
SAT-Based Automated Completion
for Reachability Analysis

Yohan Boichut1, Vincent Hugot12, Adrien Boiret12
1 LIFO, UR 4022 – Université d’Orléans
yohan.boichut@univ-orleans.fr

2 INSA Centre Val de Loire
first.last@insa-cvl.fr

Abstract. Reachability analysis in rewriting has served as a verification technique in recent decades, despite the underlying issue
being undecidable. Regular tree model-checking has found application in verifying security protocols, Java programs, and concurrent
systems. The premise in these approaches is to represent the targeted system as a state system and encode its transitions using a term
rewriting system or a tree transducer. The crucial aspect lies in calculating a fixed point that represents the set of configurations or
states that can be reached. While this is generally uncomputable, it is sufficient to compute an overapproximation for the purpose of
verifying safety properties.
Let A, B, and R represent, respectively, an initial set of terms, a set of forbidden (“bad”) terms, and a term rewriting system. The
question is whether there exists a regular approximation A⋆ of the set of reachable terms such that A⋆

⊇ R∗(A) and A⋆ ∩ B = ∅.
Finding suitable approximations requires, in practice, the use of heuristics, steered towards an anticipated conclusive fixed point by
the intervention of human domain experts. The parameters upon which they act may take the form of term equations, normalizing
rules, predicate abstractions, etc, but in all cases boil down to carefully choosing states to merge during the fixpoint computation,
forcing convergence while avoiding overshooting the approximation into B.
We propose a practical, scalable automated method offloading that expert work to a SAT solver.

1 Introduction

Over the past few decades, the verification of critical systems has been the subject
of intense study. Various formal methods, such as model-checking, symbolic
model-checking, and theorem proving, have been applied extensively.

Theorem proving techniques often rely on human interaction to prove safety prop-
erties. For finite state systems, model-checking has been successfully employed,
with its main limitation being the size of the state space. However, verifying infi-
nite state systems using symbolic and regular model-checking poses challenges for
automatic verification. The overarching issue of system verification is undecidable.
In regular model-checking [18], the problem of system verification is transformed
into a reachability problem within term rewriting or term transduction.

Given two tree automata (TA) A and B, representing respectively the initial and
the forbidden languages, and a TRS R, the tree automata completion algorithm strives
to generate a TAA⋆ of language closed under R and not containing any forbidden
term. It does this by adding new rules and states to A. There is no guarantee of
termination, however.

Consider the TRS R composed of a single rule f(x) → f(a(x)) and a TA A that
accepts only the ground term f(⊥). Then A⋆ must accept all terms of the form
f(a∗(⊥)). While this language is regular, without expert intervention to guide the
reuse or merging of new states during the computation of A⋆, it would diverge,
adding a new state to recognize each term f(an(⊥)) (cf. Example 18[p5]).

The key parameter which the expert must manipulate can be conceptualized as
an equational theory. In practice, it may take various forms, including priority
transitions & approximation rules [15], approximation functions [8], sets of term
equations, e.g. a(x) = x [9, 11], etc. These approaches have shown effectiveness in
verifying security protocols, Java programs or functional programs ([13, 4, 5, 12]).

Automating this technique has been a challenging pursuit that has motivated
us for several years. While some solutions have been explored in [1], they are
specific to certain application fields, such as security protocols. Other solutions
presented in [12] focus on verifying safety properties of higher-order functions.
One significant limitation of [12] is that the term rewriting system must be
terminating.

The workshop paper [2] made an initial attempt to automate the reachability
problem in its broadest sense: given A,B,R as above, can mergings of states be
computed for A such that the resulting language both avoids forbidden terms
and is closed under R? This was automated by converting the question into a
WS1S formula and feeding it to the MONA [19] solver. The key limitations of [2]
are that the language of Bmust be finite, and that the approach did not scale at
all: the cutoff point was ∼20 variables.

This paper expands on [2]: we greatly simplify the formalisation — correcting
various errors in the process — and remove the key limitation. On the practical
side, we target classical propositional logic to leverage the power of SAT solvers,
which are highly optimised. As we shall see, this pays off in the experimental
results.

Section 2 fixes definitions and notations regarding tree automata and rewriting.
Section 3 presents a characterisation of conclusive approximations in propositional
logic. In Section 4 integrates the method in the completion process. Section 5
analyses complexity and experimental results.

2 Notations and reminders about tree automata

Given a set S and an equivalence relation ≈ on S, we write S/≈ the quotient set
(set of equivalence classes), and [x]≈ or [x] the equivalence class of x ∈ S in S
wrt. ≈.

Let X be a finite set of variables and Σ a finite ranked alphabet, where the arity
of each symbol f ∈ Σ is denoted by ar(f). The set of terms built from Σ and X is
denoted by T(Σ,X). The set of ground terms (without variables) is written T(Σ).
The notions of position, and substitution are defined as usual.

For a term t ∈ T(Σ,X), X(t) is the set of variables appearing in t, P(t) is the
set of positions of t, as words of J0, nK∗. Thus, a term is seen as a function
t ∈ (P(t) → Σ ∪ X). It is linear if each variable of X(t) appears at exactly one
position.

