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Tree Walking Automata
Old formalism (≈1970, Aho & Ullman)
Sequential model, as opposed to branching tree automata
Less extensively studied model for a long while. . .
. . . but long standing questions solved in recent years
Recent surge in interest, due mostly to connection to XML
(Fragments of Core XPath, streaming etc)

Research focused on fundamental problems (expressiveness. . . )
Our focus: practical, efficient algorithms
Finality: efficient XML queries; compact Model-Checking

Starting Point:
Transformation from TWA to BUTA
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Preliminaries
Definition of Tree Walking Automata

A Tree-Walking Automaton is a tuple A = 〈Σ,Q, I,F ,∆〉

∆ ⊆ Σ× Q × { ?, 0 , 1 }︸ ︷︷ ︸
T : types

× {↑,			,↙,↘}︸ ︷︷ ︸
M : moves

×Q

Notations
“〈f , p, τ → µ, q〉” for the tuple (f , p, τ, µ, q) ∈ ∆.
〈Σ2, p,T→ 			, q〉

def
= { (σ, p, τ,			, q) | σ ∈ Σ2, τ ∈ T }

Remarks
Ranked (binary) vs. unranked alphabet
〈Σ0,Q,T→ {↙,↘},Q〉 ∪ 〈Σ,Q, ?→ ↑,Q〉 invalid
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Preliminaries
Example Tree Walking Automaton

A Very Simple TWA: X = 〈Σ,Q, I,F ,∆〉
Σ0 = { a, b, c } and Σ2 = { f , g , h }
Q = { q`, qu }, I = {q`}, F = {qu}

∆ = 〈a, q`, { ?, 0 } →			, qu〉
∪ 〈Σ, qu, 0 → ↑, qu〉

∪ 〈Σ2, q`, { ?, 0 } → ↙, q`〉

X accepts exactly all trees whose left-most leaf is labelled by a —
and the tree a itself.

4/24 CIAA’11 Vincent HUGOT Loops & Overloops for TWA



Preliminaries
Example Tree Walking Automaton
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Given a TWA A, build an equivalent BUTA B.

Known solution outlined in the literature
[Bojańczyk, Samuelides]
Based on the idea of tree loops
Resulting states for B: T× 2Q2 (or det. (2Q2

)T)

Only proof sketches. No explicit algorithm is given.
We argue that things are slightly less straightforward:

Needed states space: Σ× T× 2Q2 (or det. Σ× (2Q2
)T)

Because of this, some existing implementations are only almost
correct [dtwa-tools]

We introduce tree overloops
This time we really have T× 2Q2 (or det. (2Q2

)T)
Lower upper bound if A is deterministic: |T| · 2|Q| log2(|Q|+1)
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The Idea of Tree Loops

(p, q) ∈ Q2 is a loop of A on t|α if there exists a run which starts
in p, ends in q (at the root α), and always stays in the subtree.

f

h

a b

a

Loops of X on. . .
t: {}
t|0: {}
t|0.0: {}
t|0.1: {}
t|1: {}
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Computing Tree Loops
Simple Loops, Computation for Leaves

A loop is a simple loop on t|α if there is a run which forms it and
reaches α exactly twice (simple looping run).

Proposition: Loops Decomposition
If S ⊆ Q2 is the set of all simple loops of A on a given subtree
u = t|α, then S∗ is the set of all loops of A on u.

We denote fτ(u) the set of all loops of A on a subtree u, where τ
is the type of the root of u. Compute loops on u = a ∈ Σ0.

Simple looping run: run of the form (ε, p)� (ε, q) only.

Hτ
σ

def
= { (p, q) | 〈σ, p, τ → 			, q〉 ∈ ∆ } .

So we have fτ(a) = (Hτ
a )∗.
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Computing Tree Loops
Computation for Inner Nodes

Let f ∈ Σ2, and u = f (u0 , u1 ); root of type τ . Compute fτ(u).

First Move of a Simple Looping Run
↑ — impossible: leaves the subtree u
			 — all computed in Hτ

f
↙ — (ε, p), (0, p0 ), (β1, s1), . . . , (βn, sn), (0, q0 ), (ε, q),
with all βk E 0. So (p0 , q0 ) ∈ f0(u0 ).
↘ —(ε, p), (1, p1 ), (β1, s1), . . . , (βn, sn), (1, q1 ), (ε, q),
with all βk E 1. So (p1 , q1 ) ∈ f1(u1 ).

