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Tree Automata
[Comon et al., 2008a]

Introduced in the fifties; regular tree languages:

model-checking: programs, protocols,. . .
automated theorem-proving
XML schema and (esp. variants) query languages
. . . and so much more

Doesn’t deal with comparisons and non-linearity:

{ f(u, u) | u ∈ T(Σ) } e.g. password verification
{ f(u, v) | u, v ∈ T(Σ), u 6= v } e.g. primary keys
R(`), ` regular, R a TRS e.g. {g(x)→ f(x, x) }(T(A))
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Tree Automata
Bottom-Up, Non-Deterministic, Finite

Tree Automaton A = 〈A,Q, F,∆〉 :

A finite ranked alphabet
Q finite set of states
F final states, F ⊆ Q
∆ finite set of transitions

Transition r ∈ ∆ :

σ(q1, . . . , qn)→ q σ ∈ An q1, . . . , qn, q ∈ Q
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Tree Automata
Bottom-Up, Non-Deterministic, Finite

A = {∧,∨/2,¬/1,>,⊥/0 }, Q = {q0, q1 }, F = {q1}, ∆ ={
>→ q1, ⊥→ q0, ¬(qb)→ q¬b
∧(qb, qb ′)→ qb∧b ′ , ∨(qb, qb ′)→ qb∨b ′

∣∣∣∣ b, b ′ ∈ { 0, 1 }}

t = ∧

∨

¬

⊥

⊥

¬

∧

>⊥
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Tree Automata
Runs and Languages

The reduction t→∗∆ q1 is captured by the run:

q1

q1

q1

q0

q0

q1

q0

q1q0

decorated: ε ∧ q1

2 ∨ q1

22 ¬ q1

221 ⊥ q0

21 ⊥ q0

1 ¬ q1

11 ∧ q0

112 > q1111 ⊥ q0
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

TAGE, TA=, Positive TAGED, A = 〈A,Q, F,∆,u〉 :

〈A,Q, F,∆〉 vanilla tree automaton ta(A)
u equality constraints, u ⊆ Q2

Constraint puq :

run ρ of A on t:
run of ta(A) on t
satisfying u: ∀α,β ∈ P(t); ρ(α)uρ(β)⇒ t|α = t|β

accepting run: accepting for ta(A)
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Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A = {a/0, f/2 }, Q = {q, q̂, qf }, F = {qf }, q̂u q̂, and

∆ = { f(q̂, q̂)→ qf, f(q, q)→ q, f(q, q)→ q̂, a→ q, a→ q̂ }

u = f

f

aa

f

aa

and v = f

af

aa

TAGE+ with Bounded Constraints Vincent HUGOT FORWAL 8/27



Introduction Expressivity Membership Rigidification Emptiness Finiteness Conclusions Appendix

Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A = {a/0, f/2 }, Q = {q, q̂, qf }, F = {qf }, q̂u q̂, and

∆ = { f(q̂, q̂)→ qf, f(q, q)→ q, f(q, q)→ q̂, a→ q, a→ q̂ }

u, ρu = f qf

f q̂

a qa q

f q̂

a qa q

and v = f

af

aa

TAGE+ with Bounded Constraints Vincent HUGOT FORWAL 8/27



Introduction Expressivity Membership Rigidification Emptiness Finiteness Conclusions Appendix

Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A = {a/0, f/2 }, Q = {q, q̂, qf }, F = {qf }, q̂u q̂, and

∆ = { f(q̂, q̂)→ qf, f(q, q)→ q, f(q, q)→ q̂, a→ q, a→ q̂ }

u = f

f

aa

f

aa

and v, ρv = f qf

a q̂f q̂

a qa q

TAGE+ with Bounded Constraints Vincent HUGOT FORWAL 8/27



Introduction Expressivity Membership Rigidification Emptiness Finiteness Conclusions Appendix

Tree Automata
With Global Equality Constraints [Filiot et al., 2008]

A = {∧,∨/2,¬/1,>,⊥/0 } ] X, Q = {q0, q1 } ] { vx | x ∈ X } and
F = {q1}, new rules >→ vx, ⊥→ vx, x(q0, vx)→ q1,

x(vx, q1)→ q0 for each x ∈ X, vxu vx.

