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Tree Walking Automata

@ Old formalism (/1970, Aho & Ullman)

@ Sequential model, as opposed to branching tree automata
@ Less extensively studied model for a long while. ..

@ ...but long standing questions solved in recent years

@ Recent surge in interest, due mostly to connection to XML
(Fragments of Core XPath, streaming etc)

o Research focused on fundamental problems (expressiveness. . .)

o Our focus: practical, efficient algorithms

o Finality: efficient XML queries; compact Model-Checking

Starting Point:
Transformation from TWA to BUTA
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Preliminaries
Definition of Tree Walking Automata

A Tree-Walking Automaton is a tuple A = (¥, Q, [, F, A)

ACEIxQx{%x0,1} x {1,0,/,\}xQ J

T : types M : moves

(Notations |

o “(f,p,m — u,q)" for the tuple (f,p, 7, u,q) € A.
° (%2,p,T—0,q) ¥ {(0,p,7,0,9) | 0 € Tp,7 € T}

V.
Remarks

o Ranked (binary) vs. unranked alphabet
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Preliminaries
Example Tree Walking Automaton

A Very Simple TWA: X = (¥, Q, I, F, A)
e Yo={ab,cland Xy ={f,g,h}
o Q={anqu}, I={a} F={qu}

A= <avq£a{*a0} —>ovqu>
U <quuvo — Ta qu>
U <z2aqﬂa{*70} _>\/7q€>

X accepts exactly all trees whose left-most leaf is labelled by a —
and the tree a itself.
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Preliminaries
Example Tree Walking Automaton

Q= {qfaqu }, I = {ql}- F = {qu}

A= <a>q€7{*70} %anu>
U <Z>qu>0 — Ta qu>
U <z27qfa{*70} —>\/7qé>

/N
/N
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Preliminaries
Example Tree Walking Automaton

Q={anqu} I ={a} F={qu}

A=(a,q,{*0}—O,qu)
U<Z7qU70_>T7qu>
U<227q£a{*?0} — L/9q€>

flael

AN
/\
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Preliminaries
Example Tree Walking Automaton

Q={arqu} I ={a} F={qu}

A:<a>q€7{*70}_>ovqu>
U<Z>qu>0—>T>qu>
U<22,Q£,{*,0}—>/,CM>

p

/\

hlqe] a

/\
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Preliminaries
Example Tree Walking Automaton

Q={anqu} I ={a} F={qu}

A= <a’qfa{*70} _>O,qu>
U <Z7qU70 — T7 qu>
U <227q£7{*70} — )/7q€>

N\
/\

alq.] b
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Preliminaries
Example Tree Walking Automaton

Q={anqu} I ={a} F={qu}

A =(a,q,{*0}— O, qu)
U <Z, Gu, 0 — T, qu>
U <227q£7{*70} — )/7q€>

A
/\

alqu] b
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Preliminaries
Example Tree Walking Automaton

Q={arqu} I ={a} F={qu}

A= <a>q€7{*70} %anu>
U <Z7 qu, 0— e qu>
U <z27qfa{*70} —>\/7qé>

p

/\

hlqu] a

/\
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Preliminaries
Example Tree Walking Automaton

Q={anqu} I ={a}, F={qu}

A=(a,q,{x0}—0O,q)
U <Z7qU70 — T7 qu>
U <227q£7{*70} — )/7q€>

flau]

AN
/\
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Given a TWA A, build an equivalent BUTA B. |

Known solution outlined in the literature
[Bojanczyk, Samuelides]

(7]

(]

Based on the idea of tree loops
Resulting states for B: T x 29 (or det. (29°)T)

©

(]

Only proof sketches. No explicit algorithm is given.