9/24 CIAA’11 Vincent HUGOT Loops & Overloops for TWA



Computing Tree Loops
Computation for Inner Nodes

Let f ∈ Σ2, and u = f (u0 , u1 ); root of type τ . Compute fτ(u).

First Move of a Simple Looping Run
↙ — (ε, p), (0, p0 ), (β1, s1), . . . , (βn, sn), (0, q0 ), (ε, q),
with all βk E 0. So (p0 , q0 ) ∈ f0(u0 ).

To build a simple loop (p, q) on the subtree u, we need to. . .
1 choose a side: θ ∈ S def

= { 0 , 1 }
2 find an existing loop on that side: (pθ, qθ) ∈ fθ(uθ)
3 such that one can connect beginning and end

1 〈f , p, τ → χ(θ), pθ〉 ∈ ∆a and
2 〈uθ(ε), qθ, θ → ↑, q〉 ∈ ∆

aχ(·) : S→ {↙,↘} such that χ(0) =↙ and χ(1) =↘.
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Computing Tree Loops
Overview of the Computation

Loops on Leaves
Let a ∈ Σ0, we have fτ(a) = (Hτ

a )∗.

Loops on Inner Nodes
Let f ∈ Σ2, and u = f (u0 , u1 ); root of type τ . We have fτ(u) =Hτ

f ∪

 (p, q)

∣∣∣∣∣∣ ∃θ ∈ S :
∃(pθ, qθ) ∈ fθ(uθ)

:
〈f , p, τ → χ(θ), pθ〉 ∈ ∆

and
〈uθ(ε), qθ, θ → ↑, q〉 ∈ ∆


∗
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Transformation Into BUTA
Using Loops

Transformation Into BUTA Using Loops
0 Input: A TWA A = 〈Σ,Q, I,F ,∆〉
1 Initialise States and Rules to ∅
2 for each a ∈ Σ0, τ ∈ T do

let P = (a, τ,Hτ
a
∗)

add a→ P to Rules and P to States
3 repeat until Rules remain unchanged

for each f ∈ Σ2, τ ∈ T do
add every f (P0 ,P1 )→ P to Rules and P to States where
P0 ,P1 ∈ States such that P0 = (σ0 , 0 , S0 ) and
P1 = (σ1 , 1 ,S1 ) and P = (f , τ, (Hτ

f ∪ S)∗),
with S the set of simple loops built on the sons.

4 Output: A BUTA B equivalent to A:
B = 〈Σ, States, { (σ, ?, L) ∈ States | L ∩ (I × F ) 6= ∅ } ,Rules〉
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Transformation Into BUTA
Using Loops

add every f (P0 ,P1 )→ P to Rules and P to States
where P0 ,P1 ∈ States such that

P0 = (σ0 , 0 ,S0 ) and P1 = (σ1 , 1 ,S1 )

and P = (f , τ, (Hτ
f ∪ S)∗),

with S the set of simple loops built on the sons.

Set of Simple Loops Built on the Sons

S =

 (p, q)

∣∣∣∣∣∣∣
∃θ ∈ S :

∃(pθ, qθ) ∈ Sθ
st.
〈f , p, τ → χ(θ), pθ〉 ∈ ∆

and
〈σθ, qθ, θ → ↑, q〉 ∈ ∆


The son’s symbol is needed to close the end of the loop.
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Transformation Into BUTA
Using Loops

Important Remark
In the construction, sets of loops cannot be considered
independently from the symbol they are rooted in.

Counter-Example
Consider a, b ∈ Σ0, f ∈ Σ2, with only the transitions

〈{ a, b } , p, θ → 			, q〉 ∪
{
〈b, q, θ → ↑, s ′〉, 〈f , s, τ → χ(θ), p〉

}
⊆ ∆

Then fθ(a) = fθ(b) = {(p, q)}∗, but fτ(f (a, a)) 6= fτ(f (b, b)).

Thus the loops-based construction has Σ× T× 2Q2 instead of only
T× 2Q2 states (storing the symbol).
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From Tree Loops to Tree Overloops
Advantages and Definition

Tree Overloops: slight alteration of the notion of tree loop.