(x ∧ y) ∨ ¬x ≡ ∨

¬

x

>⊥

∧

y

>⊥

x

>⊥
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TA versus RTA versus TA=

Closure, Complexity and Decidability

TA RTA (pup) TA=

∪ PTime PTime PTime
∩ PTime ExpTime ExpTime
¬ ExpTime ∅ ∅

t ∈ L(A) ? PTime NP-c NP-c (a)
L(A) = ∅ ? linear-time linear-time ExpTime-c
|L(A)| ∈ N ? PTime PTime ExpTime-c

L(A) = T(Σ) ? ExpTime-c undecidable undecidable
L(A) ⊆ L(B) ? ExpTime-c undecidable undecidable
L(
⋂
iAi) = ∅ ? ExpTime-c ExpTime-c ExpTime-c

(a)SAT solver approach: [Héam et al., 2010].
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TA= versus TA=
k

Restriction on the kind of constraints ⇒ lower complexity (RTA)

Restriction on the number of constraints ⇒ ?

TA=
k A = 〈Σ,Q, F,∆,u〉 :

〈Σ,Q, F,∆,u〉 TA= A

u such that Card(u) 6 k

Expressive power?

TA = TA=
0 ⊂ TA=

1 ⊂ · · · ⊂ TA=
k ⊂ TA=

k+1 ⊂ · · · ⊂ TA= =
⋃
k∈N

TA=
k

so ∀k > 0, L(TA=
k ) ⊆ L

(
TA=
k+1

)
. Are the inclusions strict? Up

to some rank? Is there a k ∈ N such that L(TA=
k ) = L(TA=)?
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Expressive Power
The Separation Languages L = (`k)k∈N [Hugot, 2013]

k⊎
i=1

Ai ] {σ/3,⊥/0 } Ai = {ai, bi/0, fi, gi/2 }

`0 = {⊥} ∀k > 1, `k = {σ(u, u, tk−1) | u ∈ T(Ak), tk−1 ∈ `k−1 }

σ

σ

σ

⊥ ,u1u1

uk−1uk−1

ukuk

ui ∈ T(Ai) ∀i
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Expressive Power
The Separation Languages L = (`k)k∈N [Hugot, 2013]

σ

σ

σ

⊥ ,u1u1

uk−1uk−1

ukuk

ui ∈ T(Ai) ∀i

`1 ∈ L(TA=
1 ) \ L(TA) ≈ ground instances of f(x, x).

`k ∈ L(TA=
k ) \ L(TA=

k−1), ∀k > 1.
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Expressive Power
Show `k ∈ L(TA=

k ) \ L(TA=
k−1) [Hugot, 2013]

Show `k ∈ L(TA=
k): Ak ∈ TA=

k such that L(Ak) = `k

Ui ∈ TA universal, Ui :F =
{
qui
}
, for all i. Ak is

Q = {qv0} ]
k⊎
i=1

Ui :Q ] {qvi} F = {qv1} qui uqui , ∀i ∈ J1, kK

∆ =
{
σ(qui , q

u
i , q

v
i−1)→ qvi

∣∣ i ∈ J1, kK} ∪ {⊥→ qv0 } .
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Expressive Power
Show `k ∈ L(TA=

k ) \ L(TA=
k−1) [Hugot, 2013]

Show `k /∈ L(TA=
k−1):

active constrained states:

acs ρ = { ρ(α) | α ∈ P(ρ),∃β ∈ P(ρ) \ {α} : ρ(α)u ρ(β) }
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Expressive Power
Show `k ∈ L(TA=

k ) \ L(TA=
k−1) [Hugot, 2013]

Show `k /∈ L(TA=
k−1):

Assume `k ∈ L(TA=
k−1) i.e. ∃A ∈ TA=

k−1 : L(A) = `k

∀ρ, @α,β : α 6= β,α ∈ 3∗, ρ(α)u ρ(β)
Pick t ∈ `k such that

∣∣t|α∣∣ > |Q|, for all α ∈ 3∗(1+ 2)
∀α ∈ 3∗(1+ 2), ran ρ|α ∩ acs ρ 6= ∅
Each pair of ui needs its own fresh state(s) piuqi
A does not exist, contradiction.
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∣∣t|α∣∣ > |Q|, for all α ∈ 3∗(1+ 2)
Suppose ∃α ∈ 3∗(1+ 2) such that ran ρ|α ∩ acs ρ = ∅. A acts
as BUTA wrt. t|α; pump ρ|α, get t ′ /∈ `k, but t ′ ∈ L(A).