A rewrite rule is a pair of terms, written l → r, such that X(l) ⊇ X(r) and
l < X. It is left- (resp. right-)linear if l (resp. r) is linear, and just linear if it is
both left- and right-linear. A term rewriting system (TRS) R is a finite set of
rewrite rules. It is left- (resp. right-)linear if all its rules are. It induces a rewrite
relation →R on T(Σ), whose reflexive and transitive closure is written →∗

R. We let
R∗(L) = { v | u ∈ L ∧ u→∗

R v }.

Let Q be a countably infinite set of elements called states, all of arity 0, and such
that X, Q, and Σ are all pairwise disjoint. A configuration is a (ground) term
c ∈ T(Σ ∪ Q). A transition is a rewrite rule c → q ∈ T(Σ ∪ Q) × Q; it is normal
if either c ∈ Q (in which case it is an ε-transition) or c = f(q1, . . . , qn), with
qk ∈ Q, ∀k.

Definition 1. A nondeterministic bottom-up tree automaton (TA) A is a tuple
⟨Σ,Q, F, ∆⟩, where Σ is a ranked alphabet,Q ⊆ Q is a set of states, F ⊆ Q is a set of
final states, and ∆ ⊆ T(Σ,Q)×Q is a set of normal transitions. It is ε-free if it has
no ε-transition, which we shall safely assume whenever convenient [6, p23].

Given a state q ∈ Q, its language in A is defined as JqKA = { t ∈ T(Σ) | t→∗
∆ q }.

We write JqK when A is clear from context. The language of A is JAK =
⋃
q∈FJqK.

We often write →A for →∆. The synchronised product of two TA, A × B, is
defined as usual [6, p30].

By convention, any TA A will be assumed to be defined as above. We employ
object-like notations: e.g. B.Q is the set of states ofB, andB = ⟨Σ := f(Σ), Q := . . . ⟩
defines a new automaton whose alphabet is a function of Σ (meaning A.Σ in
context, given the definition of A above), etc. We can define a new automaton
from another, keeping most attributes implicitly unaltered, but automatically
updating them if needed; for instance, B = A⟨∆ := ∆ ∪ { f(p) → q }⟩ defines B to
be the same as A, but with the addition of rule f(p) → q. It is thus shorthand for
B = ⟨Σ := Σ,Q := Q ∪ {p, q }, F := F, ∆ := ∆ ∪ { f(p) → q }⟩.
Given a TA A and a TRS R, a critical pair is a tuple (σ, l, r, q) (c) where σ : X→ Q

is a substitution and l→ r ∈ R is a rewrite rule, such that there is a state qwith
σ l→∗

A q and σ r ̸→∗
A q. We denote by Crit

R,A the set of critical pairs:

Crit
R,A =

{
(σ, l, r, q)

∣∣ l→ r ∈ R, σ l→∗
A q, σ r ̸→∗

A q
}

. (Crit
R,A)

(c) This is usually presented as the pair (σ l, σ r), hence the name “critical pair”.

A is said to be acritical (wrt. R) if there are no critical pairs. If so, A is also
complete, that is to say R∗(JAK) ⊆ JAK. The converse is not true.

A completion step consists in solving all critical pairs by adding transitions – in
dotted line – such that
σ l σ r

q

∗A

R

A

∗
.

3 SAT solving for overapproximations

LetA and B be TA and R a TRS. HereA can be the initial language, or may already
be extended by one or several steps of completion. In any case, the pivotal issue
is testing R∗(JAK) ∩ JBK = ∅. While this question is undecidable, a well-chosen
over-approximation of R∗(JAK) can suffice to conclude. In this section, we give a
logical characterisation of whether such an approximation can be obtained purely
by merging states of A— and, if so, how.

Definition 2. Given a TA A and an equivalence relation ≈ on Q, which we call
simply an approximation, the quotient automaton A/≈ is defined as usual:

A/≈ =

〈
Σ :=Σ Q := Q/≈ F :=

{
[q]≈

∣∣ q ∈ F}
∆ :=

{
f(. . . [qi]≈ . . .) → [q]≈

∣∣∣ f(. . . qi . . .) → q ∈ ∆
}〉 (1)

Note that we have obviously JAK ⊆ JA/≈K, for any A and ≈.

Definition 3. Given TA A,B and a TRS R, an approximation ≈ is acritical if A/≈
has no critical pair (which implies that it is also complete: R∗(JAK) ⊆ JA/≈K) and
suitable if JA/≈K ∩ JBK = ∅. It is conclusive if it is both acritical and suitable.

Problem 4 (States Merging). Given TA A,B and a left-linear (d) TRS R, find (if it
exists) a conclusive approximation ≈, or prove its non-existence.

In all that follows, A, B, and R are defined as in Problem 4.

We reduce that problem to SAT by building a formula of propositional logic
whose valuation describes ≈. The relevant variables of that formula are V =
{p ≈ q | p, q,∈ Q }. We call such a formula φ an approximation formula.

The semantics of approximation formulæ are defined as usual:
JφK =

{
V

∣∣ V |= φ
}

. (2)
A valuation V defines a relation relV (V is an underlying valuation of relV):

relV =
{
(p, q)

∣∣ V(p ≈ q) = ⊤
}

. (3)
(d) This the usual restriction for TA completion. See [14, Sec. 4.4.1] for a discussion.

