Equivalence of Symbolic Tree Transducers

Vincent Hugot?3, Adrien Boiret??, and Joachim Niehren'3

T Inria, Lille, France
2 University of Lille, France
3 Links project (Inria & Cristal Lab - UmMr Cnrs 9189)

Abstract. Symbolic tree transducers are programs that transform data trees with
an infinite signature. In this paper, we show that the equivalence problem of
deterministic symbolic top-down tree transducers (DTor) can be reduced to that
of classical DTop. As a consequence the equivalence of two symbolic DTor can be
decided in NExrTimE, when assuming that all operations related to the processing
of data values are in PTiME. This result can be extended to symbolic DTor with
lookahead and thus to deterministic symbolic bottom-up tree transducers.

This is an extended version of the paper published at DLT 2017.

1 Introduction

Data trees are widely used in various domains of computer science. They represent
programs in compiler construction or program analysis, syntactic sentence structure
in computational linguistics, all or part of the database instances in semi-structured
databases, and structured documents in document processing. The most widely used
current formats for data trees are json (the Java Script Object Notation) and xmL (the
eXtensible Markup Language).

We are interested in deciding the equivalence of programs that define transformations
on data trees. For instance, we may consider xsLt programs defining xmL transformations
or Linux installation scripts written in bash that change the file system tree. Our
approach is to compile a subclass of such programs into classes of tree transducers for
which equivalence is decidable. Here we present a partial landscape of classical classes
of tree transducers without data values [7,9, 13], where inclusion is read from left to
right:

_ extended DTor
DTor

functional Top DTopR MrTT

DBur

The class DTor® of deterministic top-down tree transducers with regular lookahead
by a deterministic bottom-up tree automaton is particularly well behaved [9]. It is
closed under composition, which makes it suitable for compilation of programs, and its

equivalence problem is decidable in NExpTiME, by PTiMmE reduction to the equivalence
problem of the class DTop, for which equivalence is decidable in NExpTimE [15,12,18].
Furthermore, the class DTopR subsumes three other classes of tree transducers with
pairwise incomparable expressiveness, which capture different aspects of programs:
extended DTor with nested pattern matching, functional top-down tree transducers
(functional Top) that relax the determinism requirement of DTop, and deterministic
bottom-up tree transducers DBur that operate the other way around. The more
general class of macro tree transducers (MtT) is much more expressive (and includes
lookaheads), but has a long-standing open equivalence problem [10, 11, 19] and fails
to be closed under composition (though its linear size increase subclass has better
properties).

In contrast to classical machines that operate on ranked trees over finite signatures,
what we need for program verification are generalised machines that operate on data
trees with infinite signatures. Most typically the data values which label the nodes of
data trees may be strings over some finite alphabet or natural numbers. For dealing
with data trees, the classical classes of tree transducers were extended to symbolic
classes [21, 20, 16], and similarly for other kinds of finite state machines. The general
idea is to use patterns for describing infinitely many data values in a finite manner,
and to allow the transducers to apply transformations on the data values themselves.

We first illustrate by an example that the class of symbolic extended DTor is relevant
in practice. For this, we consider the following extended DTop, which performs a
routine cleanup and statistics task on a list of log files in a file system, as illustrated in
the example of Figure 1.

q(~1L) — cons(FiLe(“log”, “”), NIL) 1)
q(cons(x1,x2)) — CONS(Gname(X1), q{x2)) 2)
(name (FILE(“log”, x2)) — FILE(“stats.1”; fg:s@x2) 3
Qname (FILE(X7 : “stats.” (“0”..9”) ", x2)) — FILE(fin@x1, fia@x,) 4)
Such transducers have nested patterns with variables x1,x;, ... for matching sub-

trees, expressions for matching data values such as “stats.”(“0”..”9”)" or cons, and
applications of externally defined functions, such as fg.@x,, where fgs is a string

transformation that produces statistics from its input string (log contents). It should be
noted that symbolic functional Tor are insufficient for this example since rules such
as (3) and (4), with nested patterns, cannot be expressed in a top-down manner. In
contrast, symbolic DBup offer an alternative solution for this concrete example.

Veanes and Bjerner [21, 20] started the study of symbolic transducers. They showed
that equivalence is decidable for symbolic functional Top, if the corresponding problems
on data pattern and transformations are. In this paper, we notice that the landscape
of tree transducers above remains unchanged when turning classes of classical tree
transducers symbolic. Therefore, we can show that the equivalence problem is decidable
for the symbolic counterparts of all classes in the landscape except for MT. To see this,
note that any symbolic DTor is a symbolic functional Top, so equivalence for symbolic
DTor is decidable. Furthermore, equivalence for symbolic DTorRs can be reduced to
equivalence of symbolic DTor as in the classical case.

We then start studying the complexity of equivalence for classes of symbolic tree
transducers. Our main result is that equivalence for symbolic DTorRs is in NExpT1mE,
under the assumption that operations on patterns and data transformations can be
performed in PTiME. If not, one needs to multiply the worst case exponential time
with the maximal time needed for such operations. We obtain this result from a novel
reduction from the equivalence of symbolic DTor to the equivalence of classical DTop,
using a weakened version of the origin-equivalence in [3]. This reduction allows us to
conclude that the equivalence problem of symbolic DTor is indeed in NExpT1ME as for
classical DTop (and not in 2NExPTIME as a naive analysis would lead to believe). Due
to the modularity of the construction, the equivalence testers obtained for DTorRs are
easy to prove correct, to analyse, and to implement.

2 Tree Automata and Transducers

Some familiarity with formal languages and automata theory, as covered for instance
in [5], is assumed.

Given a set S, we denote its cardinality by |S| and its powerset by 2°. The set of
Boolean values is written B = {0, 1}. N is the set of natural integers, including zero.
We write m..n the integer interval [m, n] N N. We will denote tuples (ao, ar,...,an) by
ao(ar,...,an) or simply as ap if n = 0.

Let X = {x1,%x2,X3, ...} beasetof variables. For K > 0, we shall often use the subsets
Xk = {x1,...,xKk }. A ranked alphabet X is a (potentially infinite) set disjoint from
X paired with a function ars : £ — N (or just ar where I is clear from context). The
set of ranked trees over X with variables in X, denoted by 75 (X), is the least set that
contains X and all a(ty,...,ty) where a € £, n = ars(a), t1,...,tn € Tx(X). T= (@) is
the set of ground X-trees, also written Tx. Notions of position, substitution, etc., are all
defined as usual.

