
Loops and Overloops
for Tree-Walking Automata

Pierre-Cyrille Héam1, Vincent Hugot2, Olga Kouchnarenko
FEMTO-ST CNRS 6174, University of Franche-Comté & INRIA/CASSIS, France

Abstract

Tree-Walking Automata (TWA) have lately received renewed interest thanks to
their tight connection to XML. This paper introduces the notion of tree overloops,
which is closely related to tree loops, and investigates the use of both for the
following common operations on TWA: testing membership, transformation into
a Bottom-Up Tree Automaton (BUTA), and testing emptiness. Notably, we
argue that the transformation into a BUTA is slightly less straightforward than
was previously assumed, show that using overloops yields much smaller BUTA
in the deterministic case, and provide a polynomial over-approximation of this
construction which detects emptiness with surprising accuracy against randomly
generated TWA.

Keywords: Tree-Walking Automata, loops, overloops, membership, emptiness,
approximation

1. Introduction

Tree-Walking Automata (TWA for short) are a well-established sequential model
for recognising tree languages which was introduced in 1969 by Aho and Ullman
[1]. While TWA originally received far less attention than the better known
branching model of tree automata, they have been steadily gathering interest in
the last few years. Notably, important questions which had remained open for
decades have recently been closed. This renewed interest is owed in great part
to the ever-growing popularity of XML, with which they and their variants are
tightly connected, in particular through Core XPath [2] and streaming [3].

In this context, it becomes helpful to have reasonably efficient algorithms for
essential operations on TWA such as deciding membership and emptiness, as

I

Email addresses: pierre-cyrille.heam@inria.fr (Pierre-Cyrille Héam),
vincent.hugot@inria.fr (Vincent Hugot), olga.kouchnarenko@inria.fr (Olga Kouchnarenko)

1This author is supported by the project ANR 2010 BLAN 0202 02 FREC.
2This author is supported by the French DGA (Direction Générale de l’Armement).

Preprint submitted to Theoretical Computer Science May 6, 2012

well as the transformation into a BUTA. Until now, research has been mainly
focused on closing fundamental open problems concerning the expressiveness
of TWA [4, 5, 6]. While algorithms for the above operations are known, they
appear in print mostly as proof sketches, and there has been no focus on finding
tighter complexity bounds. In contrast, this paper provides explicit algorithms
for these tasks and deals with complexity issues. The common thread of our
contributions is the notion of tree loop, which is pervasive to the algorithms we
give. This notion is closely related to Knuth’s construction for testing circularity
of attribute grammars [7], and is a generalisation to trees of a similar construction
for two-way word automata [8]. The contributions are organised as follows:

� Section 3.1[p4] gives a thorough introduction to tree loops – the basic
idea of which is more or less folklore – and introduces a new notion of
tree overloop in Sec. 3.3[p7]. Simple algorithms for testing membership
follow naturally from this work; beyond the immediate application of the
recursive definitions of loops and overloops, a more efficient method based
on a Boolean matrix encoding of loops is given in Sec. 3.2[p6]. To the best
of our knowledge, no such algorithm existed in the literature.

� Section 4 deals with the transformation from TWA to BUTA, based on
the proof sketches in [9] and [10, p143]. Two variants are given in Sec. 4.1:
one using loops and one using overloops. Section 4.2[p11] proceeds to show
that, in the deterministic case, the overloops-based construction admits a
much smaller upper bound on the number of generated states.

� The emptiness problem is known to be ExpTime-complete for TWA,
and is traditionally tested by first transforming the TWA into a BUTA.
Section 5 provides a polynomial-time algorithm which computes an “over-
approximation” of this BUTA, and thus may decide emptiness positively.
Should it prove inefficient against some families of TWA, then the approxi-
mation can be refined as much as needed.