Thus, a formula φ defines a set of relations:
{|φ|} =

{
relV

∣∣ V ∈ JφK
}

. (4)
Now we need to ensure that those relations are (1) approximations that are (2)
suitable and (3) acritical.

To ensure that those atoms of the form “p ≈ q” do indeed describe an equiva-
lence relation, and therefore an approximation, we start by enforcing reflexivity,
symmetry, and transitivity.

Definition 5 (φe). We denote by φe
A, or simply φe, the equivalence formula

defined as:
φe
A =

∧
p∈Q

p ≈ p ∧
∧
p,q∈Q
p<q

p ≈ q⇔ q ≈ p ∧
∧

p,q,r∈Q
p,q,r
p<r

(p ≈ q∧q ≈ r) ⇒ p ≈ r . (5)

The conditions p < q and p , q , r ∧ p < r in φe are trivial simplifications
that can be made without loss of generality given any arbitrary order on Q to
generate smaller formulæ. In the implementation, atoms p ≈ p are never actually
generated in any formula, but directly replaced by ⊤.

Proposition 6 (Equivalence). {|φe|} is the set of all approximations.

To enforce suitability, we translate, rather straightforwardly, the non-existence of
any accepting run for A× B.

Definition 7 (φs). Let P = A×B. We denote byφs
R,A,B, or simplyφs, the suitability

formula on variables P.Q ∪ V, defined as:

φs
R,A,B =

φs
l︷ ︸︸ ︷[

¬

∨
X∈P.F

X
]
∧

φs
r︷ ︸︸ ︷∧

(p,q)∈P.Q

[
(p, q) ⇐⇒

∨
f(...,(pi,qi),...)→(p ′,q)

∈P.∆

p ≈ p ′
∧

∧
i

(pi, qi)
]

(6)

The (p, q) variables are not relevant in the sense defined above, and we shall ignore
their valuation when extracting the approximation, but they serve as “scaffolding”
for the formula. Without them, this would be longer and much more difficult.
They are used only in φs.

Proposition 8 (Suitability). {|φe
∧φs|} is the set of all suitable approximations.

Proof. ⊆ suitable.
Let ≈ ∈ {|φe

∧φs|} ⊆ {|φe|}. By Proposition 6, it is an approximation. We show it is
suitable.

Let us start by showing that, if the state ([p]≈, q) is accessible in A/≈ × B then
the variable (p, q) is true in any underlying valuation; this is done by structural
induction on trees of J([p]≈, q)K.

⋄ Base case: t = a:
If a ∈ J([p]≈, q)K then a → [p]≈ ∈

A/≈.∆ and a → q ∈ B.∆, thus there exists p ′

such that p ′ ≈ p and a→ p ′
∈ A.∆. Therefore a→ (p ′, q) ∈ P.∆, and that rule

satisfies the disjunction on the rules of P.∆ of φs
r, which means that (p, q) is

true.
⋄ Inductive case: t = f(t1, . . . , tn):

If t ∈ J([p]≈, q)K then ∀i ∈ J1, nK we have pi, qi such that:
(1) f([p1]≈, . . . , [pn]≈) → [p]≈ ∈

A/≈.∆, (2) f(q1, . . . , qn) → q ∈ B.∆, (3) ti ∈ J([pi]≈, qi)K.
By the first point there must exist p ′, p ′

1, . . . , p
′
n such that p ′ ≈ p, all p ′

i ≈ pi,
and f(p ′

1, . . . , p
′
n) → p ′

∈ A.∆. Combined with f(q1, . . . , qn) → q ∈ B.∆, this
gives f

(
(p ′
1, q1), . . . , (p

′
n, qn)

)
→ (p ′, q) ∈ P.∆. By ti ∈ J([pi]≈, qi)K and p ′

i ≈ pi
we also have that ti ∈

q
([p ′

i]≈, qi)
y

, which by induction means that we can
assume (p ′

i, qi) to be true. The rule f((p ′
1, q1), . . . , (p

′
n, qn)) → (p ′, q) satisfies

the disjunction on rules of P.∆ and the truth of (p ′
i, qi) satisfies the conjunction

on i of φs
r, which means that (p, q) is true.

Now, by φs
l, no (p, q) ∈ P.F is true, so no ([p]≈, q) ∈ (

A/≈ × B).F can be accessible,
thus JA/≈K ∩ JBK = ∅, and ≈ is suitable.

⊇ suitable.
Let ≈ be a suitable approximation, let us show that ≈ ∈ {|φs|}. We’ll complete the
underlying valuation of ≈ so that (p, q) is true iff J([p]≈, q)K , ∅, and show this
satisfies φs.

First, φs
l. Since ≈ is suitable, we have JA/≈K ∩ JBK = ∅, thus there can be no

(p, q) ∈ (A× B).F such that J([p]≈, q)K , ∅. Hence, all states of P.F are set to false,
and φs is satisfied.

Second, φs
r. By our definition (p, q) is true iff there exists a term t = f(t1, . . . , tn) ∈

J([p]≈, q)K. This is to say that t is evaluated by rules of the form f(. . . , [pi]≈, . . .) →
[p]≈ ∈

A/≈.∆ and f(. . . , qi, . . .) → q ∈ B.∆. Equivalently, (1) there is a rule
f(. . . , (pi, qi), . . .) → (p ′, q) ∈ P.∆, (2) for all i, ti ∈ J([pi]≈, qi)K, which means
all (pi, qi) are set to true, and (3) p ′ ≈ p. Thus (p, q) is true iff the matching
disjunctive clause is true; φs

r is satisfied. □

There remains to enforce acriticality. We are going to translate “under the approx-
imation, there are no critical pairs”.