We next recall the definitions of deterministic top-down tree automata (Dr1A) and
deterministic top-down tree transducers (DTop).

Definition 1. A quasi Drra is a tuple A = (X, Q, qini, rhs) such that ¥ is a ranked
alphabet, Q a finite set, qini € Q, and rhsis a partial function that maps pairs (q, a) €
Q x I to tuples of Q¥(%). A Drra is a quasi Drta for which £ is finite, and thus so is rhs.

The elements of Q are called the states of A, qin; its initial state. The rules of A have
the form q(a(x1,...,%xn)) — rhs(q, a), where rhs(q, a) is defined and n = ar(a). Each
state g of a quasi Drta A recognises a tree language [q] 5 € T(Z), (or just [q] when A
is clear from the context) defined by induction on the trees: we have a(ty,...,tn) € [q]
iff there is a rule q{a(x1,...,Xn)) = q1,...,qn and tx € [qx] for all k € 1..n. The
semantics of the automaton is [A] = [qin]-

Bottom-up tree automata (Buta) are defined similarly and as usual, with rules of the
form a{qi,...,qn) — q.

Definition 2. A quasi DTor is a tuple M = (Z, A, Q, ax, rhs) such that £ and A are
ranked alphabets, Q is a finite set, qini € Q, and rhs is a partial function that maps pairs
(gya) € Q x Zto TA(Q X Xar(a))- A DTor is a quasi DTor for which £ and A are finite,
and thus rhs as well.

L and A are called input and output alphabets; the other components are as in
automata. Each state q € Q has as semantics a partial function [q] from Ts to Ta,
defined by induction on terms t = a(ty,...,ty) € Tx such that:

[al(t) =

The transformation defined by M is the partial function [M] = [qini]-

rhs(q,a)[q"(xx) < [q'](t) | 9" € Q, k € 1..ar(a)]. (5)

3 Symbolic Tree Automata and Transducers

In this section, we recall the definitions of symbolic Drra and symbolic DTor as in [16].

Symbolic machines are finite representations of potentially infinite quasi Drta and
quasi DTop. They use descriptors to stand for the potentially infinite sets and functions.
Given a set S, we call a set D paired with a function [.] : D — S as set of descriptors of
elements of S. For instance, we can use the set E of regular expressions e € E over an
alphabet A as descriptors of regular languages [e] € A*. Outside of the definitions, we
shall often assimilate the descriptors and their semantics.

Definition 3. A symbolic Drta is a tuple A = (X, D, Q, qini, rhs) such that (@, Q,
Qini, rhs) is a quasi Drta with a finite set of rules, @ is an alphabet of descriptors for
subsets of the alphabet Z, with ar(a) = ar(¢) for any a € [¢] and ¢ € ®.Foralla e X
and q € Q, there exits at most one @ € ® such that rhs(q, ¢) is defined and a € [¢].

The elements of ¢ € ® are called (descriptors for) guards. A symbolic Drta A is a
finite representation of a (potentially) infinite quasi Drra A’ such that for every rule
r of form, q(@(x1,...,Xn)) = q1,...,qn of A, and for every a € [¢], there is a rule
q(a(X1y...yXn)) = q1,-..,qn in A’. The semantics of A is defined as that of A’: for all
q€Q,[q]s =[q] s . Symbolic Buta are defined similarly.

Definition 4. A symbolic Drra is effective if it satisfies the following conditions, which
we always assume: (1) The set of guards @ is closed under conjunction and negation,
i.e., there exists an algorithm computing some function A : ® x ® — ® such that
[o Aol =[e]N]e’] forall @, ¢’ € D, and an algorithm computing some function
- : ® — O suchthat [-¢@] = Z\[¢]. (2) There exists an algorithm deciding membership
a € o] givena guard ¢ € ® and alabel a € Z,

Definition 5. A symbolic DTor is a tuple M = (%,A, ®,F, Q, qini, rhs) such that
(@, 3, Q, gini, rhs) is a quasi DTop with a finite set of rules, F is an alphabet of descrip-
tors for partial functions from the input alphabet I to the output alphabet A, with
ar([f](a)) = ar(f) for every a € dom(f) and f € F. The same conditions on £, ® and
rhs apply as for symbolic Drta above.

The elements of f € J are called (descriptors for) data transformations. A sym-
bolic DTor M is a finite representation of a (potentially) infinite quasi DTor
M’ = (%,A,Q, ax, rhs’), such that for every rule q(@{(x1,...,xn)) — rhs(q, @) of M,
and for every a € [¢], there is a rule q(a(x1,...,xn)) — rhs(q, @)[f < [f](a) | f € F]
in M. The semantics of M is defined as that of M": for all q € Q, [q]lp = [d]m-

Definition 6. A symbolic DTor is effective (which is assumed in the remainder) if the
underlying Drra is, and (1) There is an algorithm that computes the value of the data
transformation [f](a) for a given f € F and a € X and returns L if it is not defined.
(2) There is an algorithm that decides whether the image of a data transformation
[f](Z) is empty for a given f € F.

In symbolic DTor®, a symbolic Buta on the transducer’s input signature X first
annotates the tree with its states P, and then the symbolic DTop transforms the annotated
treeon X x P.