(]

We argue that things are slightly less straightforward:

o Needed states space: ¥ x T x 29" (or det. X x (2Q2)T)
o Because of this, some existing implementations are only almost
correct [dtwa-tools]

(]

We introduce tree overloops

o This time we really have T x 29 (or det. (29°)T)
o Lower upper bound if A is deterministic: |T]| - 2/@llog2(1QI+1)
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The ldea of Tree Loops

(p,q) € Q?is a loop of A on t|, if there exists a run which starts
in p, ends in g (at the root «), and always stays in the subtree.

f Loops of X on...
/ \ o t: {}
tlo: {}
/h\ ’ tlo.o: {}
a b

©

tloa: {}
tly: {}

e 6 o
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The ldea of Tree Loops

(p,q) € Q?is a loop of A on t|, if there exists a run which starts
in p, ends in g (at the root «), and always stays in the subtree.

flael Loops of X on...
/ \ o t: {(qe, 7). (qe.qe)}
s 5 o tlo: {}
o tloo: {}
/ \ o tloy: {}
a b o t|y: {}
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The ldea of Tree Loops

(p,q) € Q?is a loop of A on t|, if there exists a run which starts
in p, ends in g (at the root «), and always stays in the subtree.

f Loops of X on...
/ \ o t: {(qe, ?),(qe,q0)}
, o tly: {(qe, 7, (qe,qe)}
[ac] ? ° tloo: {}
/\ oty )
5 b o t|;: {}
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The ldea of Tree Loops

(p,q) € Q?is a loop of A on t|, if there exists a run which starts
in p, ends in g (at the root «), and always stays in the subtree.

Loops of X on...

f
/ \ o t: {(q0,?), (qe, q0)}
, , tlo: {(qe, ?), (qe, qe)}

(]

o tlgo {(qe, ), (qe.qe)}
/ \ o tloy: {}
alqe] b o t|y: {}
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The ldea of Tree Loops

(p,q) € Q?is a loop of A on t|, if there exists a run which starts
in p, ends in g (at the root «), and always stays in the subtree.

Loops of X on...

f
/ \ o t: {(qe, ?),(qe,q0)}
, ] tlo: {(qe, ?), (qe, qe)}

(]

° t‘0.0: {(qfaqu)a(qquf)v(qmqu)}
/ \ o tloy: {}
alqu] b o t|y: {}
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The ldea of Tree Loops

(p,q) € Q?is a loop of A on t|, if there exists a run which starts
in p, ends in g (at the root «), and always stays in the subtree.

f Loops of X on...
/ \ o t: {(q, ), (e )}
haul ) o tlo: {(qe; qu); (gr: 9e), (qu:qu) }
N o tloo: {(9e:qu)s (qr, qr), (qus qu)}
/ \ o tly: {}
a b o t|y: {}
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The ldea of Tree Loops

(p,q) € Q?is a loop of A on t|, if there exists a run which starts
in p, ends in g (at the root «), and always stays in the subtree.

flau] Loops of X on...
/ \ o t: {(qe qu), (qe, Ge), (GurGu) }
tlo: {(qe: qu), (ae, qe), (qus Gu)}

/ \ t‘o,o: {(qfaQU)y(CM,qK)?(quaCIu)}
a b

(]

tloq: {}
tly: {}

e o6 o
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The ldea of Tree Loops

(p,q) € Q?is a loop of A on t|, if there exists a run which starts
in p, ends in g (at the root «), and always stays in the subtree.

Loops of X on...

f
/ \ o t: {(a0qu): (90> 92), (G Gu)}
tlo: {(qe, qu); (qe, qe), (qu, qu)}
h a
/N,

©

tloo: 1(9e, qu), (9e, qe), (qu. qu)}
t‘O‘l: {(qb qZ)?(quv qu)}
tli: {(aes qe)s (Qus qu) }

e 6 o
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Computing Tree Loops

Simple Loops, Computation for Leaves

A loop is a simple loop on t|, if there is a run which forms it and
reaches « exactly twice (simple looping run).

