Preliminaries
Example Tree Walking Automaton

Q=1{4qe,qu} I ={qe}, F={qu}

A= (a,qe{x0}— O,qu)
U(Z, qu,0 = 1, qu)

U(Z2,qe,{%0} = ./, qe)
f
N\

(=)
[on
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Preliminaries
Example Tree Walking Automaton

Q=1{qe,qu}, I={qe}, F={qu}

A= {a,q¢{*0}— O, qu)
U(Z, qu, 0 = 1, qu)
U <ZZ) Qe>{*,0} — )/) qe)

flqel
N\
/N
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Preliminaries
Example Tree Walking Automaton

Q=1{qe,qu}, I={qe}, F={qu}

A= (a,qe{*0}— O,qu)
U(Z,qu, 0 — 1, qu)
@] <ZZ> Qe>{*,0} — )/) qe)

f
/N
hqe] a

N
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Preliminaries
Example Tree Walking Automaton

Q=1{qe,qu}, I={qe}, F={qu}

A={(a,qe{*0}— O,du)
U <Z) qu)o — T) qu>

U(Z2,qe,{%0} = ., qe)
f
N\
alqe] b
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Preliminaries
Example Tree Walking Automaton

Q=1{qe,qu}, I={qe}, F={qu}

A= {a,q¢{*0}— O, qu)
U <Z, qu,o _> T’ qu>
U(Z2,qe,{%0} = ./, qe)

a[qu] b
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Preliminaries
Example Tree Walking Automaton

Q=1{qe,qu}, I={qe}, F={qu}

A= (a,qe{*0}— O,qu)
U <Z, qu)O _> T’ qu>
U(Z2,qe,{%0} = ./, qe)

f

/N

h[qu] a

/N

a b
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Preliminaries
Example Tree Walking Automaton

Q=1{qe¢,qu}, I={qe}, F={qu}

A= {a,q¢{*0}— O, qu)
U(Z, qu, 0 = 1, qu)
U(Z2,qe,{*0} = ./, qe)

[=)
(on
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TWA to BUTA Transformation

Given a TWA A, build an equivalent BUTA B

Solution outlined in [Bojanczyk, 2008] and [Samuelides, 2007]
Based on the idea of tree loops
Claims resulting states for B: T x 2Q° — or det. (2Q°)T

Only proof sketches. No explicit algorithm is given.

We argue that things are slightly less straightforward:

o Needed states space: £ x T x 22° — or det. £ x (2Q%)T
o Existing implementations: almost correct [dtwa-tools]

(7]

(]

We introduce tree overloops

o This time we really have T x 2Q% — or det. (ZQZ)T
o Nicer upper bound if A is deterministic: |T| - 2/Qlles2(IQI+T)
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The Idea of Tree Loops

With Pretty Pictures

(Pin, Pout) € Q2 is a loop of A on t|« if there exists a run which
@ starts in Ppjp,
@ ends in poyt — at the local root «,

@ and always stays in the subtree

Pin * Pout
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The Idea of Tree Loops

With Pretty Pictures

(Pin, Pout) € Q2 is a loop of A on t|« if there exists a run which
@ starts in Ppjp,
@ ends in poyt — at the local root «,

@ and always stays in the subtree

pln pOUt
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The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

f Loops of X on...
A o t: {}
7 a o tlo: {}
o tlo.o: {}
A o tlo.1: {}
a b o tl: {}
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The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

flqe] Loops of X on.
A o t: {(qe, ), (Qe-Qe)}
o tlo: {}
N e tho O
A o tlo.1: {}
a b o th: {}
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The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

f Loops of X on...
t: {(qe, 7), (CIz>Qe)}

ot 9 6
Mad @ t:z . ge ) (de-de)}
A e tlo.1: {}
a b o tli: {}
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The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

f Loops of X on...
t: {(Cle, 7)) (qe, qf)}

; e tlo: {(qe, ?), (qe, qe)}
o tlo.o: {(qe, ), (qde.qe)}
o tlo.1: {}
alqe] b o tli: {}
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The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

f Loops of X on...

t: {(de, 7, (qe, qe)}

tlo: {(qe, ?), (qe, qe)}

tlo.o: {(qe, du), (e, de)s (du,qu)}
tlo.1: {}

th: {}

alqu] b
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The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

f Loops of X on. ..
° t: {(qf,a ?)> (qE) Qe)}
h{qu] 3 o tlo: {(qe, qu), (de, qe)y (qu-qu)}

o tlo.o: {(qe, qu)y (de, qe)y (quy qu)?
A e tlo.1: {}

a b o t)1: {}
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The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

flqu] Loops of X on.
A ° t: {(Cle,qu (de, de)y (du.qu)}
7 > o tlo: {(de, qu), (de, qe), (qu, qu)}
o tlo.o: {(qe, qu), (de, qe), (qu, qu)}
A e tlo.1: {}
a b o t|i: {}
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The Idea of Tree Loops