Consider the logs of an application on a Unix-flavoured system. The log is a text file
named “log”, here containing “s” for every successful login, and “f” for every failure.
Every week, the old log is discarded and replaced by statistics: the number of successful
and failed logins (Figure 1). For this, we denote by fg.s the function counting the
numbers 1, m of occurrences of “s” and “f” in a string (here a log’s contents), and
outputting the string n”;”m. A fresh “log” is then created. The older log’s statistics are
named “stats.1”, “stats.2”, etc. so that higher numbers indicate older stats. To model
this with a symbolic DTorR, we represent the contents of the logs folder by a list
(cons and NiL being the usual constructors) of files, each file being a tree of the form

CONS

N

CONS

Fig. 1. Log cleanup and statistics: input tree on the left, output on the right.

v

FILE(“filename”, “contents”). The input and output alphabets are thus strings, along
with FiLE, cons and NiL. The guards will be a small subset of regular expressions on
strings plus descriptors matching cons and nir. The lookahead’s purpose is to check
whether the filename matches a stat file or not (which cannot be done in a top-down
transducer’s rule, in contrast to the extended rules (3) and (4)) and to annotate the
FILE nodes with its findings. Guards are regular expressions. The descriptor matching
a specific string is the string itself; * matches everything; “stats.”(“0”..”9”)" is the
descriptor matching stats filenames. The lookahead (LA) rules are

“stats.” (“0”..“9”) () — Pstats

“log”() > p
(IISII | /lfl/)*<> % p

FILE <pstats» P> — Pstats file

FILE(P,P) — P

coNs{_,p) = p NIL() = P

The label functions & are taken as, for instance, the class of rational functions, which
we can implement with word transducers with lookahead [6], satisfying all requisite
properties. We represent a constant function by the string it produces, the identity by
fia, and fincrement for the function taking strings of the form “stats.”k, where k is the
decimal representation of an integer, and yielding “stats.”(k + 1). We start in state q:

q(NIL : p) — cons(FILE(“log”,“”), NIL) 1)
q(cons : p(x1,X2)) — CONS(qname (X1), q{x2)))
Qname (FILE : P(X1,X2)) — FILE((log(X1), Jstats (X2)) (3a)
Qname (FILE : Pstats file (X1, X2)) — FILE(Qincr(X1), qid(X2)) (4a)
Qiner (“stats.” (“07..“9”)" : Pstats) — Fincrement (3b)
Qid(*:P) = fid Gstats (¥ : P) = fotars log(“log” : p) — “stats.1”. (4b)

N

“log” “ssfsffs” CBILE NIL “stats.1” ”4;37"\\\ FILE CONS
Cregtats,1” “1537 e “stats.2” “15;3” FILE NIL

4 Domain and Composition

To study problems like computation or equivalence on symbolic DTop, it is worth
considering those problems as extensions of their counterparts for DTor. Indeed, most
difficulties that previous papers [21, 20, 16] encountered are already relevant for the
composition, normalization, or equivalence problems in the finite-labelled case [12,
17]. Most of those difficulties come from dealing with the domain of a transducer’s
transformation. Since these problems have been solved in DTor and proofs in symbolic
DTor are essentially identical, we shall only present the results, a reference for the
proofs in DTop, and the additional conditions required of ® and ¥ for them to carry
over to the symbolic case.

The first important results concern automata and their expressive power. Symbolic
Drra which, as said before, we always assume to be effective, and have the classical
properties of Dr1a (e.g. in [5]).

Lemma 7. (1) The class of languages described by symbolic Drta is closed under intersection.
(2) If equivalence is decidable on @, then equivalence is decidable on symbolic DTTA.

The second important result concerns the domains of symbolic DTor.

Lemma 8. Let M be a symbolic DTor. Then we can build a symbolic Drta A such that
[A] = dom([M]).

Proof. This is directly adaptable from the classical construction on DTop: see [8, 12] and
[2, Lem. 39 p57]. The nub of the constrcuction is that, as subtrees can be copied, each
state of A corresponds to a set of states that explore the same subtree during the run.
In the worst case scenario, this results in a full powerset construction, and thus leads
to an exponential blowup in the number of states. Note that in the symbolic case, we
need to compute the intersections of all the guards that may be invoked on the same
subtree.]

The third important result concern the composition of symbolic DTop. In [16], the
authors state that “the proof of the first statement [of [21], that their algorithm computes the
composition of any two symbolic DTop, and that the result is a symbolic DTor] is insufficient.
[They proceed to show why that specific algorithm is incorrect] We even conjecture that this
statement is wrong, i.e., symbolic DTopr are not closed under composition.” Indeed they are
not, and for the same reasons that DTor themselves are not closed under composition.
This is mainly due to the problem of domain restriction.

Example 9. For a,b € U, it is easy enough to make a DTor that computes 17, the
identity over trees of form a(b, t;), and a DTor that computes T;, that sends all trees
of the form a(ts,t2) to their right subtree t,. However, no DTor can compute 1, o 71,
that sends all trees of form a(b, t;) to their right subtree t,: such a transducer would

need to start in a state qo that only has one rule of form qo(a(x7,x2)) — t. This rule
cannot produce any output symbol, and thus t is of the form q(x;). This x; must be x;,
as the transducer needs to visit the left subtree to ensure that it is b. This x; must also
be x;, as the transducer needs to copy the right subtree. Hence, no such DTop can exist.

Note that this argument applies equally to symbolic DTor and to DTop; only the
general form of rules matter. To find a class closed under composition, a solution
presented in the DTor case [12] is to consider transducers with domain inspection: a
symbolic DTor with inspection is a pair N = (M, A) of a symbolic DTor M and a
symbolic Drra A. Its semantic is [N] = [M];;, the function of M restricted to the
language of A. We know that DTor with inspection are closed under composition [12].
This result extends to symbolic DTor if the set of functions of ¥ is itself closed under
composition, and the images of guards through functions of J form a suitable set of
guards (i.e. they satisfy the requirements for effectiveness).

Lemma 10. Let F be closed under composition, and N, N’ be two effective symbolic DTop
with inspection using functions of F. Then we can build a symbolic DTop with inspection N”
such that [N”] = [N] o [N'].

The main intuition behind the generalisation of the classical results [1] is presented
in several papers [21, 20, 16]; roughly, a rule in N” is the image of the right-hand side
of a rule of N’ by a state of N. To obtain closure by composition for symbolic DTor
—or indeed for DTop, as the problem is fundamentally unchanged by the alphabets —
necessitates the use of either very strong restrictions, as in [16], or the use of domain
inspection, which we prefer here.

5 Deciding Equivalence

In this section, we show that, given a few basic properties on label transformations
(mostly that equivalence is decidable for label transformations) the equivalence problem
for symbolic DTor is decidable, regardless of linearity, by reducing that problem to
equivalence for DTopr, which is known to be decidable.