Proposition: Loops Decomposition

If S C Q? is the set of all simple loops of A on a given subtree
u = t|,, then §* is the set of all loops of A on u.
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Computing Tree Loops

Simple Loops, Computation for Leaves

A loop is a simple loop on t|, if there is a run which forms it and
reaches « exactly twice (simple looping run).

Proposition: Loops Decomposition

If S C Q? is the set of all simple loops of A on a given subtree
u = t|,, then §* is the set of all loops of A on u.

We denote U7(u) the set of all loops of A on a subtree u, where 7
is the type of the root of u. Compute loops on u = a € %,.

Simple looping run: run of the form (e, p) — (&, q) only.

€ {(p,q) | (0,p,7 = O,q) €EA}.

So we have U7(a) = (H])*.
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Computing Tree Loops

Computation for Inner Nodes

Let f € X5, and u = f(ug, uy); root of type 7. Compute U7(u).

First Move of a Simple Looping Run

o 1T — impossible: leaves the subtree u

o O — all computed in HF

° \/ — (57 P), (07 PO); (517 51)7 °00 g (Bn; 5n)7 (07 q0)7 (57 q)'
with all 8, < 0. So (pg, qo) € UO(UO).

° \1 _(6’ P), (1a pl)v (Bla 51)7 000y 511’ Sn), (17 ql)a (57 q)'
with all B < 1. So (pz,q1) € OX(uy).
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Computing Tree Loops
Computation for Inner Nodes

Let f € X5, and u = f(ug, uy); root of type 7. Compute U7(u).

First Move of a Simple Looping Run

° \/ — (E,p), (Oapl))v (61751)7 °0 09 (Bnasn)a (07 q0)7 (57 q)'
with all Bx < 0. So (pg, q9) € O up).

To build a simple loop (p, g) on the subtree u, we need to. ..

O choose a side: § € S & {0,1}

@ find an existing loop on that side: (ps, q9) € UYup)

© such that one can connect beginning and end
@ (f,p,7 — x(0), ps) € A and
2} <U9(5), qo, 0 — T, q> €A

() :S = { ./, \(} such that x(0) = and x(1) =\
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Computing Tree Loops

Overview of the Computation

Loops on Leaves
Let a € X, we have U7(a) = (H7)".

Loops on Inner Nodes
Let f € X5, and u = f(up, uz); root of type 7. We have U7(u) =

IS <f,p,T—>X(0),p9>€A

. : and
3Py, q0) € OYuo) (ug(€),q9,0 — 1,q9) € A

Hf U4 (p,q)
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Transformation Into BUTA

Using Loops

Q Input: ATWA A= (X,Q,/,F,A)
Q Initialise States and Rules to @
Q for each ac ¥y, 7 €T do
o let P=(a,7,H]")
add a — P to Rules and P to States

© repeat until Rules remain unchanged

o foreach f € ¥,,7 €T do
o add every f(Pg, P1) — P to Rules and P to States where
Pg, P1 € States such that Py = (09, 0, Sg) and
P; = (0’1, 1,51) and P = (f_,T7 (9‘(}— @] 5)*),
with S the set of simple loops built on the sons.
©Q Output: A BUTA B equivalent to A:
B = (¥, States, { (0, %, L) € States | LN (I x F) # @}, Rules)
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Transformation Into BUTA

Using Loops

Q Input: ATWA A= (X,Q,/,F,A)
Q Initialise States and Rules to @
Q for each ac ¥y, 7 €T do
o let P=(a,7,H]")
add a — P to Rules and P to States

© repeat until Rules remain unchanged

o foreach f € ¥,,7 €T do
o add every f(Pg, P1) — P to Rules and P to States where
Pg, P1 € States such that Py = (09, 0, Sg) and
P; = (0’1, 1,51) and P = (f_,T7 (9‘(}— @] 5)*),
with S the set of simple loops built on the sons.
©Q Output: A BUTA B equivalent to A:
B = (¥, States, { (0, %, L) € States | LN (I x F) # @}, Rules)
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Transformation Into BUTA

Using Loops

add every f(Pg, P1) — P to Rules and P to States
where Py, P; € States such that

o Py = (09,0,5) and Py = (01,1, 51)
e and P = (f,7,(H; U S)*),

@ with S the set of simple loops built on the sons.