To do so, we need to compute under which approximations a term can be
evaluated (i.e. rewritten) into a given state; this will enable us to enforce, for all
rules l → r ∈ R, that if a term t matching l can be evaluated in q under some
approximation, then there exists a compatible approximation under which the
rewritten term can also be evaluated in q, thus enforcing acriticality.

For this, we shall implement a notion of unifiers, Utq, giving us suitable formulæ
and substitutions under which t evaluates in q.

Definition 9 (Unifier). Let t ∈ T(Σ,Q ∪ X) be a term linear in X, and let q ∈ Q. The
set of unifiers of t and q, written Utq, is defined as:

Utq =

{ (
⊤, {t 7→ q}

)}
if t ∈ X{ (

t ≈ q, ∅
)}

if t ∈ Q⋃
f(q1,...,qn)→p∈∆

{ (p ≈ q, ∅) } �
n⊗
k=1

Utkqk if t = f(t1, . . . , tn)

, (7)

where (φ,σ) � (ψ, ρ) = (φ ∧ψ, σ ∪ ρ), neutral element (⊤,∅), and
{ . . . , (φi, σi), . . . } � { . . . , (ψj, ρj), . . . } = { . . . , (φi, σi) � (ψj, ρj), . . . } . (8)

Note that left-linearity of R justifies the functionality of σ ∪ ρ.

It may seem a bit unprincipled to have Utq operate “modulo ≈” in all cases but
t ∈ X. A more natural definition would certainly be

{ (
p ≈ q, {t 7→ p}

) ∣∣ p ∈ Q}
.

We generally opted, for this paper, to favour simplicity and directness in the
formulæ and proofs over performance, and to reserve discussion of optimisations
to further works. This is the exception. The practical performance impact of that
single choice would be colossal, reducing the scope of the method by several
orders of magnitude in most cases. The cost of choosing the computationally
cheaper { (⊤, {t 7→ q}) } is paid in the remaining proofs: in many instances we
need to explicitly reason “modulo ≈”, because the unifier won’t do it for us. To
do that, given σ, σ ′ : X→ Q, we write σ ≈ σ ′ if ∀x, σ(x) ≈ σ ′(x).

We consider A/≈ for some given ≈. We extend the definition of [·]≈ from states of
Q to configurations T(Σ ∪Q) inductively: [f(t1, . . . , tn)]≈ = f([t1]≈, . . . , [tn]≈). Put
another way, [·]≈ lifts configurations of A to corresponding configurations of A /≈.
We write [·]≈ simply as [·], since ≈ is the same throughout our proofs.

We now offer a characterisation of unifiers.

Lemma 10 (Unifier characterisation). Let A/≈ be an ε-free quotient automaton, t a
term of T(Σ ∪Q,X) linear in X, and σ : X(t) → Q a substitution. Then [σt] →∗

A/≈ [q]

iff there exists (φ,σ ′) ∈ Utq such that ≈ ∈ {|φ|} and σ ′ ≈ σ.

Proof. This can be proven by induction on t.

Case t = p ∈ Q: We have σ = ∅ and [p] →∗
A/≈ [q] iff [p] = [q] iff p ≈ q. Since

Upq = { (t ≈ q, ∅) }, the equivalence holds.

Case t = x ∈ X: We have σ = { x 7→ p } for some state p, and by definition
Uxq = { (⊤, σ ′ := { x 7→ q }) }. Then [σt] = [p] →∗

A/≈ [q] iff p ≈ q iff σ ′ ≈ σ.

Case t = f(t1, . . . , tn): There are σi such that σt = f(. . . , σiti, . . .) and σ =⋃
σi — the functionality of σ is guaranteed by the linearity of t. We have

[σt] = f(. . . , [σiti], . . .) →∗
A/≈ [q] iff there exists q1, . . . , qn such that (1) for all i,

[σiti] →∗
A/≈ [qi] and (2) f(. . . , [qi]≈, . . .) → [q]≈ ∈

A/≈.∆ The latter condition can,
by definition of A/≈, be replaced by (2') ∃p : f(. . . , qi, . . .) → p ∈ ∆ ∧ p ≈ q.

By induction, [σiti] →∗
A/≈ [qi] iff ∃(φi, σ ′

i) ∈ U
ti
qi

: ≈ ∈ {|φi|} ∧ σ
′
i ≈ σi. Thus, by

definition of �, we can reformulate (1) as (1')∃(φ :=
∧
φi, σ

′ :=
⋃
σ ′
i) ∈

⊗n
i=1U

ti
qi
:

≈ ∈ {|φ|} ∧ σ ′ ≈ σ.