The main observation behind the reduction is that, although ¥, ® and J may well
be infinite, only a finite number of predicates and transformations are actually used
in a symbolic DTor (or indeed, any pair of symbolic DTor), and give rise to a finite
number of behaviours. These finite subsets of ® and F will serve as finite input and
output signatures in our reduction, which encodes those finitely many behaviours.

We shall first present a straightforward but coarse reduction, which captures most of
the ways in which two symbolic DTor may differ, with the exception of some more
technical cases where the origins of produced nodes matter. The notion of origin will
then be presented and used to complete the construction.

5.1 The Basic Reduction

The first reduction is as follows: let M = (O, L, F, A P, pii, R) and N = (O, L, F A,
Q, Gini, S) be two symbolic DTor. We build their DTor representations, the DTor
M and N. Strictly speaking we should write MM-N and NM-N | as the construction is
specific to the pair of transducers under consideration, and the same applies to the
representation of each component of the transducers — @, Z, etc — which we define
below. In this section we assimilate descriptors ¢, f and their semantics [¢], [f] to
lighten the notations.

We make the following additional equivalence-testing assumptions: forall ¢, € @,
it is decidable whether ¢ = 1. For all f,g € F and all ¢ € ®, it is decidable whether
there exists some ¢ € A such that f(¢) = {c}, and this c is computable; and it is decidable
whether flo = glo.

The finite information relevant to the behaviour of symbolic DTor is which guards
are satisfied. Thus we let

M = {gd(r)[reRUS} € @ (6)

be the subsets of guards actually used by either one of the two transducers.

The representation of a € X is the equivalence class of a € £ with respect to the
tests of TT; that is to say, the set of all labels which are indistinguishable from a by our
transducers:

a = {beX|Vnel,aensbemn}, (7)
which is computed as
a = ﬂ T\ U . (8)

aerell agmell

The finite alphabet X representing X is defined as £ = {a | a € Z}. Note that this is
indeed a finite set, as IT is finite.

To properly represent a guard ¢ € IT, we must make sure to capture all the possible
circumstances in which the guard is used; recall from Lemma 84 that a subtree may
be evaluated in any number of states during a run, and thus simultaneously tested by
any number of guards, each combination corresponding to a different behaviour of the
transducer, and to a new, finer guard. Thus the representation of a guard ¢ € IT must be
the set of all the (finer) guards obtained by such combinations. Those combinations are
precisely the equivalence classes of all labels that satisfy ¢. Thus the representation of
a guard ¢ € IT is defined as the set of equivalence classes of labels accepted by ¢:

¢ = {a]ae€L acq}. 9)
The representation of an input tree t € J(X) is defined inductively as
alty.oytn) = @ty tn) €T(E). (10)

For the representation of a label transformation f, it is important to store the actual
transformation that can be performed during a run, which means restricting by the
appropriate guard. There is also a more subtle technicality. We usually store the function
itself, except in the case where only a constant can be produced: then one must store only
the constant itself, regardless of the input domain. This is linked to the question of the
origin of a node, which will be explained in the next sections. Thus the representation
of a label transformation f restricted to ¢ is defined as

if f(¢@) ={c}, and

c
. (11)
flo otherwise.

flo

The representation of a rule r € RU S, of the form r = q{@(x1,...,%Xn)) — t, is given

by the set r of all classical rules
q<p<x1,...,xn>>—>t[f<—ﬂip|fe&"], (12)

where p € @. Letting R = J,rr and S = J,ss, we finally have M =

(;) é) P) Pini» R) and M = (;) é) Q) qini) §)

5.2 Examples; The Necessity of Origins

It is easy to see that if M and N are not equivalent, then neither are M and N, as a
difference in the representation means that the symbolic DTor must either take in
different inputs, produce tree with different shapes, of produce different labels. Let us
visuallise that on an example:

Example 11. Consider M of initial state p and rules

p(“c"*(x1,%2)) = Fia(p{x1), p(x2)) (13)

p(“a”x) — fiq p(“b"*) — fiq (14)
and N of initial state q and rules

q{“c”x(x1,%x2)) = fia(q(x2), 4(x1)) (15)

q(“a”*) — fig q(“b"*) — fiq (16)

The representation of M is easily computed, as the guards of TT are disjoint, and
describes the transformation

IM] = e x — figlcs (17)
/\ / \
“a’x “b"x fidl“a« fidlb*

In that case, this is even a finite transformation — there is a single possible input tree.

Likewise for N:

[[M]] — //CII>I< — fid|“C”* (18)
Ilall* //b//* fid"lb”* fid|”a”*

We have [M] # [N], as fiq|“a”+ # fig|b”+, and this reflects the difference of behaviour
between M and N.

Example 12. Consider now M of initial state p and rules

p(“c”x(x1,%2)) = fia(p(x1), p(x2)) (19)

_p<lla//*> 4) /la/I p</lb/l*> % Ila// (20)
and N of initial state q and rules

q("c”*(x1,%x2)) = fia{q(x2), q{x1)) (21)

q <Ilalf*> % Ila/’ q <llb/’*> % Ila’/ (22)

Since we produce constants, by (11)(,5) we store this time the constant itself, and not
the restricted function; thus we have the representations:

IM] = [N] = “clx o figlie (23)

"

a” % llbll* //a/I uall

This is good, as in that case, it does not matter whether the constant “a” was obtained
from an input label in “a”+ or in “a”: M and N are equivalent regardless. Had we
stored the constant function with its domain restrictions instead of the constant itself,
we would have obtained [M] = [N], and thus a false negative. However, there is work
left to do in order to obtain the reciprocal property; that is to say, to ensure that if the
representations are equivalent, then so must the originals. A variation of Example 11

provides the counter-example:

Example 13. Consider M of initial state p and rules

p(“c”x(x1,%2)) = fia(p(x1), p{x2)) (24)

p(“a”x) — fiq p(“a”*) — fig (25)
and N of initial state q and rules

q("c”x(x1,%x2)) = fia(q{x2), q(x1)) (26)

q(“a”*) — fiq q(“a”*) — fiq (27)

We have:
M] = [N] = ‘% o ke @)
llall* llall* fid|“a”* fid|“a”*

Yet it is not the case that M and N are equivalent: consider the input tree t =
“c”("a”,"“aa”): we have [M](t) = t, whereas [N](t) = “c”(“aa”,“a”). Though the same
operation is done on the two children, that does not make them interchangeable. Thus
we must, additionally, have in the representation some means of tracking the origin is
output labels; that is to say, from which node they are produced — left child or right
child, in that case. This origin information must apply even if the domains of the
transformations are identical.