Advantages wrt. Transformation Into Buta

Straightforward T× 2Q2 instead of Σ× T× 2Q2 states
DTWA A: smaller |T| · 2|Q| log2(|Q|+1) upper bound on states
2 to 100 times smaller BUTA in average (random tests)

(p, q) ∈ Q2 is an overloop of A on t|α if there exists a run which
starts in p, ends in q at the parent of the root α, and always stays
in the subtree, except for the last configuration.

Parent of ε is ε. A TWA A must be escaped into
A′ =

〈
Σ, Q ] {X} , I,F , ∆ ] 〈Σ,F , ?→ ↑,X〉

〉
.
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From Tree Loops to Tree Overloops
Computing Tree Overloops

Idea: Compute loops, then check for ↑-transitions

Definition: Up-Closure
Let L ⊆ Q2, τ ∈ T and σ ∈ Σ:

Uτσ[L]
def
=
{

(p, q)
∣∣ ∃p′ : (p, p′) ∈ L and 〈σ, p′, τ → ↑, q〉 ∈ ∆

}
.

Theorem: Up-Closure
Let A be a TWA. If L is the set of all loops of A on a subtree
u = t|α, then U

\α
t(α)[L] is the set of all overloops of A on u.
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From Tree Loops to Tree Overloops
Computing Tree Overloops

Overloops on Leaves
Let a ∈ Σ0, we have f↑τ(a) = Uτa [Hτ

a
∗].

Overloops on Inner Nodes
Let f ∈ Σ2, and u = f (u0 , u1 ); root of type τ . To build a loop
(p, qθ) on a subtree, we need to. . .

1 choose a side: θ ∈ S def
= { 0 , 1 }

2 find an existing overloop on that side: (pθ, qθ) ∈ f↑θ(uθ)
3 such that one can connect the beginning:

1 〈f , p, τ → χ(θ), pθ〉 ∈ ∆a

2 unlike loops, the end is already conected!
aχ(·) : S→ {↙,↘} such that χ(0) =↙ and χ(1) =↘.
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From Tree Loops to Tree Overloops
Computing Tree Overloops
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a
∗].

Overloops on Inner Nodes
Let f ∈ Σ2, and u = f (u0 , u1 ); root of type τ . We have f↑τ(u) =

Uτf

[(
Hτ

f ∪
{

(p, qθ)

∣∣∣∣∣ ∃θ ∈ S :
∃pθ ∈ Q :

〈f , p, τ → χ(θ), pθ〉 ∈ ∆
and (pθ, qθ) ∈ f↑θ(uθ)

})∗]
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Transformation Into BUTA
Using Overloops

Transformation Into BUTA Using Overloops
Almost the same the the loops-based version, but:

1 We compute sets of overloops instead of loops
2 Symbols are not stored in the states (not needed): thus

Σ× T× 2Q2 becomes T× 2Q2 again.
3 Final states are

{ (?,O) ∈ States | O ∩ (I × {X}) 6= ∅ }

Acceptance criterion: Final Loops & Overloops
A term t is accepted iff

fτ(t) ∩ I × F 6= ∅
f↑τ(t) ∩ I × {X} 6= ∅ (because of
A′ =

〈
Σ, Q ] {X} , I,F , ∆ ] 〈Σ,F , ?→ ↑,X〉

〉
)
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Transformation Into BUTA in the Deterministic Case

Deterministic TWA: Definition
A TWA A = 〈Σ,Q, I,F ,∆〉 is deterministic (ie. a DTWA) ifa for
all σ ∈ Σ, p ∈ Q, τ ∈ T, |〈σ, p, τ →M,Q〉 ∩∆| 6 1.

aWe do not need the usual, stronger definition, where I is a singleton.

Theorem: Deterministic Upper-Bound
In general, the overloops-based BUTA B has |T| × 2|Q|2 states.
However, it has at most |T| · 2|Q| log2(|Q|+1) states if A is a DTWA.

Proof Idea (Full Proof in Appendix)
Sets of overloops on a given subterm are functional (ie.
right-unique). Each computed state stores the set of overloops on a
given subterm; thus there are at most |Q + 1||Q| of them, as
opposed to 2|Q|2 in the general case.
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Transformation Into BUTA in the Deterministic Case

Deterministic TWA: Definition
A TWA A = 〈Σ,Q, I,F ,∆〉 is deterministic (ie. a DTWA) ifa for
all σ ∈ Σ, p ∈ Q, τ ∈ T, |〈σ, p, τ →M,Q〉 ∩∆| 6 1.

aWe do not need the usual, stronger definition, where I is a singleton.
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An Overloops-Based Polynomial Approximation
Introduction

Testing emptiness of a TWA is an ExpTime-complete problem.
Practical problems:

XML Queries
Satisfiability of some XPath fragments
But also model-checking. . .