By Example

Recall that X visits the left-most leaf and goes back up if it is a.

f Loops of X on. ..

t: {(de, qu), (de, de), (qu, qu)}
tlo: {(qe, qu), (e, de), (du,y qu)}
tlo.o: {(de, qu), (de, qe), (qu, qu)}
tlo.1: {(de, qe), (qu, qu)}

t|1: {(Qe,QeJ,(qu» qu)}

>

o)
(ep

Tree (Not Quite) Regular Model-Checking Vincent HUGOT Ph.D. Defence 67/24



00000 00000 (elele} 0000
0000000 000 0000

Computing Tree Loops

Loops Decomposition

A loop is a simple loop on t|« if there is a run which forms it and
reaches « exactly twice — i.e. simple looping run

Proposition: loops decomposition

If S C Q2 is the set of all simple loops of A on a given subtree
u = t|«, then S* is the set of all loops of A on wu.

So to compute all loops, it suffices to compute simple loops.
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Computing Tree Loops
U™ (u) = set of loops of A on a subtree u of type T
On leaves u=a € ¥

Simple looping run = (&, p) — («, q) only.
He={(p,a) | (oyp,T = O,q) €A}  UT(a) = (Hg)"
On inner nodes u = f(ug,uy) : by first move

o T — impossible: leaves the subtree u

o O — all computed in HF

° \/ — (€>'P)» (O)pO)) (B] y S1 )) coog (Bn) Sn)) (0> qO)) (5) q)'
with all B < 0. So (po, qo) € U9 (ug)

° \—(8, ) ( »'Pl) (f)],S]) (Bn)sn))(1)q1))(8)q)r
with all Bx <1. So (p1,q1) € Ul(ul)
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Computing Tree Loops

U™ (u) = set of loops of A on a subtree u of type T

On leaves u=a € X
Simple looping run = (e, p) — (&, q) only.

HE={(p,q) | (0,p,T— O, q) €A} U¥(a) = (HT)*
On inner nodes u = f(ug, uy)

Q choose aside: 0e€$S={0,1}

Q find an existing loop on that side: (pg,qo) € U°(ug)
© such that one can connect beginning and end

o (f,p,T— x(0),pe) € A? and
o <u9(5)>q9»9 =1 q> €A

() :S = {.,\} such that x(0) = and x(1) =Y,
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Computing Tree Loops

U™ (u) = set of loops of A on a subtree u of type T

On leaves u=a € X
Simple looping run = (e, p) — (&, q) only.

He={(p,d) | {o,p,T > O,q) €A}  UT(a) = (Hg)"
On inner nodes u = f(ug,uy)

. 10€S: {f,p,T = x(0),pe) €A *
(Hf N { > a) ‘3(139»(]9) € U%(ug) (uple),qe,0 — 1,q) € A })
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Loops-Based Transformation Into BUTA

Q Input: ATWA A= (X,Q,[FA)
Q Initialise States and Rules to @
Q foreachae Xy, TeT do
o let P =(a,t,HT")
add a — P to Rules and P to States
© repeat until Rules remain unchanged

o foreach feX,;,TeT do
o add every f(Pg,P1) — P to Rules and P to States where
Po, P1 € States such that Py = (0p,0,So) and P; = (01,1, S;)
and P = (f, T, (HFf US)*),
with S the set of simple loops built on the sons.

@ Output: A BUTA B equivalent to A:
B = (X, States,{ (0, *,L) € States| LN (I x F) # @}, Rules)
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Loops-Based Transformation Into BUTA

Q Input: ATWA A= (X,Q,[FA)
Q Initialise States and Rules to @
Q foreachae Xy, TeT do
o let P =(a,t,HT")
add a — P to Rules and P to States
© repeat until Rules remain unchanged

o foreach feX,;,TeT do
o add every f(Pg,P1) — P to Rules and P to States where
Po, P1 € States such that Py = (0p,0,So) and P; = (01,1, S;)
and P = (f, T, (HFf US)*),
with S the set of simple loops built on the sons.
@ Output: A BUTA B equivalent to A:
B = (X, States,{ (0, *,L) € States| LN (I x F) # @}, Rules)
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Loops-Based Transformation Into BUTA

add every f(Pg,P1) — P to Rules and P to States
where Pg, P1 € States such that

e Pg = (00,0,So) and Py = (01,1, 51)
e and P = (f, T, (HF U S)*),

o with S the set of simple loops built on the sons.

S—{( )‘ 0esS: ~{f,p,T = x(0),po) €A }
=\ P A(pe,qe) € Se ~ (00,9e,0 — 1,q) €A
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Loops-Based Transformation Into BUTA

add every f(Pg,P1) — P to Rules and P to States
where Pg, P1 € States such that

o Pg = (00,0, So) and Py = (01,1, 51)

e and P = (f, T, (Hf US)*),

o with S the set of simple loops built on the sons.