Yet it must be noted that, if we combined this example with the previous one,
producing the same constant left and right, we would again be in a case where no origin
information should be stored, as it won’t matter whether the constant “comes from”
the right or left child.

The next section formally introduces the notion of origin.

5.3 Origins and Origin Equivalence

The problem identified in Example 13 is that a reduction from symbolic DTor to DTor
can only be accurate if it stores not only the information relative to which guard
or function was used to transform input labels into output labels, but also enough
information to know which input label is transformed into which output label. This
notion exists in previous papers: notably, [3] discusses origin, a relation between the
input and output nodes of a transformation. We will define similar notions, identifying
for each output node the input node, guard, and function used for its production.

We define a position to be a word on the alphabet N. We can identify each node of a
tree s € Ty with a unique position.

o The root of s is at the position «.
o If anode of s is at position pw and labeled by a € £ of arity k, then its i child has
the position pi, where 1 <1i < k.

For instance, in Figure 1, the node 1 is labelled by riLE, and the node 12 in the input is
labelled by “ssfsffs”.

We use this notion of position to talk of syntactic alignment. This notion, found in [2],
aims to describe which part of the input is read by a symbolic DTop to produce a given
part of the output. It is, as its name implies, a purely syntactic property, describing the
functioning of the transducer. We define this notion recursively:

Definition 14. Let M be a symbolic DTop, and t € dom([M]) a tree. We define by
induction what it means for (L a position of t and A a position of [M](t) to be syntactically
aligned in state q (we write L ~q A) :

o pu=¢and A = ¢ are aligned in state qini.

o If u' ~4+ A/, the node at position p’ in t is labeled by a, and there exists a rule
q'{@(x1,...,xn)) — rhs(q’, @) such that a € ¢, and furthermore there is a node of
rhs(q’, @) at position A" labeled by q(x;), then p'i and A’A” are aligned in state q.

t M] ()

aligned in q’

alig_r{e_d_iﬁ q 7K

We use the notion of syntactic alignment to define a notion of origin similar to the
one found in [3]. The intuition of this notion goes as follows: let M be a symbolic DTop,
t € dom([M]), and A a position in [M](t). We want to know which node of t was read
by M when the label at position A was produced in [M](t). We call this input node
the origin of the output node at position A. Note that in the symbolic case, we also are
interested to track the guard of the rule used to produce said node, and the function
used to transform an input label in the output label at position A.

Definition 15. Let M be a symbolic DTop, t € dom([M]) a tree, and A a position of
[M](t). We say that p is the origin of A if:

¢ W is the position of a node of t labeled by some a € X

o there exists A, A” such that A = A’A” and p ~4 A’

o there exists a rule q(@{x1,...,xn)) — rhs(q, ¢) such that a € ¢, and A" is the
position of a node of rhs(q, ¢) labeled by some f € J.

We call f the origin function of A, and ¢ the origin guard of A.

Note that for a symbolic DTor M and a tree t, each position A of [M](t) has exactly one
origin: each output node is produced during one and only one step of the computation
of [M](t). For instance, in Example 13, the node at position 1 in an output of M comes
from the input node at position 1. Its origin guard is “a”* and its origin function is

t INJ(t)

aligned in q

IR "-._)\,, rhs(q, ¢)
Orlgln T o

fia|“a”«. Conversely, in N, the node at position 1 in an output of M also has the origin
guard “a”x and the origin function fiq|a”+, but its origin is the input node of position 2.
This difference in origins is not detected in the reduction attempt of Section 5.1.

In [3], the notion of origin is accompanied by a notion of origin equivalence. In
essence, two transducers are origin-equivalent if they are equivalent and every output
node is produced from from the same origins in both transducers.

Definition 16. Two equivalent symbolic DTor M, N are origin-equivalent iff for all
t € dom[M], for any node A of [M](t), the origins of A for M and N are identical.

The advantage of origin equivalence is that if the origins are known, origin equiva-
lence becomes easier to test than equivalence (see [3]). Origin equivalence is stronger
than equivalence: completing the reduction of 5.1 to embed information about the
origin would prevent the false positives presented in Example 13, in which M and N
are not equivalent. Although M and N are equivalent, they are not origin-equivalent:
the output node at position 1 is of origin 1 for M and M, but 2 for N and N.

Unfortunately, origin equivalence is strictly stronger than equivalence, which means
that by getting rid of false positives, we might introduce false negatives. In Example 12,
M and N are equivalent, and, again, although M and N are equivalent, they are not
origin-equivalent: the output node at position 1 is of origin 1 for M and M, but 2 for N
and N.

To prevent this kind of false negative, we do not encode all origins, as we do not want
to fully test for origin equivalence. Instead, we relax the notion of origin equivalence:
the origin of an output node only matters if its origin function can produce different
results for different input labels. If the origin function is constant, as in Example 12,
then the origin node is of no relevance to determine equivalence. We define the notion
of weak-origin equivalence as origin equivalence everywhere except when constants
are produced.

Definition 17. Two equivalent symbolic DTor M, N are weak-origin—equivalent iff for all
t € dom[M], for any node A of [M](t), the origin nodes of A for M and N are identical,
or its origin functions for M and N are constant functions of same image.

Note that when we consider these origin functions, we consider them restricted
to the origin guard. In the case of a rule q(@(x1,...,xn)) — rhs(q, @), the function
we want to test as constant is in fact f|e, not f itself. However, it is quite possible
that equivalent transducers use different tests to compute the same transformations.
This would needlessly affect the notion of weak-origin equivalence. To ensure no such
problem arises, we introduce the notion of harmonized symbolic DTop, to say that they
use the same guards to read the same nodes.

Definition 18. Two symbolic DTor M, N are harmonized iff for all t € dom[M]Ndom[NT],
for any node A of [M](t) and A’ of [N](t), if the origin of A for M and A’ of N are
identical, then their origin guards are identical.