In the end, [σt] →∗
A/≈ [q] iff there exists a rule f(. . . , qi, . . .) → p ∈ ∆, σ ′ ≈ σ and

φ such that (φ,σ ′) ∈
⊗n

i=1U
ti
qi

and ≈ ∈ {|p ≈ q ∧φ|}, that is to say iff there exists
φ ′ such that (φ ′, σ) ∈ Utq. □

Definition 11 (φa). We denote by φa
R,A, or simply φa, the acriticality formula:

φa
R,A =

∧
l→r∈R
q∈Q

∧
(α,σ)∈Ul

q

[
α ⇒

∨
(β,∅)∈Urσ

q

β
]

(9)

Proposition 12 (Acriticality). {|φe
∧φa|} is the set of all acritical approximations.

Proof. Let ≈ ∈ {|φe
∧φa|}. By Prop. 6, it is an approximation, and Lemma 10 applies.

Since all configurations of A/≈ have representatives in A, the acriticality of A/≈
can be expressed as: for every rule l→ r ∈ R, state q ∈ Q, and substitution σ, if
[σl] →∗

A/≈
[q] then [σr] →∗

A/≈
[q].

By Lem 10, this means that for every l, r, q, σ, if there exists (α, σ ′) ∈ Ulq such that
σ ≈ σ ′, and ≈ ∈ {|α|}, then there exists (β,∅) ∈ Uσrq and ≈ ∈ {|β|}. Since σ ′ ≈ σ, we
have, by definition,Uσrq = Uσ

′r
q . We can wlog. quantify directly on the substitutions

actually occurring in the unifiers — here σ ′.

By simple reformulation of the quantifiers, this is equivalent to: for every rule
l → r ∈ R and state q ∈ Q (first conjunction of φa), for all (α, σ ′) ∈ Ulq (second
conjunction of φa), if ≈ satisfies α, then there exists β such that (β,∅) ∈ Uσ

′r
q , and

≈ satisfies β (inner disjunction of φa).

Hence, A/≈ is acritical iff ≈ ∈ {|φa|}. □

Definition 13. We denote by φR,A,B, or simply φ, the conclusiveness formula:

φR,A,B = φe
∧φs

∧φa (10)

Theorem 14 (Conclusiveness). {|φR,A,B|} is the set of all conclusive approximations.

4 The completion algorithm

Given a TA, we can now automatically find a suitable approximation of it by
feeding φ to a SAT solver. There remains to integrate this to the completion
algorithm.

Section 4.1 recalls the notions and fixes our notations for classical completion.
Section 4.2 discusses how to integrate our search for suitable approximations in a
completion process.

4.1 Reminders about classical completion

Given two TA A, B and a TRS R, the tree automata completion algorithm
introduced in [10] attempts to compute a fixpoint automaton A⋆ such that
R∗(JA⋆K) ⊆ JA⋆K and JA⋆K ∩ JBK = ∅. The search for A⋆ commences from A and
extends it with new states and rules to recognise more and more rewritten terms
via successive completion steps — cf. Eq. (Crit

R,A)[p2] and below. However, σrmay
be a term of arbitrary depth, and so the new rules σr→ qmust be normalised.

Definition 15 (Rule Normalisation). Let t→ q be a transition and Q ⊆ Q a set of
states. The normalisation of t→ q avoiding Q is written t→ q

Q and defined as:

f(t1, . . . , tn) → q
Q
=
{
f
(
t!
1, . . . , t

!
n

)
→ q

}
∪

n⋃
i=1

ti → t!
i

Q
(11)

p→ qQ = {p→ q }, ∀p , q ∈ Q (12)

q→ qQ = ∅, ∀q ∈ Q , (13)
where, for all i, t!

i = ti if ti ∈ Q, and otherwise t!
i is some fresh state from Q \Q.

The operation is extended to sets of rules in the obvious way.

Definition 16 (Completion operation). We denote by R∥(A) (e) the automaton
obtained from A by one step of completion wrt. R. It is defined as:

R∥(A) = A

〈
∆ := ∆ ∪

{
σ r→ q

∣∣ (σ, l, r, q) ∈ Crit
R,A

}Q
〉

. (14)

Definition 17 (Classical Completion Algorithm). Given TA A and a TRS R, we let

ΓR(A) =

{
A if Crit

R,A = ∅

ΓR
(
R∥(A)

)
otherwise.

(15)

The completion algorithm in this pure form will generally not terminate.

Example 18. Let R =
{
f(x) → f(a(x))

}
. Let A be a TA such that F = {qf} and

∆ =
{
⊥→ q⊥, f(q⊥) → qf

}
; we have JAK = { f(⊥) }. A first completion step is

(e) Intuitively, a completion step enables A to recognise all terms obtainable by applying any number of rules of R in parallel — and exactly those
terms if R is right-linear — hence the notation.

then performed as follow:

R∥(A) = A
〈
∆ := ∆ ∪ f(a(q⊥)) → qf

Q
〉

where f(a(q⊥)) → qf
Q
=
{
a(q⊥) → p0, f(p0) → qf

}
. Consequently, performing

a second completion step would lead to:

R∥(R∥(A)
)
= R∥(A)

〈
∆ := ∆ ∪ f(a(p0)) → qf

Q
〉
.

And so on ad infinitum.

This is where human intervention is required: during each completion step the
expert must notice such problems and suggest, for instance, to merge p0 and q⊥ in
R∥(A) (either directly or through more abstract tools; e.g. in [9] the expert would
give the equation a(x) = x) making R∥(A) acritical and yielding the expected
language f(a∗(⊥)) — which in this example happens to be R∗(JAK) exactly. Of
course the expert would also take care to avoid B; for instance merging qf with
the others is unsuitable if JBK = {⊥}.