S—{( )‘ ECRSESE ~(f,p,T = X(0),pe) €A }
P> 3(pe,qe) €Se * (06,q0,0 = 1,q) € A

The son’s symbol is needed to close the end of the loop!
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Loops-Based Transformation Into BUTA
The Real States Space

Sets of loops cannot be considered independently from the symbol
in which they are rooted.

Consider ({a,b},p,T — O, q) and (b,q,T— 1,s’) € A. Then
69(a) = B°(b) = {(p, q)}", but U (f(a,a)) # U*(f(b,b)).

Needs states in £ x T x 2Q” instead of just T x 2Q°.

Alphabet potentially large. How to get rid of it 7
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From Tree Loops to Tree Overloops
Tree overloops: slight alteration of loops, with advantages.

o Fixes states space: T x 2Q% instead of £ x T x 2Q°.
e Deterministic case: |T|-2/Qlleg2(IQI+1) petter upper bound

@ 2 to 100 times smaller BUTA in average in random tests.

VaNp
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From Tree Loops to Tree Overloops

Tree overloops: slight alteration of loops, with advantages.
o Fixes states space: T x 2Q% instead of £ x T x 2Q°.
o Deterministic case: |T|-2/Qll&2(IQI+1) petter upper bound

@ 2 to 100 times smaller BUTA in average in random tests.

(p,q) € Q2 is an overloop of A on t|« if there exists a run which
starts in p, ends in q at the parent of the root «, and always stays
in the subtree, except for the last configuration.

Parent of ¢ is €. A TWA A must be escaped into
A'=(Z%, Qu{v}, LF AW (L F*x—1v) ).
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Overloops and Determinism

ATWA A= (X,Q,,FA) is deterministic if for all
oceLpeQ,TeT, [(o,p, T >MQ)NA| 1.

In general, the overloops-based BUTA has up to |T| x 21Q states.
However, it has at most |T| - 2/Ql1eg2(IQI+1) gtates if A is a DTWA.

If A is deterministic, overloop sets are functional. Not like loops.
Partial functions versus relations.

At most |Q + 1|‘Q‘ overloop sets, versus 21Q1%,
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Polynomial Approximation for Emptiness

Emptiness is ExpTime-complete

o XML Queries / Caterpillar accessibility
@ Satisfiability of some XPath fragments
@ But also TWA model-checking. ..

Standard: TWA — BUTA (explosion) — linear test. Alternative:

o An over-approximation; may detect emptiness
@ Polynomial time and space

o Very — surprisingly — accurate in our random tests
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Polynomial Approximation for Emptiness

Q Input: An escaped TWA A = (%,Q,I,FA)
Q Initialise £y, £1, £, to @
Q foreach ae€ Xy, T€ T do
o Lo+ L UUT[HTY]
O repeat until £y, £1, £, remain unchanged
o foreach fe X,,T€ T do

o Lo+ Lo UUFI(HFUS)]
with S the set of simple loops built on £g and £;.

@ Output: Empty if L, N (I x {v'}) = @, else Unknown
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Polynomial Approximation for Emptiness

Q Input: An escaped TWA A = (%,Q,I,FA)
Q Initialise £y, £1, £, to @
Q foreach ae€ Xy, T€ T do

o Lo+ L UUT[HTY]
O repeat until £y, £1, £, remain unchanged

o for each fe £;,T€T do

o L+ Lo UUF(HFUS)
with S the set of simple loops built on £g and £;.

@ Output: Empty if L, N (I x {v'}) = @, else Unknown
coarsest with one bucket £; finest as full transformation (exp)
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Polynomial Approximation for Emptiness

Random tests

@ Ad-hoc scheme: =~ 20000 TWA, 2 < |QJ < 20, |Al =3 x|Q|,
75% of empty languages, only two Unknown instead of Empty.

@ Uniform scheme [Héam et al., 2009], REGAL back-end for FSA

generation [Bassino et al., 2007]. 2000 deterministic and
complete TWA uniformly generated for each 2 < |Q| < 25.
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Polynomial Approximation for Emptiness

Random tests

| P:Rproxim;)tion - 2IOOO samlples
50 R pproximation — 200 samples -------
l Exact — 200 samples -=------

2 4 6 8 10 12 16 18 20 22 24

14
Q|
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Size Comparison: Loops vs. Overloops

One Example & Uniform Generation Scheme

For X: loops ||B|| = 1986; overloops ||B.|| = 95; deterministic
minimal ||Bm|| = 56; smallest known non-deterministic || Bs|| = 34.

Loops 60 times worse than manual optimal; overloops 3 times.

Orthogonal to post-processing cleanup: ||B/|| = 1617, ||B}|| = 78.

/

~ ~1.2.
1Bo |l 1Bsll IB/]| 1Bl
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Size Comparison: Loops vs. Overloops

One Example & Uniform Generation Scheme

. T T T T i . . s
1B IBL/[Boll y
HB;{H (clean) r ||B’t\|/|\3;,\| e
IBo - 1B /IB 1 y
| o 17 1B I/12% | e 114
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