Set of Simple Loops Built on the Sons

(f,p, 7 — x(0), pg) € A
st. and

<097q970 — Ta q> € A

0 e€S:

5=4(pa) (py, q0) € So
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Transformation Into BUTA

Using Loops

add every f(Pg, P1) — P to Rules and P to States
where Py, P; € States such that

o Py = (09,0,5) and Py = (01,1, 51)
e and P = (f,7,(H; U S)*),

@ with S the set of simple loops built on the sons.

Set of Simple Loops Built on the Sons

30 €S: <f7P,T—>X(9),P9>€A
S: (p? q) St. and
3(pe, q9) € Sp (oo B = 1) € A

The son’s symbol is needed to close the end of the loop. |
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Transformation Into BUTA
Using Loops

Important Remark

In the construction, sets of loops cannot be considered
independently from the symbol they are rooted in.

Counter-Example
Consider a, b € ¥, f € ¥, with only the transitions

({a,b},p,0 = 0,q)U{(b,q,0 = 1,),(f,s,7—= x(0),p)} C A

Then U%a) = B9b) = {(p, q)}*, but U(f(a, a)) # O(f(b, b)).

Thus the loops-based construction has & x T x 2@ instead of only
T x 29° states (storing the symbol).

V.
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From Tree Loops to Tree Overloops
Advantages and Definition

Tree Overloops: slight alteration of the notion of tree loop. )

Advantages wrt. Transformation Into Buta

o Straightforward T x 2@ instead of ¥ x T x 29° states
o DTWA A: smaller |T| - 2/Qo&2(IQ1+1) ypper bound on states

@ 2 to 100 times smaller BUTA in average (random tests)
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From Tree Loops to Tree Overloops

Advantages and Definition

Tree Overloops: slight alteration of the notion of tree loop. J

Advantages wrt. Transformation Into Buta

o Straightforward T x 2@ instead of ¥ x T x 29° states
o DTWA A: smaller |T| - 2/Qo&2(IQ1+1) ypper bound on states

@ 2 to 100 times smaller BUTA in average (random tests)

(p,q) € @ is an overloop of A on t|, if there exists a run which
starts in p, ends in g at the parent of the root «, and always stays
in the subtree, except for the last configuration.

Parent of ¢ is 2. A TWA A must be escaped into
A=(%, Qu{v}, LF, AU(Z,F,x—=1,Vv) ).
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From Tree Loops to Tree Overloops
Computing Tree Overloops

Idea: Compute loops, then check for {-transitions |

Definition: Up-Closure

LetLng,TGTandUGZ:

def

UZL] = {(p,q) | 3p": (p.p') € Land (o,p', 7 = 1,q) € A}

Theorem: Up-Closure

Let A be a TWA. If L is the set of all loops of A on a subtree

(e}

u=t|,, then Ui(a)[L] is the set of all overloops of A on u.
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From Tree Loops to Tree Overloops

Computing Tree Overloops

Overloops on Leaves
Let a € ¥o, we have 07(a) = U [HT*].

Overloops on Inner Nodes

Let f € ¥, and u = f(up, uz); root of type 7. To build a loop
(p, gg) on a subtree, we need to. ..
@ choose a side: § € S %' {0,1}
@ find an existing overloop on that side: (pg, gg) € BYup)
© such that one can connect the beginning:
@ (f,p,7 = x(0),po) € A7
@ unlike loops, the end is already conected!

() S = { ./, \(} such that x(0) = and x(1) =\..
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From Tree Loops to Tree Overloops

Computing Tree Overloops

Overloops on Leaves
Let a € ¥, we have §"(a) = UT[HT*].