Our goal is of course to automate this manual step, replacing the human expert
by a SAT solver.

4.2 Completion with automated state merging, and variants

The modified algorithm is basically the same as before, but the termination crite-
rion is not whether the automaton is acritical, but whether it can be conclusively
approximated.

Definition 19 (Automated Approximate Completion Semi-Algorithm). Given TA
A,B and a TRS R, we let

Γ aut
R,B(A) =

{
A/≈ if ≈ ∈ {|φR,A,B|}

Γ aut
R,B

(
R∥(A)

)
otherwise.

(16)

In cases where several conclusive approximations ≈ are available, we select one
arbitrarily. Whether ∃≈ ∈ {|φR,A,B|} is of course tested using a SAT solver. Some
obvious optimisations can be made — for instance, the “live-states” simplification:
starting from the first completion, there is no use trying to merge the states of the
original A directly, which shortens the formula a bit.

Let’s apply this to Example 18, for JBK = {⊥}, with live-states simplification in the
unifiers. We have, for φa, once all ⊤ and ⊥ are simplified away:

(p0 ≈ qf ⇒ ((p0 ≈ qf ∧ q⊥ ≈ p0) ∨ p0 ≈ qf))
∧ (p0 ≈ qf ⇒ ((p0 ≈ qf ∧ q⊥ ≈ p0 ∧ q⊥ ≈ p0) ∨ (p0 ≈ qf ∧ q⊥ ≈ p0)))

∧ ((q⊥ ≈ p0 ∧ q⊥ ≈ p0) ∨ q⊥ ≈ p0)

We also have φs = ¬⟨qf, p0⟩ ∧ ⟨q⊥, p0⟩ ∧ (⟨qf, p0⟩ ⇐⇒ qf ≈ q⊥)). Note that the
seemingly unconditional conjuncts come from ⊤⊥-simplifications, for instance
⟨q⊥, p0⟩ was originally ⟨q⊥, p0⟩ ⇔ (⊤ ∧ ⊤).

This gives us two possible solutions: q⊥ ≈ p0 and q⊥ ≈ p0 ≈ qf. Of these, only
the first is suitable.

The purpose of performing completion steps is the same as usual: the starting
automaton may lack the structure to capture R, regardless of approximation. In
Example 18, A could not at all handle the symbol a before completion. While we
think this is the most practical way of integrating State Merging into completion,
there are other ways to do so.

Whereas the classical approach involves expert intervention at each completion
step, performing mergings that carry on to the next step, (with possibility of
backtracking), this algorithm performs just one merge at the end. This is a good
heuristic, but is less general than the fully interactive approach in that, in some
cases, even if a conclusive approximation exists, we are not guaranteed to find it.
Consider

R =

{
f(x, y) → f

(
s(x), s(y)

)
, f

(
s(x), s(y)

)
→ f(x, y),

f
(
0, s(x)

)
→ a, f

(
s(x), 0

)
→ a,

}
. (17)

Let A be a TA such that JAK = { f(0, 0) }. Reachability analysis searches for, and
can theoretically reach [11], given the right expert choices for state mergings after
each completion step, any R-closed regular over-approximation L of JAK. We
know by [3] that in all cases, we must have a ∈ L. A valid example would be

L =
{
f
(
sn(0), sm(0)

) ∣∣∣ n,m ⩾ 0} ∪
{
a
}

. (18)

Yet, this language cannot be found by performing just one final state merging in a
fully automatic application of Def. 19, no matter how many completion steps are
done beforehand.

Indeed, since R is linear and we do not manually merge states at each step of
Def. 19, the completion by itself cannot introduce any approximation, but merely
adds rules to recognise, exactly, new terms of the form f

(
sn(0), sn(0)

)
ad infinitum,

exactly as in Ex. 18[p5].

Thus, at no point of the process can a state merging generate L, because rules
like f

(
0, s(x)

)
can never be evaluated by the automaton, and thus the automaton

cannot contain any transition of the form a→ q. Those can only be introduced
by solving a critical pair after a merging has made unbalanced terms recognisable,
which cannot occur in Def. 19.

Certainly, we could develop a semi-algorithm that alternates between rewriting
steps and state merging, testing all possibilities or backtracking when needed,
but this is impractical — equivalent to enumerating all TA.

An intermediate approach would be that of [2, Algo. 6.1]: not performing any
actual completion, instead adding at each step, for each l→ r ∈ R, normalised
rules { . . . , xi 7→ qi, . . . }r → q for fresh qi, q. This adds the necessary structure
to the automaton, leaving the task of actually making the fresh states reachable
to the State Merging problem. However, this can introduce a lot of redundant
structure, making the approach costly compared to the heuristic of Def. 19.

5 Complexity, implementation and tests

How scalable can this approach be in practice? Both φe and φs are clearly
polynomial (cubic and quadratic, respectively), so the critical question is the
behaviour of φa.

Proposition 20 (Worst-Case). |φa
R,A,B| = O

(
|Q|× |R|×N× |∆|N

)
, where N =

maxr∈R|r|.

Proof. The size of a rule is defined as |l→ r| = |l|+ |r|, and the size of an element
of unifier is defined a |(α, σ)| = |α|+ |σ|.