Each pair of ui needs its own fresh state(s) piuqi
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The Membership Problem
General Idea & Strategy

Membership complexity : t ∈ L(A) ?

NP-complete for TA=

PTime for TA=
k , ∀k ∈ N

Proof Strategy :
Choose each P ⊆ domu = {p | ∃q : puq or qup }
Given P, turn u into an equivalence relation �P
Try all possible “housings” of the u-classes into t
For each housing, try to build an accepting run

TAGE+ with Bounded Constraints Vincent HUGOT FORWAL 14/27
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u is Not an Equivalence
(but we can pretend it is)

Example: Given pu r and ruq, what of puq ?

Does r actually appear in the run ?

yes : puq implied
no : pu r and ruq are moot.

Fix P ⊆ domu. Any run ρ such that (ranρ)∩ (domu) = P
is accepting for A iff it is so for

AP = *A | u :=
(
u∩P2

)≡
+ ,

symmetric, transitive, reflexive closure under dom(u∩P2).

TAGE+ with Bounded Constraints Vincent HUGOT FORWAL 15/27
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Groups & Similarity Classes

Groups GP : set of u-equivalence classes (given P)

GP = dom(u∩P2)
(u∩P2)≡

= dom(u∩P2)
�P

Similarity Classes St of t :

∀α,β ∈ P(t); α ∼ β ⇐⇒ t|α = t|β
classes St = P(t)/∼

TAGE+ with Bounded Constraints Vincent HUGOT FORWAL 16/27
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Housings
And Their Compatibility with the Constraints

Characterisation of Satisfaction of u :

∀G ∈ GP; ∃CG ∈ St : ρ−1(G) ⊆ CG

Housings HtP of P within t :

The map G 7→ CG is a P-housing of ρ in t, compatible with ρ

HtP = GP → St

is the set of all possible P-housings on t.

TAGE+ with Bounded Constraints Vincent HUGOT FORWAL 17/27
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GP St←− h ∈ HtP −→

G1 = {p, q }

G2 = { r, s, t }

G3 = {qx}

Gn

...

CG1

CG2

CG1

CGn

•

• •

CG3
• • • •

• • • • • • • •

TAGE+ with Bounded Constraints Vincent HUGOT FORWAL 18/27



Introduction Expressivity Membership Rigidification Emptiness Finiteness Conclusions Appendix

Proof Outline
For TA=

k

Operations Needed :
Choose P: 22k possible P ⊆ domu
Choose housing:

∣∣StGP ∣∣ = |St|
|GP| 6 ‖t‖2k P-housings on t

⇒ 4k · ‖t‖2k tests in total

# polynomial compatibility test = variant of reachability

Is a final state reachable if states q ∈ P can only go in h([q]�P)?

TAGE+ with Bounded Constraints Vincent HUGOT FORWAL 19/27
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Compatibility Test
In Polynomial Time

Simple variant of reachability algorithm:

Given P and h ∈ HtP, there exists a compatible run iff

ΦP,ht (ε) ∩ F 6= ∅ ,

where

ΦP,ht (α) =

q ∈ Q
∣∣∣∣∣∣∣∣
t(α)(p1, . . . , pn)→ q ∈ ∆

∀i ∈ J1, nK, pi ∈ ΦP,ht (α.i)
q ∈

⋃
GP =⇒ α ∈ h([q]�P)

q /∈ dom(u) \ P

 .
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Rigidification
Problem : Given TA= A, build equivalent RTA B.