It is easy to see that any two symbolic DTop can be harmonized. A way to do so
would be to render all guards disjoint, similarly to (9)p5) by computing all possible
combinations of guards from the two transducers. While this method is not parsimo-
nious, it shows that any pair of symbolic DTop can be harmonized without any change
to their semantics by dividing their rules in small enough components.

We know that weak-origin equivalence is strictly weaker than origin equivalence. As
seen previously in Example 12, M and N are not origin-equivalent as the output node
at position 1 is of origin 1 for M and M, but 2 for N and N. However, this distinction
disappears with weak-origin equivalence, as the origin function of 1 in both M and N
is constant of image “a”: M and N are weak-origin—equivalent.

By definition, weak-origin equivalence is at least as strong as equivalence. We will
show that for harmonized symbolic DTop, both these notions are, in fact, identical.

Lemma 19. Two harmonized symbolic DTop are equivalent if and only if they are weak-origin—
equivalent.

Proof. Since weak-origin equivalence assumes equivalence, we only have to prove that
two equivalent symbolic DTor are necessarily weak-origin—equivalent.

Let M, N be two equivalent symbolic DTopr, and suppose they are not weak-origin—
equivalent. There is a tree t € dom([M]), and a node A of [M](t) such that p is its
origin node for M and a different node p’ is its origin node for N. Furthermore, one of
its origin functions (we pick f its origin function for M, and ¢ its origin guard) is not
constant. Since f is not constant we can replace the label at position pin t from a € ¢
to another a’ € ¢ such that f(a) # f(a’). By replacing only the label of p in t we thus
build another tree t’. Since M and N are harmonized, N uses the same guard ¢ as M to
read the input label at u: thus this substitution bears no incidence on the rules used to
compute [N](t’). The label of A in [M](t’) changed from f(a) to f(a’). However, since
the label of p’ has not changed in the input, the label of A has not changed in [N](t’).
This means [M](t’) # [N](t’), which contradicts the equivalence of M and N. O

5.4 An Origin-Aware Reduction

We extend the reduction of 5.1 to include enough origin information to translate
weak-origin equivalence. As we have seen previously, the origin of an output node
is relevant if and only if a change of input label yields a change in output labels. To
reduce this property to a finite signature, we create two distinct input labels for each
guard ¢, which will produce one of two distinct output labels for each non-constant
function f. First, we create for each guard two distinct labels by placing, on each input
node, a bit: the representations of an input tree t € J(X) becomes

alti,...,tn) = {(g,b)(ur,...,un) | beB, ugety,¥i} € T(Z xB), (29)

which is as before with the addition of bits b, called obit (origin bit). Any of these bits
can be set at 0 or 1, leading to several representations for each tree of T7(X). To encode
origin, this bit is carried over to the output by the rules of M, but only when a change
of input labels yields a change in output labels. Accordingly, the representation of a
label transformation f restricted to ¢, with obit b is redefined as

flob = -
—= (flo, b)

and the representation of a rule r € RU S, of the form v = q(@(x1,...,xn)) — t,is
given by the set 1 of all classical rules

if (@) ={c}, and

. (30)
otherwise,

q{(p, D) (X1, ...y xn)) = t[f < flo,b | f€F], (31)
forallbeB, p € o.
Consider the effect of this change on Example 13: we now have
M] > “c”%,0 > fidl“c"s, 0 , (32)
“a”x, 1 “a”x,0 fid|“a"*)/] &"a”*, 0
whereas
INl 5“0 o fulea0 (33)

/N

a’*,1 “a”%,0 fial“as, 0 figl“a”s, 1
and thus, properly, [M] # [N].

A convenient way of thinking about obits is to envision the input trees where a single
label bears a 1 as obit; then the set of output labels bearing a 1 as obit is exactly the set
of nodes which have that input node as origin. For instance, in Figure 2, two output

Fig. 2. Using obits to deduce origins. We represent the obits with colours: o are nodes of obit
0, are nodes of obit 1. We apply two transformations T, and T, on an input tree (here in the
middle): T; replaces its right leaf by a copy of the left one, while T, replaces its left leaf by a
copy of the right one. Visually, “turning on” an obit in the input makes it possible to visualise all
output nodes that depend upon it.

nodes share the same origin. Of course, we do not always store the origin information:
in Example 12, we would still store only the constant, and discard information about
both the transformation and the origin, thus avoiding a false negative.

This construction leads naturally to some interesting properties between M and M,
notably that the domains and origins are properly translated.

Lemma 20. Let M be a symbolic DTor and M its representation.

< dOITl[[MH = UtEdom[[M]] t
o for every s € t, if wis the origin of A in M, then . is the origin of A in M.

The fact that M translates the functioning of M in a finite signature means that we

can now reduce the equivalence problem in symbolic DTor to the equivalence problem
in DTor.

Theorem 21. Let M, N be two symbolic DTor. Then [M] = [N] if and only if [M] = [N].

Proof. First, by Lemma 20, the domain of M is the set of all the representations of trees
of dom([M]). Hence M and N are of same domain if and only if M and N are of same
domain.

Let us now assume that the domains of M and N are the same. We suppose they are
harmonized, as described under Definition 18, by cutting all guards into the fragments
described in (9)ps).-

Suppose M and N are not equivalent; let t be an input tree such that u = [M](t) #
[N](t) = v. We consider a position A that exists both in u and v but where the label at A
differs in u and v. In M the origin node of A is y; the origin function is f|e. In N the
origin node of A is p’; the origin function is gly.

If u = p' and fle = gly, there would not be a difference between the labels of wand v
at position A. Hence of of these equalities must not hold. Another point worth noting is
that since the labels of u and v at position A differ, then f|, and gly cannot be constant
functions of same image.

If u # p', ie. if the origins of A are different for M and N, then they also are for
M and N for any s € t by Lemma 20. We choose an s whose label at p is (¢, 0) and

whose label at i’ is (1, 1). Then the label at A in [M](s) is f|¢, 0 while the label at A in
[N](s) is gy, 1. The only way both of these labels could be the same despite the obit
difference would be for f|, and gly to be constant of same image, which we know to
be in contradiction with our suppositions. Hence in this case [M] # [N].