The size of each formula of Utq is exactly |t|, and
∣∣Utq∣∣ ⩽ |∆||t|.

It is easy to prove by induction: for t ∈ X and t ∈ q, Utq has one element of size 1.
For t = f(t1, . . . , tn), we say that for all rules f(q1, . . . , qn) → p ∈ ∆, Utq contains
the combinations by � of (p ≈ q,∅) and of one element of each Utiqi. The size
of each of these combinations is the sum of the size of its parts, that is to say
1+ |t1|+ · · ·+ |tn| = |t|. The number of these combinations is the product of the
sizes

∣∣Utiqi∣∣ ⩽ |∆||ti|. In total, each rule f(q1, . . . , qn) → p ∈ ∆ can add no more than
|∆||t1|+···+|tn| elements. Thus, the total number of elements in Utq is no greater than
|∆|× |∆||t1|+···+|tn| = |∆|

|t|.

From these bounds onUtq, we give an upper bound for the size ofφa (cf. Def. 11[p4]):

⋄ The disjunction on β is of size O
(
|r|× |∆||r|

)
⋄ The conjunction on α, σ is of size O

(
|l→ r|× |∆||l→r|

)
⋄ The size of the conjunction on q and l → r is the sum of the above for each

rule of R and state of Q. If let N be the size of the largest rule, we have
O(|Q|× |R|×N× |∆|N). □

To evaluate how SAT solvers deal with those inputs, we conducted various
experiments on a proof-of-concept (PoC) implementation of a State-Merging

solver (f). Our PoC is implemented in Python 3.11 and uses PySAT [17] to interface
with the CNF-SAT–solver backend, Minisat 2.2 [7]. All experiments were run on
the same machine: Arch Linux, 12-core AMD Ryzen 9 5900X, 32G RAM, Python
3.11.8. All tests were single-threaded.

Qualitatively, the PoC does, instantly, produce the right answers on our usual small
examples, such as f(x) → f(a(a(x))), f(x, y) → f(a(x), b(y)), etc. Quantitatively,
State Merging solving scales quite differently depending on which characteristic
of the input is considered, some having a linear impact and some an exponential
one, as predicted by Prp. 20. To observe that, we experiment on simple values of
A,B,R and graph the solution times and sizes in Figure 1 (mind that some scales
are log and some linear).

0 100 200 300 400 500 600 700 800
|A|

0

10

20

30

40

s

< tF
< tCNF
< tSolve
< tTot
> sF
> sCNF

0.0
0.5
1.0
1.5
2.0
2.5

1e7Formulae Computation Times & Sizes (tl)

(a) A = An grows, JBK = ∅, R = { f(x, y) → f(y, x) }

0 100 200 300 400 500 600 700 800
|A|

1.0
1.5
2.0
2.5
3.0
3.5

< sCNF / sF
< (sCNF / tCNF) / 1e6
> tTot / tSolve

5

10

15

Some Useful Ratios (tl)

(b) Same as 1a

0 10000 20000 30000 40000 50000 60000
|R|

0
1
2
3
4
5

s

< tF
< tCNF
< tSolve
< tTot
> sF
> sCNF

0

1

2

3

1e6Formulae Computation Times & Sizes (tl2_Rm)

(c) A = A2, |A2| = 22, JBK = ∅, R = Rn = { f(xi, yi) → f(yi, xi) | i ∈ J1, nK }

10 15 20 25 30 35
|R|

10 3

10 2

10 1

100

101

102

s

< tF
< tCNF
< tSolve
< tTot
> sF
> sCNF

103

104

105

106

107

108
Formulae Computation Times & Sizes (tl2_Rdepth)

(d) A = A2, JBK = ∅, R = R ′
n grows

Fig. 1: Some experimental results. <,> indicates whether the curve refers to the y-axis on the left or right. t=time, s=size, F=φ, CNF=φ
in CNF, tSolve=time spent in the SAT solver backend, tTot=total time to solution.

Our test automaton is in all cases An, recognising lists f(a1, f(a2, . . . f(ak,⊥) . . .),
ai ∈ J1, nK, using a separate non-deterministic state for each possible value of
leaves ai. A human being would undoubtedly write that TA in 2 states for any
n, but the curves are scarcely affected by the structure of A, so this is as good
an example as any. Fig. 1a shows a polynomial growth across all metrics (time
and size of φ), as |An| increases. For large formulæ, about 1/15th of the total time
is spent in the SAT-solver, by Fig. 1b (including time spent reading the Python
list-of-list-of-int structure containing the CNF clauses). The rest is spent
computing φ and converting it to Conjunctive Normal Form (CNF; we use the
linear Tseytin transformation). The ratios of Fig. 1b tell the same story regardless
(f) url: https://github.com/vincent-hugot/CIAA-2024-SAT-Completion.

of A,B,R. Our formulæ do not seem to be pathological cases for the solver; we
are mostly limited by how fast we can generate φ.

No graph is provided regarding the influence of B because there is not much
to discuss: |φs| is linear in |B|, and the tests bear that out. The effect of R is
more complicated. In terms of the number of rules, all metrics grow linearly,
viz. Fig. 1c. The size of the rules, however, has an exponential impact. Consider
Fig. 1d, where R ′

n = {f(0, f(0, . . . f(x, y) . . .)) → f(. . . f(f(y, x), 0) . . . , 0)} operates
on lists of length n – the results are the same with variables x1, . . . , xn instead of
constants.