General Result [Filiot, 2008, Lem. 5.3.5]

Exponential construction: ‖B‖ 6 O(2‖A‖2)

In the case of TA=
1 :

Polynomial construction: ‖B‖ 6 O(‖A‖2)

Idea : Simulate a constraint puq, p 6= q by a TA intersection
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Rigidification: Construction

B = B¬p ]B¬q ] *A | Q′, ∆′, qfuqf+

B¬p = *A | Q \ {p}+ B¬q = *A | Q \ {q}+

Q ′ = (Q \ {p, q}) ] (Bpq :Q) ∆ ′ = ∆qf
pq ] (Bpq :∆)

Bpq = Bp �Bq qf = (p, q)

Bp = *B¬q | F := {p}, ∆ := ∆p+ Bq = *B¬p | F := {q}, ∆ := ∆q+
∆p = B¬q :∆ \ { . . . p . . .→ . . . } ∆q = B¬p :∆ \ { . . . q . . .→ . . . }

∆
qf
pq is A :∆ from which all left-hand side occurrences of p or q

have been replaced by qf.
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Emptiness
Outline of the Result and Proof

Complexity of Emptiness : L(A) = ∅ ?

PTime (quadratic) for TA=
1

ExpTime-complete for TA=
k , k > 2

TA=
1 : immediate by rigidification. Emptiness for RTA: linear time

TA=
2 : Reduction of intersection-emptiness of n TA A1, . . . ,An.

Generalisation of the usual argument [Filiot et al., 2008, Thm. 1]
from “unlimited constraints” to “two constraints”
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L = ∅ ⇐⇒
n⋂
i=1

L(Ai) = ∅

σ

σ
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u3

. . . σ

un−1
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. . . σ
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Figure: Reduction of intersection-emptiness: the language.

where ∀i, xi ∈ L(Ai) and x = xi
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Finiteness
Outline of the Result and Proof

Complexity of Finiteness : |L(A)| ∈ N ?

PTime for TA=
1

ExpTime-complete for TA=
k , k > 2

TA=
1 : immediate by rigidification. Finiteness for RTA is PTime

TA=
2 : Reduction of Emptiness for TA=

2 .
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Finiteness
Outline of the Result and Proof

A ′ = *A | Q ] {p}, F := {p}, Σ ] {σ/1}, ∆
′+

where ∆ ′ = ∆ ∪ {σ(qf)→ p | qf ∈ F } ∪ {σ(p)→ p }

if L(A) = ∅ then L(A ′) = ∅
if t ∈ L(A) then σ+(t) ⊆ L(A ′)

L(A ′) is finite ⇐⇒ L(A) is empty
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Summary
and Perspectives

Refined complexity and expressiveness results:

Expressiveness: TA=
k form a strict hierarchy

Membership: NP-c for TA=, but PTime for TA=
k , ∀k

Emptiness: quadratic for TA=
1 , ExpTime-complete for TA=

2

Finiteness: PTime for TA=
1 , ExpTime-complete for TA=

2

Left to do:

Effects of 6u, flat constraints, efficient heuristics, etcetera.
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Tree Automata With Constraints
Brief survey: [Hugot, 2013]

Positional constraints:
TALEDC [Mongy, 1981]: local equality and disequality
constraints. f(q1, q2, q3)[13u 2, 12 6u 13]→ q.

TAPLEDC [Comon et al., 2008a, Chap. 4, as AWEDC]:
propositional extension. C := βuγ | β 6uγ | C ∧ C | ¬C.
TABB [Bogaert and Tison, 1992]: restriction to constraints
between brothers: β{u, 6u }γ such that |β| = |γ| = 1.
RA [Dauchet et al., 1995]: bounds equality constraints along
any leaf-to-root path of execution.
GRA [Caron et al., 1994]: relaxes RA, but only where
constraints between brothers are involved.
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Tree Automata With Constraints
Brief survey: [Hugot, 2013]

Global constraints:
TAGED [Filiot et al., 2008, Filiot et al., 2010, Filiot, 2008].

RTA [Jacquemard et al., 2009, Jacquemard et al., 2011,
Vacher, 2010]: rigid states quq.
Parick+E, NParick+EDB [Barguñó et al., 2010]:∑
q∈Q

aq|q| > b or
∑
q∈Q

aq‖q‖ > b with aq, b ∈ Z,∀q ∈ Q .

DAGA [Charatonik, 1999]: equivalent to TAGD.
TA1M [Comon and Cortier, 2005, Comon et al., 2008b]: one
tree memory generalises pushdown automata.
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