Overloops on Inner Nodes

Let f € Y5, and u = f(ug, uz); root of type 7. We have &7(v) =

U?KU{?U{(P,%)‘ FHes: . (fip,7 = x(0)po) €A })]

Jpg € Q ° and (py, go) € BYup)
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Transformation Into BUTA

Using Overloops

Transformation Into BUTA Using Overloops

Almost the same the the loops-based version, but:

@ We compute sets of overloops instead of loops

@ Symbols are not stored in the states (not needed): thus
Y x T x 29 becomes T x 2@° again.

© Final states are

{(x,0) € States| ON(I x{V})#2}
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Transformation Into BUTA
Using Overloops

Transformation Into BUTA Using Overloops

Almost the same the the loops-based version, but:

@ We compute sets of overloops instead of loops

@ Symbols are not stored in the states (not needed): thus
¥ x T x 29° becomes T x 2¢° again.

© Final states are

{(x,0) € States| ON(I x{V})#2}

Acceptance criterion: Final Loops & Overloops

A term t is accepted iff
e U'(t)NIX F# o
o O7(t)N /I x {v} # & (because of
A=(%, Qu{v}, LF, AY(Z,F,x—=1,v)))
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Transformation Into BUTA in the Deterministic Case

Deterministic TWA: Definition

ATWA A= (X,Q,/,F,A) is deterministic (ie. a DTWA) if? for
aloex,peQ,7€T, |[(o,p,7 =M, Q)NA| <1

“We do not need the usual, stronger definition, where [ is a singleton.
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Transformation Into BUTA in the Deterministic Case
Deterministic TWA: Definition

ATWA A= (X,Q,/,F,A) is deterministic (ie. a DTWA) if? for
aloex,peQ,7€T, |[(o,p,7 =M, Q)NA| <1

“We do not need the usual, stronger definition, where [ is a singleton.

Theorem: Deterministic Upper-Bound

In general, the overloops-based BUTA B has |T| x 21Q° states,
However, it has at most |T| - 2|Ql10e2(IQ1+1) states if A is a DTWA.
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Transformation Into BUTA in the Deterministic Case
Deterministic TWA: Definition

ATWA A= (X,Q,/,F,A) is deterministic (ie. a DTWA) if? for
aloex,peQ,7€T, |[(o,p,7 =M, Q)NA| <1

“We do not need the usual, stronger definition, where [ is a singleton.

Theorem: Deterministic Upper-Bound

In general, the overloops-based BUTA B has |T| x 21Q° states,
However, it has at most |T| - 2|Ql10e2(IQ1+1) states if A is a DTWA.

Proof Idea (Full Proof in Appendix)

Sets of overloops on a given subterm are functional (ie.
right-unique). Each computed state stores the set of overloops on a
given subterm; thus there are at most |Q + 1|'® of them, as
opposed to 21Q in the general case.
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An Overloops-Based Polynomial Approximation

Introduction

Testing emptiness of a TWA is an EXPTIME-complete problem.
Practical problems:

o XML Queries
o Satisfiability of some XPath fragments
o But also model-checking. ..

Standard approach: tranform into BUTA, then test emptiness. We
propose another approach:

@ An “over-approximation”; may detect emptiness
o Executes in polynomial time and space

o Very (surprisingly) accurate in our random tests
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An Overloops-Based Polynomial Approximation

The Algorithm

Over-Approximation of the Emptiness Problem, Using Overloops

Q Input: An escaped TWA A= (¥, Q,I,F,A)
Q |Initialise Ly, L1, L, t0 @
Q for each ac ¥y, 7 €T do

o L.+ L UUT[H']
© repeat until Ly, L3, L, remain unchanged

o foreach f € ¥,,7 €T do

o L, L, UUF[(HFUS)"]
with S the set of simple loops built on Ly and L.