If flo # gly, i.e. if the origin functions of A are different for M and N, then for any
s € t the label at A in [M](s) is of form f|e, b with some b € {0, 1}, while the label at A
in [N](s) is of form gly, b’ with some b’ € {0, 1}. The only way both these labels could
be the same despite the function difference would be for fle and gl to be constant
functions of same image, which is again in contradiction with our suppositions. Hence
in this case [M] # [N].

Conversely, suppose M and N are not equivalent; let s be an input tree such that
u’ = [M](s) # [N](s) = v'. We consider a position A that exists both in u’ and v’
but where the label at A differs in u’ and v’. In M the origin node of A is p, and in N
the origin node of A is p’. Thus, p and p’ are also the origin node of A in M and N
respectively for all t such that s € t. As we did previously, we first note that the labels
at position A in u’ and v/ cannot be the same constant c.

If w# p/, then in M and N, for an input tree t such that s € t, the origins of A are
different, and the origin functions are not both constants of same image, as the labels at
position A in u” and v’ cannot be the same constant c. This means that M and N are not
weak-origin—equivalent, and thus, by Lemma 19, not equivalent.

If u = p/, then the label at A in 1’ and v’ are representations of different functions
fle # gly. Since M and N are supposed harmonised, we know that ¢ = 1. This means
that for f|e and gly to be different, there must exist at least one value a € ¢ such that
f(a) # g(a). We pick a tree t such that s € t and the label at p in t is labeled a. The node
at position A in [M](t) is labeled f(a), while the node at position A in [N](t) is labeled
g(a). Hence [M] # [N]. m|

Corollary 22. Under the equivalence-testing assumptions, the equivalence problem for symbolic
DTor is decidable.

Proof. Under the equivalence-testing assumptions, the construction of the representa-
tion is effective; thus computing the representations and testing their equivalence is an
algorithm, as equivalence is decidable for DTop. O

6 Algorithmic Complexity

In this part we study the exact complexity of the algorithm to test equivalence that
Corollary 22 points out. Two main points are relevant. First, we note that since our
reduction involves a potentially exponential number of various operations related
to the equivalence-testing assumptions (computing intersections, deciding function
equivalence), their complexity plays an important part in how efficiently symbolic

DTor equivalence can be tested. Second, as previously mentioned, the number of such
operations can be made more parsimonious than the method we present in (9) ps): while
the worst case scenario inevitably requires an exponential number of intersections,
negations, and emptiness tests on ®, we do not need to build all guards a. Such a
construction would only combine all the guards a node can actually encounter in a
given symbolic DTop: if a position A can never be read by a rule of guard ¢, we do not
care know whether its label satisfies ¢, even if @ is otherwise used in the transducer.
This construction would be an adaptation of the constuction of the domain automaton
of a DTor or the construction of a compatible DTor as presented in Lemma 39 and
Proposition 62 of [2].

Corollary 23. Under the equivalence-testing assumptions above, the equivalence problem for
symbolic DTop is reducible to the equivalence problem on DTop, in ExeTIME in the worst case,
plus, at worst, an exponential number of operations in ®© and F.

We note that some realistic cases are more reasonable than this theoretical bound.
In the case where guards are all disjoint, the reduction to DTor actually requires a
polynomial number of operations in ® and J. In practice, it can be expected that few
intersections actually need to be computed.

In any case, we can express the number of states and rules in M and N independently
of ® and F: the states are unchanged, and the number of rules increases, at worst,
exponentially:

Lemma 24. For M, N two symbolic DTop, their DTop representations M and N are DTop
with an exponential number of rules and the same number of states.

Since the problem of DTor equivalence is NExpTiMmE [14], a naive approach to
calculating the complexity of symbolic DTor equivalence would yield a 2NExpTimME
algorithm, plus an exponential number of operations in ® and J. However, upon finer
analysis, the complexity of DTopr equivalence is tied to the height of a counter-example
between two non-equivalent transducers. This height is, in the worst case scenario,
exponential in the number of states in the studied DTor. Since representations do not
create new states, the height of the counter-examples is unchanged, and the exponentials
do not compound.

Theorem 25. The equivalence problem for symbolic DTop is in NExeT1ME, plus, at worst, an
exponential number of operations in ®© and J.

7 Extension to symbolic DTor®

We want to extend our results from symbolic DTor to the wider class of symbolic
DTor with regular lookahead (symbolic DTorR). A symbolic DTor® is a pair of a
symbolic DTor and its symbolic Drta lookahead, straight-forwardly extending classical

DTor® [9] to the symbolic case. Note that this is different from an inspection; a DTopR,
whether symbolic or not, has access to the lookahead states in its rules, while a DTor
with inspection does not. This means that if (M, A) is a symbolic DTorR describing a
transformation of T5, and A has a set of states Q, then M works on an input signature
X x Q.

The class of symbolic DTop® is relevant for several reasons. The first is that it is
more expressive than the class of symbolic DTor with inspection, and subsumes
other relevant classes, such as single-valued symbolic DTor [21,20]. It also possesses
interesting properties. Notably, just as it was the case for DTor®, the class of symbolic
DTor® is closed under composition.

We want to study the equivalence problem of symbolic DTorR. For DTop, the addition
of a regular lookahead does not prevent the equivalence problem from being decidable,
as it is polynomially reduced to equivalence on plain DTop (see [18]). This result can be
carried over to the symbolic case, with the same method: annotating the input trees of
both symbolic DTor with the states of both lookaheads.

Lemma 26. One can polynomially reduce the equivalence problem of symbolic DTop® to the
equivalence problem of symbolic DTop with inspection.

Proof. We follow the same method as in the DTor case: if N = (M, A)and N’ = (M/; A’)
are two symbolic DTorR. we want to annotate the trees with the information of both A
and A’, then test the equivalence of M and M’ on those trees. The first step is to ensure
that the annotation is the combination of the annotation by A and A’. This can be done
by creating a new lookahead A" that is the cartesian product of A and A’.

As a technical note, the domain of all trees annotated by A" is regular, but not
necessarily recognized by a Drra. This is a problem, since the equivalence test we
produce in this paper for symbolic DTor (as well as the preexisting equivalence test for
DTor) requires a domain recognized by a Drta. This issue is easily fixed by changing
the way A" annotates the input trees: if the information stored at each node is not
only the state that A” reaches but also the rule it uses to do so, then the domain of all
annotated trees becomes recognizable by a Drra.