� Section 6[p15] presents random experiments performed to confirm our
theoretical results. They involve both an ad-hoc random generation scheme
for non-deterministic TWA, and a more interesting one, based on the
results of [11], which yields complete and deterministic TWA according to
the uniform probability distribution – which imparts statistical significance
to our results. The dependability of the approximation method developed
in Sec. 5 is tested in Sec. 6.1 – it is shown to be astonishingly accurate
against both schemes. Section 6.2[p16] compares the respective sizes of
the BUTA obtained from the loops and overloops-based transformations,
and shows that overloops yield much smaller BUTA than loops in average.
It is also shown that this size gain is independent of (and cumulates
with) post-processing cleanup (cf. [12]) of the BUTA. The ideas of these
tests are illustrated on our running example, then validated against the
above-mentioned uniform random generation scheme.

Note. This paper is an extended version of [13].

2

2. Preliminaries

Let R ⊆ Q2 be a binary relation on a set Q; we denote by R+ and R∗

its transitive and reflexive-transitive closure, respectively. The notation Jn,mK
stands for the integer interval {n, n+ 1, . . . ,m }.

We denote by N∗ the set of words over N; if v, w ∈ N∗, then v.w stands for the
concatenation of the words v and w. A binary alphabet is a finite set of symbols,
equipped with an arity function arity : Σ→ {0, 2}. The subset of symbols of Σ
with arity k is denoted by Σk. The set T (Σ) of (binary) trees over Σ is defined
inductively as the smallest set such that Σ0 ⊆ T (Σ) and, if f ∈ Σ2 and u0, u1 ∈
T (Σ), then f(u0, u1) ∈ T (Σ). If t ∈ T (Σ) is a tree, then the set of positions
(or nodes) Pos(t) ⊆ N∗ is defined inductively by Pos(t) = {ε} if t is a constant
(i.e. t ∈ Σ0) and Pos

(
f(u0, u1)

)
= {ε} ∪ { k.αk | k ∈ J0, 1K and αk ∈ Pos(uk) }

otherwise. We see a tree t as a function t : Pos(t)→ Σ which maps a position
to the symbol at that position in t. Positions are equipped with a non-strict
(resp. strict) partial order E (resp. C), such that α E β iff β is a prefix of α
(resp. α E β and α 6= β). The size of a tree t is denoted by ‖t‖ and defined
by ‖t‖ = |Pos(t)|. The parent function p(·) : Pos(t) \ {ε} → Pos(t) maps any
(non-root) child node α.k (where k ∈ { 0, 1 }) to its father α. We denote by t|α
the subtree of t under α. The reader is assumed to be well-acquainted with the
bottom-up variety of branching tree automata (see for instance [14]).

A Tree-Walking Automaton (TWA) can be thought of intuitively as a head
moving in the tree from father to son and from son to father. The head chooses
its next move based on its internal state, the symbol at its current position, and
whether its current position is the root of the tree, a left son, or a right son. A
TWA accepts a tree if, starting from the root in an initial state, its head can
move back to the root in a final state.

Formally, a TWA is a tuple A = 〈Σ, Q, I, F,∆〉 where Q is a finite set of
states, Σ a binary alphabet, I ⊆ Q is a set of initial states, F ⊆ Q a subset of
final – or accepting – states, and

∆ ⊆ Σ×Q× { ?,0 ,1 }︸ ︷︷ ︸
T : types

× {↑,			,↙,↘}︸ ︷︷ ︸
M : moves

×Q

is a set of transitions. In this paper the tuple 〈Σ, Q, I, F,∆〉 will be assumed
whenever we speak of a TWA A. Each node α of a tree t has a type in T,
denoted by \α, such that \ε = ? (root), \(β.0) = 0 (left son), \(β.1) = 1 (right
son). As we will seldom deal with the root in practice, we define for short the
sons S = {0 ,1 } ⊂ T. We will also put in relation types and moves through
the function χ(·) : S → {↙,↘} such that χ(0) = ↙ and χ(1) = ↘. For
our convenience, we will take the special notation 〈f, p, τ → µ, q〉 for the tuple
(f, p, τ, µ, q) ∈ ∆. Some of the parameters can be replaced by sets, with the
obvious meaning that we consider the set of all transitions thus described. For
instance 〈Σ2, p,T→ 			, q〉 = { (σ, p, τ,			, q) | σ ∈ Σ2, τ ∈ T }. Note that all the
transitions from 〈Σ0, Q,T→ {↙,↘}, Q〉 ∪ 〈Σ, Q, ?→ ↑, Q〉 are invalid.