Q Output: Empty if L, N (I x {v'}) =@, else Unknown
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An Overloops-Based Polynomial Approximation

The Algorithm

Over-Approximation of the Emptiness Problem, Using Overloops

Q Input: An escaped TWA A= (¥, Q,I,F,A)
Q |Initialise Ly, L1, L, t0 @
Q for each ac ¥y, 7 €T do

o L.+ L UUT[H']
© repeat until Ly, L3, L, remain unchanged

o foreach f € ¥,,7 €T do

o L, L, UUF[(HFUS)"]
with S the set of simple loops built on £ and £;.

Q Output: Empty if L, N (I x {v'}) =@, else Unknown
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An Overloops-Based Polynomial Approximation
The Algorithm

S the set of simple loops built on Ly and L;. J

Set of Simple Loops Built on the Sons (From Overloops)

JeS:
5={(p,qe)| Jpp € Q

(f,p, 7™ — x(0),pa) € A
and (py, q9) € Lo
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An Overloops-Based Polynomial Approximation

Discussion

@ Approach can be made coarser or finer: from a variant with no
type information (ie. £ = Lo U L3 UL,) to someting
equivalent to transformation to BUTA

@ The presented variant is polynomial in time and space

@ Astonishing accuracy in random tests: Out of =~ 20000 TWA
(2 <|Q| < 20), 75% of which had empty languages, only two
Unknown instead of Empty.

Our generation scheme was simplistic. Trivial instances? More tests
to be made using uniform generation scheme.
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Conclusion and Perspectives
What We Have Seen

Two TWA Membership algorithms (loops & overloops)
Two transformations from TWA into BUTA (idem)
Overloops-based BUTA have expected states
Overloops-based BUTA smaller (2 to 100 times. .. )

DTWA: Lower upper-bound on BUTA states with overloops

Approximation: polynomial, accurate in random tests

What Is Left To Do

@ Test approximation with uniform DTWA generation scheme

o Characterise classes of TWA using overloops (det. etc)

@ Significant size reductions on TWA (optimise queries etc)
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Transformation Into BUTA

Using Overloops

Q Input: An escaped TWA A= (¥, Q,I,F,A)
Q Initialise States and Rules to @
Q for each ac ¥y, 7 €T do
o let P = (7, UT[HI™])
add a — P to Rules and P to States
© repeat until Rules remain unchanged

o foreach f € ¥,,7 €T do

o add every f(Pg, P1) — P to Rules and P to States where
Po, P1 € States such that Py = (0, Sg) and P; = (1,5;) and
P = (7, Uf [(HF U S)*]), with S the set of simple loops built
on the sons.

© Output: A BUTA B equivalent to A: B =
(X, States, { (%, O) € States| ON (I x {V'}) # @}, Rules)
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Transformation Into BUTA
Using Overloops

add every f(Pg, P1) — P to Rules and P to States
where Pg, P; € States such that

o Pg — (0,50) and P1 = (1,51)
e and P = (1, UF[(HF U S)*]),

@ with S the set of simple loops built on the sons.

Set of Simple Loops Built on the Sons (From Overloops)

10 e€S: (f,p, 7 — x(0), pg) € A
S= , st. 7 ’
{(p %) dps € Q and (pg, qp) € So
No need to store the son’s symbol anywhere. J
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Transformation Into BUTA in the Deterministic Case

Theorem: Deterministic Upper-Bound

In general, the overloops-based BUTA B has |T| x 21QF states.
However, it has at most |T| - 2|Ql1082(IQ1+1) states if A is a DTWA.

ATWA A= (X, Q,I, F,A) is deterministic (ie. a DTWA) if? for
alcoeX,peQ,7€T, [{(o,p,7— M, Q NA| <1

A relation R C @? is functional (or right-unique, or a partial
function) if, for all p,q,¢' € Q, pRq and pR¢ — q=4'.

There are 2|Q|2 binary relations on Q, of which |Q + 1\‘(‘?' are partial

functions, of which |Q||Q‘ are total functions.

If a relation R is functional, then so is R¥, for any k € N.