Finally, testing the equivalence of N and N’ is exactly testing the equivalence of M
and M’ on all trees annotated by A”; note that restricting a symbolic DTor M to the
domain of a Drta A" is a simple matter of taking the cartesian product between the
states of M and A"]

We can note that all the steps of this reduction (computing the product of both
lookaheads, switching from state to rule annotations, adapting M and M’ to work
on the proper domain) are polynomial, which makes the reduction from symbolic
DTorR equivalence to symbolic DTor equivalence polynomial. This reduction can be
combined with our previous results (Cor. 23 and Thm. 25) to provide the following
complexity results:

Corollary 27. Under the equivalence-testing assumptions above, the equivalence problem for
symbolic DTorR is reducible to the equivalence problem on DTop, in ExpTiME in the worst
case, plus, at worst, an exponential number of operations in O and F.

Theorem 28. Under the equivalence-testing assumptions, the equivalence problem for symbolic
DTorR is decidable in NExeT1me, plus, at worst, an exponential number of operations in @
and F.

This result is quite useful, as several DTop classes are fragments of the class of
DTorR. Notably, any DBup, nondeterministic functional Top, or extended DTopr can
be constructively expressed as DTor®. Most of those inclusions stand in the symbolic
case. The notable exception is extended symbolic DTor: the fact that such transducers
can do multi-level pattern matching allows them to manipulate input labels in a way
symbolic DTorR cannot (e.g. switching the labels of parent and child nodes). However,
symbolic DBur and nondeterministic symbolic functional Topr can be expressed as
symbolic DTopR.

Corollary 29. Under the equivalence-testing assumptions, the equivalence problem for de-
terministic symbolic bottom-up tree transducers and nondeterministic symbolic functional
top-down tree transducers is decidable.

8 Conclusion

The algorithm presented here provides a novel approach to deciding equivalence
for symbolic DTop, and supports non-linear symbolic DTop, by reduction to DTor
equivalence. Note that decidability of equivalence for DTorR [18] works in a comparable
way: rather than finding a normal form, the two regular lookaheads are “harmonized”
into one, then the problem is reduced to DTor equivalence. The methods presented in
this paper also apply to symbolic DTor® without a critical jump in complexity.

Our method does not involve the computation of a normal form, which is a rather
classical technique to decide transducer equivalence [4, 12], with applications to learning.
It is interesting to see if normal forms could be defined for symbolic DTop. This looks
challenging, however, as it seems more general than finding normal forms for DTorR,
which remains an open problem.

A first possible extension of our model would be to allow the lookahead to have
registers, i.e. to memorize some data from the bottom of the tree to annotate the upper
part of the tree with it. Under reasonable restrictions, it is likely that we might adapt
our methods to reduce the equivalence problem for these objects to the same problem
on DTorR, thus providing a decidability result.

Furthermore, we would like to find out whether this kind of reduction can be applied
to more general classes of transducers such as macro tree transducers (with linear size
increase), for which equivalence is decidable [11]. If so, then the decidability results

can fairly easily be lifted to symbolic generalisations of the class, at the cost of a few
exponential blowups in complexity.

As a final mention, the inversion problem is interesting for symbolic transformations
on words and trees, and is relevant to the applications we consider.

References

1. B. S. Baker. Composition of top-down and bottom-up tree transductions. Information and
Control, 41(2):186-213, 1979.

2. A. Boiret. Normalization and Learning of Transducers on Trees and Words. PhD thesis, Lille
University, France, 2016.

3. M. Bojariczyk. Transducers with origin information. In ICALP 2014, volume 8573 of LNCS,
pages 26-37. Springer, 2014.

4. C. Choffrut. Minimizing subsequential transducers: a survey. Theor. Comput. Sci., 292(1):131-
143, 2003.

5. H. Comon, M. Dauchet, R. Gilleron, C. Loding, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. Available on: http://www.grappa.
univ-1ille3. fr/tata, 2007. release October, 12th 2007.

6. C.C. Elgot and J. E. Mezei. On relations defined by generalized finite automata. IBM J. Res.
Dev., 9(1):47-68, Jan. 1965.

7.]. Engelfriet. Bottom-up and top-down tree transformations - A comparison. Mathematical
Systems Theory, 9(3):198-231, 1975.

8. J. Engelfriet. Top-down tree transducers with regular look-ahead. Mathematical systems
theory, 10(1):289-303, 1976.

9. J. Engelfriet. Top-down tree transducers with regular look-ahead. Mathematical Systems
Theory, 10:289-303, 1977.

10. J. Engelfriet. Some open questions and recent results on tree transducers and tree languages.
pages 241-286. Academic Press, 1980.

11.]J. Engelfriet and S. Maneth. Macro tree translations of linear size increase are MSO definable.
SIAM]. Comput., 32(4):950-1006, 2003.

12.].Engelfriet, S. Maneth, and H. Seidl. Deciding equivalence of top-down XML transformations
in polynomial time. J. Comput. Syst. Sci., 75(5):271-286, 2009.

13. J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. Syst. Sci., 31(1):71-146, 1985.

14. Z. Esik. On functional tree transducers. In FCT, pages 121-127, 1979.

15. Z. Esik. Decidability results concerning tree transducers II. Acta Cybern., 6(3):303-314, 1983.

16. Z. Fulop and H. Vogler. Forward and backward application of symbolic tree transducers.
Acta Inf., 51(5):297-325, 2014.

17. A.Lemay,S. Maneth, and J. Niehren. A learning algorithm for top-down XML transformations.
In PODS, pages 285-296. ACM, 2010.

18. S.Maneth. Equivalence problems for tree transducers: A brief survey. In Z. Esik and Z. Fiilop,
editors, AFL, volume 151 of EPTCS, pages 74-93, 2014.

19. H. Seidl, S. Maneth, and G. Kemper. Equivalence of deterministic top-down tree-to-string
transducers is decidable. In FOCS, pages 943-962, 2015.

20. M. Veanes and N. Bjerner. Foundations of finite symbolic tree transducers. EATCS, 105:141-
173, 2011.

21. M. Veanes and N. Bjerner. Symbolic tree transducers. In PSI, volume 7162 of LNCS, pages
377-393. Springer, 2011.