Standard approach: tranform into BUTA, then test emptiness. We
propose another approach:

An “over-approximation”; may detect emptiness
Executes in polynomial time and space
Very (surprisingly) accurate in our random tests
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An Overloops-Based Polynomial Approximation
The Algorithm

Over-Approximation of the Emptiness Problem, Using Overloops
0 Input: An escaped TWA A = 〈Σ,Q, I,F ,∆〉
1 Initialise L0 , L1 , L? to ∅
2 for each a ∈ Σ0, τ ∈ T do

Lτ ← Lτ ∪ Uτ
a [Hτ

a
∗]

3 repeat until L0 , L1 , L? remain unchanged
for each f ∈ Σ2, τ ∈ T do

Lτ ← Lτ ∪ Uτ
f [(H

τ
f ∪ S)∗]

with S the set of simple loops built on L0 and L1 .
4 Output: Empty if L? ∩ (I × {X}) = ∅, else Unknown
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An Overloops-Based Polynomial Approximation
The Algorithm

S the set of simple loops built on L0 and L1 .

Set of Simple Loops Built on the Sons (From Overloops)

S =

{
(p, qθ)

∣∣∣∣∣ ∃θ ∈ S :
∃pθ ∈ Q

∣∣∣∣∣ 〈f , p, τ → χ(θ), pθ〉 ∈ ∆
and (pθ, qθ) ∈ Lθ

}
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An Overloops-Based Polynomial Approximation
Discussion

Approach can be made coarser or finer: from a variant with no
type information (ie. L = L0 ∪ L1 ∪ L?) to someting
equivalent to transformation to BUTA
The presented variant is polynomial in time and space
Astonishing accuracy in random tests: Out of ≈ 20 000 TWA
(2 6 |Q| 6 20), 75% of which had empty languages, only two
Unknown instead of Empty.

Caveat
Our generation scheme was simplistic. Trivial instances? More tests
to be made using uniform generation scheme.
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Conclusion and Perspectives

What We Have Seen
Two TWA Membership algorithms (loops & overloops)
Two transformations from TWA into BUTA (idem)
Overloops-based BUTA have expected states
Overloops-based BUTA smaller (2 to 100 times. . . )
DTWA: Lower upper-bound on BUTA states with overloops
Approximation: polynomial, accurate in random tests

What Is Left To Do
Test approximation with uniform DTWA generation scheme
Characterise classes of TWA using overloops (det. etc)
Significant size reductions on TWA (optimise queries etc)
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Transformation Into BUTA
Using Overloops

Transformation Into BUTA Using Overloops
0 Input: An escaped TWA A = 〈Σ,Q, I,F ,∆〉
1 Initialise States and Rules to ∅
2 for each a ∈ Σ0, τ ∈ T do

let P = (τ,Uτ
a [Hτ

a
∗])

add a→ P to Rules and P to States
3 repeat until Rules remain unchanged

for each f ∈ Σ2, τ ∈ T do
add every f (P0 ,P1 )→ P to Rules and P to States where
P0 ,P1 ∈ States such that P0 = (0 , S0 ) and P1 = (1 , S1 ) and
P = (τ,Uτ

f [(H
τ
f ∪ S)∗]), with S the set of simple loops built

on the sons.

4 Output: A BUTA B equivalent to A: B =
〈Σ,States, { (?,O) ∈ States | O ∩ (I × {X}) 6= ∅ } ,Rules〉
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Transformation Into BUTA
Using Overloops

add every f (P0 ,P1 )→ P to Rules and P to States
where P0 ,P1 ∈ States such that

P0 = (0 , S0 ) and P1 = (1 ,S1 )

and P = (τ,Uτf [(Hτ
f ∪ S)∗]),

with S the set of simple loops built on the sons.

Set of Simple Loops Built on the Sons (From Overloops)

S =

{
(p, qθ)

∣∣∣∣∣ ∃θ ∈ S :
∃pθ ∈ Q st. 〈f , p, τ → χ(θ), pθ〉 ∈ ∆

and (pθ, qθ) ∈ Sθ

}

No need to store the son’s symbol anywhere.
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Transformation Into BUTA in the Deterministic Case

Theorem: Deterministic Upper-Bound
In general, the overloops-based BUTA B has |T| × 2|Q|2 states.
However, it has at most |T| · 2|Q| log2(|Q|+1) states if A is a DTWA.