“We do not need the usual, stronger definition, where [ is a singleton.
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Transformation Into BUTA in the Deterministic Case

Idea: Each state built is the set of overloops (resp. loops) on some
tree. We show that the set of overloops on a tree is functional.

Lemma: Deterministic TWA

If Ais a deterministic TWA, then —» 4 is functional.

Not enough to make sets of loops functional:
f
h a
a b
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Transformation Into BUTA in the Deterministic Case

Idea: Each state built is the set of overloops (resp. loops) on some
tree. We show that the set of overloops on a tree is functional.

Lemma: Deterministic TWA

If Ais a deterministic TWA, then — 4 is functional.

Not enough to make sets of loops functional:
Loops on this tree: {(qe, qr), (9e, qu), (g, gs), - - - }. Not functional.
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Transformation Into BUTA in the Deterministic Case

Lemma: Hidden Loops

Let p,q,q" € Q, g # q’ such that (p, q) and (p, q’) are loops of a
TWA A on a given subtree t|,. Then if A is deterministic, either
(9,4") or (¢, q) must be a loop of Aon t|,.
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Transformation Into BUTA in the Deterministic Case

Lemma: Hidden Loops

Let p,q,q" € Q, g # q’ such that (p, q) and (p, q’) are loops of a
TWA A on a given subtree t|,. Then if A is deterministic, either
(9,4") or (¢, q) must be a loop of Aon t|,.

By definition, there exist two runs ¢, ..., c, and dp, ..., dy, such
that ¢ = do = (v, p), cn = (o, q) and dp, = (, §').
@ If n=m then ¢g " ¢, and ¢ —" d,. It follows that ¢, = d,.
But this contradicts g # ¢/, so we must have n # m.
@ Say that n < m. Then ¢, = d,, and
(a,q) =dp,...,dn = (a,q’) forms a run. Therefore (q,q’) is
a loop.

@ If n > m, then by the same arguments (¢, q) is a loop.

CIAA'11 Vincent HUGOT Loops & Overloops for TWA



Transformation Into BUTA in the Deterministic Case

Lemma: Functional Overloops

Let p,q,q" € Q, such that (p, q) and (p, q’) are overloops of a
TWA A on a given subtree t|,. Then if A is deterministic, g = q'.
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Transformation Into BUTA in the Deterministic Case

Lemma: Functional Overloops

Let p,q,q" € Q, such that (p, q) and (p, q’) are overloops of a
TWA A on a given subtree t|,. Then if A is deterministic, ¢ = ¢’

We have two runs
L (Oé, P), 0007 (O‘? 5)’ (E(O‘) ) q)
° (047 P)7 cocg (a? 5/)7 (ﬁ(a) ) q,)
Thus (p,s) and (p, s’) are loops.
e If s=¢, then g = ¢/, because —» is functional.
e If s #£ s/, then say (s,s’) is a loop. So there exist
Sly,-..,Sn € Q,01 Qa,..., 0, < asuch that (a,s), (b1, s1),
.o (Bnysn), (a,8') is a run. Thus (a,s) - (p(«), q) and
(a,s) = (1,51)- It follows that p(a) = f1 <
contradiction.
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Transformation Into BUTA in the Deterministic Case

Theorem: Deterministic Upper-Bound

In general, the overloops-based BUTA B has |T| x 21Q states,
However, it has at most |T| - 2|Ql10e2(IQ1+1) states if A is a DTWA.
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Transformation Into BUTA in the Deterministic Case

Theorem: Deterministic Upper-Bound

In general, the overloops-based BUTA B has |T| x 21Q states,
However, it has at most |T| - 2|Ql10e2(IQ1+1) states if A is a DTWA.

By construction, for every state P = (7, L) generated for B by the
overloops-based algorithm, there exists at least a subtree t such
that L is the set of overloops of A on t. Thus, by the previous
lemma, L is functional. Therefore, there are at most |T| - |Q + 1||Q|
states (or, equivalently, |T| - 2/@llog(IQI+1))
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