The practicality of the approach is therefore highly dependent upon the form
of the TRS. In all cases, and even accounting for hardware differences, this is a
marked improvement compared to [2], whose own experiments could not exceed
|A| = 20.

Engineering considerations: A well-engineered implementation could vastly
outperform our PoC. Most of the time is spent doing formula manipulation
via structural pattern-matching; on a synthetic test on large formulæ, OCaml
outperforms Python on such tasks by a factor of 16.4. Furthermore, φ is naturally
a large conjunction of independent clauses which could trivially be generated
in parallel, fed to the solver incrementally, and discarded. On our 12-core CPU,
expecting a 10x time speedup is not unreasonable, and this would also immensely
reduce the maximum RAM necessary, decoupling it from the currentO(|φ|). Those
two improvements combined would probably yield a performance increase in
the vicinity of 150x on our machine, even if the SAT solver itself is still shared and
single-threaded, since it is very far from being the bottleneck. Since SAT-solving
can itself be parallelised to some extent using divide-and-conquer methods,
e.g. [16], massively parallel implementations are theoretically possible.

6 Conclusion and future works

In order to automate the steps of reachability analysis which require expert
intervention, we have introduced a SAT encoding of the state merging problem
(SMP): In: TA A,B, and TRS R; Out: ≈ such that A/≈ is closed wrt. R and does not
intersect B. We have presented various ways to integrate SAT-backed SMP solving
into completion algorithms to perform reachability analysis. Our experiments
and complexity analysis show that, for relatively flat TRS, the method can be
applied to fairly large instances and is potentially quite scalable wrt. available
computing power. Its main limitation is the exponential impact of large, deep
rewrite rules.

Future works: our main focus is of course to overcome that limitation. An
interesting idea involves changing our proxy criterion for “completeness wrt. R”
from acriticality to something more permissive, involving partial orderings on
states instead of partitioning, such that applying a rewriting rule always leads to
a “weaker” state, rather than an equivalent one. As this constraint is strictly easier
to satisfy, this would allow not only for our algorithm to find solutions for more
instances, but also for solutions to potentially be found with fewer completion
steps. The impact of this change is difficult to gauge a priori, but as it loads more
work on the highly optimized SAT-solvers and potentially lessens the number of
iterations before a solution is reached, we can hope for a performance increase.

From a different angle, any applicable TRS-flattening technique would enable us
to blunt the impact of the largest rules.

References

1. Y. Boichut, R. Courbis, P.-C. Héam, and O. Kouchnarenko. Finer is Better: Abstraction Refinement for Rewriting Approximations. In RTA,
volume 5117 of LNCS, pages 48–62. Springer, 2008.

2. Y. Boichut, Th.-B.-H. Dao, and V. Murat. Characterizing conclusive approximations by logical formulae. In RP 2011, Genoa, LNCS, 2011.
3. Y. Boichut and P.-C. Héam. A Theoretical Limit for Safety Verification Techniques with Regular Fix-point Computations. IPL, 108(1):1–2, 2008.
4. Y. Boichut, P.-C. Héam, and O. Kouchnarenko. Approximation-based tree regular model-checking. Nord. J. Comput., 14(3):216–241, 2008.
5. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular (Tree) Model Checking. STTT, 14(2):167–191, 2012.
6. H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tommasi. Tree Automata Techniques and Applications (TATA), 2007.
7. Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT 2003, pages 502–518. Springer, 2003.
8. Guillaume Feuillade, Thomas Genet, and Valérie Viet Triem Tong. Reachability analysis over term rewriting systems. J. Autom. Reason.,

33(3-4):341–383, 2004.
9. T. Genet and V. Rusu. Equational Tree Automata Completion. Journal of Symbolic Computation,, vol. 45, 2010, 2010.

10. Th. Genet. Decidable Approximations of Sets of Descendants and Sets of Normal Forms. In RTA, volume 1379 of LNCS, pages 151–165.
Springer-Verlag, 1998.

11. Th. Genet. Completeness of tree automata completion. In FSCD 2018, volume 108 of LIPIcs, pages 16:1–16:20, 2018.
12. Th. Genet, T. Haudebourg, and Th. P. Jensen. Verifying higher-order functions with tree automata. In FOSSACS 2018, LNCS, 2018.
13. Th. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In CADE, volume 1831 of LNAI, pages 271–290. Springer-Verlag, 2000.
14. Thomas Genet. Reachability analysis of rewriting for software verification. Habilitation thesis (habilitation à diriger des recherches), University of

Rennes I, 2009.
15. Thomas Genet and Valérie Viet Triem Tong. Reachability analysis of term rewriting systems with timbuk. In LPAR 2001, LNCS, 2001.
16. Marijn JH Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer: Guiding cdcl sat solvers by lookaheads. In HVC, 2011.
17. Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit for prototyping with SAT oracles. In SAT, pages 428–437,

2018.
18. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with rich ssertional languages. In CAV ’97, LNCS, 1997.
19. Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual, January 2001. Notes Series NS-01-1. Available from
http://www.brics.dk/mona/.