A TWA A = 〈Σ,Q, I,F ,∆〉 is deterministic (ie. a DTWA) ifa for
all σ ∈ Σ, p ∈ Q, τ ∈ T, |〈σ, p, τ →M,Q〉 ∩∆| 6 1.

A relation R ⊆ Q2 is functional (or right-unique, or a partial
function) if, for all p, q, q′ ∈ Q, pRq and pRq′ =⇒ q = q′.

There are 2|Q|2 binary relations on Q, of which |Q + 1||Q| are partial
functions, of which |Q||Q| are total functions.

If a relation R is functional, then so is Rk , for any k ∈ N.
aWe do not need the usual, stronger definition, where I is a singleton.
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Transformation Into BUTA in the Deterministic Case

Idea: Each state built is the set of overloops (resp. loops) on some
tree. We show that the set of overloops on a tree is functional.

Lemma: Deterministic TWA
If A is a deterministic TWA, then �A is functional.

Not enough to make sets of loops functional:

f

h

a b

a
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Transformation Into BUTA in the Deterministic Case

Idea: Each state built is the set of overloops (resp. loops) on some
tree. We show that the set of overloops on a tree is functional.

Lemma: Deterministic TWA
If A is a deterministic TWA, then �A is functional.

Not enough to make sets of loops functional:

f

h
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tree. We show that the set of overloops on a tree is functional.

Lemma: Deterministic TWA
If A is a deterministic TWA, then �A is functional.

Not enough to make sets of loops functional:
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Transformation Into BUTA in the Deterministic Case

Idea: Each state built is the set of overloops (resp. loops) on some
tree. We show that the set of overloops on a tree is functional.

Lemma: Deterministic TWA
If A is a deterministic TWA, then �A is functional.

Not enough to make sets of loops functional:
Loops on this tree: { (q`, q`), (q`, qu), (q`, qf), . . . }. Not functional.
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Transformation Into BUTA in the Deterministic Case

Lemma: Hidden Loops
Let p, q, q′ ∈ Q, q 6= q′ such that (p, q) and (p, q′) are loops of a
TWA A on a given subtree t|α. Then if A is deterministic, either
(q, q′) or (q′, q) must be a loop of A on t|α.

By definition, there exist two runs c0, . . . , cn and d0, . . . , dm such
that c0 = d0 = (α, p), cn = (α, q) and dm = (α, q′).

If n = m then c0 �n cn and c0 �n dn. It follows that cn = dm.
But this contradicts q 6= q′, so we must have n 6= m.
Say that n < m. Then cn = dn, and
(α, q) = dn, . . . , dm = (α, q′) forms a run. Therefore (q, q′) is
a loop.
If n > m, then by the same arguments (q′, q) is a loop.
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Transformation Into BUTA in the Deterministic Case

Lemma: Functional Overloops
Let p, q, q′ ∈ Q, such that (p, q) and (p, q′) are overloops of a
TWA A on a given subtree t|α. Then if A is deterministic, q = q′.

We have two runs
(α, p), . . . , (α, s), (p(α) , q)

(α, p), . . . , (α, s ′), (p(α) , q′)
Thus (p, s) and (p, s ′) are loops.

If s = s ′, then q = q′, because � is functional.
If s 6= s ′, then say (s, s ′) is a loop. So there exist
s1, . . . , sn ∈ Q, β1 E α, . . . , βn E α such that (α, s), (β1, s1),
. . . , (βn, sn), (α, s ′) is a run. Thus (α, s)� (p(α) , q) and
(α, s)� (β1, s1). It follows that p(α) = β1 E α:
contradiction.
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Transformation Into BUTA in the Deterministic Case

Theorem: Deterministic Upper-Bound
In general, the overloops-based BUTA B has |T| × 2|Q|2 states.
However, it has at most |T| · 2|Q| log2(|Q|+1) states if A is a DTWA.

By construction, for every state P = (τ, L) generated for B by the
overloops-based algorithm, there exists at least a subtree t such
that L is the set of overloops of A on t. Thus, by the previous
lemma, L is functional. Therefore, there are at most |T| · |Q + 1||Q|
states (or, equivalently, |T| · 2|Q| log2(|Q|+1)).
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