A configuration of A on a tree t is a pair c = (β, q) ∈ Pos(t)×Q; it is initial
if c ∈ {ε} × I and final (or accepting) if c ∈ {ε} × F . It is a successor of a

3

configuration (α, p) if 〈t(α) , p, \α → µ, q〉 ∈ ∆, where µ is ↑ if β = p(α), 			 if
β = α, ↙ if β = α.0 and ↘ if β = α.1. We write c1 �A c2 (or simply c1 � c2
whenever A is clear from the context) if the configuration c2 is a successor of
c1. A run is a sequence of successive configurations c1 � c2 � . . . cn �
A run is accepting (or successful) if it starts with an initial configuration and
reaches a final configuration. A tree t is accepted or recognised by A if there
exists an accepting run of A on t. The set of all accepted trees is the language
of A, denoted by Lng (A).

Example: Let X be a TWA such that Σ0 = { a, b, c } and Σ2 = { f, g, h },
Q = { q`, qu }, I = {q`}, F = {qu}, and ∆ = 〈a, q`, { ?,0 } →			, qu〉∪〈Σ, qu,0 →
↑, qu〉 ∪ 〈Σ2, q`, { ?,0 } → ↙, q`〉. Then X accepts exactly all trees whose left-
most leaf is labelled by a. We shall use this (trivial) example throughout the
paper. X has two states and fourteen rules.

3. Loops, Overloops and the Membership Problem

3.1. Defining, Classifying and Computing Loops
The notion of loop turned out to be very useful to deal with TWA. Informally,
loops arise naturally as a generalisation of the definition of an accepting run,
where the automaton enters the root in a given initial state pin, moves along the
tree, and then comes back to the root in a certain final state pout. In practice,
the details of the moves which form the loop itself are largely irrelevant and are
discarded: the most useful information is the pair of states (pin, pout).

Definition 1 (Tree Loops). Let A be a TWA, t a tree and α ∈ Pos(t). A pair of
states (p, q) ∈ Q2 is a loop of A on the subtree t|α if there exist n > 0 and a run
(α, p), (β1, s1), . . . , (βn, sn), (α, q) such that βk E α for all k ∈ J1, nK. Such a run
is a looping run, and we say that it forms the loop (p, q).

Example: The looping run (0, q`), (0.0, q`), (0.0, qu), (0, qu) of X on the subtree
g(f(a, b), c)|0 = f(a, b) forms the loop (q`, qu).

Notice that loops are not only defined on whole trees, but on subtrees as well
with the restriction that the automaton cannot leave the subtree during the
looping run. It is in fact this restriction which grants loops their usefulness.
TWA, unlike their branching cousins, whose runs are defined inductively, do not
naturally lend themselves to inductive reasoning; and yet, thanks to the above
restriction, loops are easily computed by induction. Thus loops and their variants
can be thought of as convenient devices which hide the sequential, stateful aspect
of TWA runs beneath a much more “user-friendly” layer of induction.

In the next few paragraphs we compute the loops of a TWA A on a subtree t|α.

Definition 2 (Kinds of Loops). Clearly for all p ∈ Q, (p, p) is a loop; we call such
loops trivial. A looping run of A on t|α is simple if it reaches α exactly twice. It
is non-trivial if it reaches α at least twice. A loop is simple (resp. non-trivial) if
there exists a simple (resp. non-trivial) looping run forming it.

4

Example: The loop (q`, qu) in the above example is simple, because (0, q`), (0.0, q`),
(0.0, qu), (0, qu) only reaches α = 0 twice, on the first and last configuration. The
TWA X forms only trivial and simple loops, but suppose that we alter it so that
it also checks that the right-most leaf is a. During an accepting run it would
go down and left, back up to the root, down and right, and back up to the
root again, in a final state. Thus all accepting runs would be non-trivial and
non-simple, reaching the root exactly three times.

Fortunately, we only ever need to compute simple loops, as we can deduce the
rest from them thanks to the following lemma:

Lemma 3 (Loop Decomposition). If S ⊆ Q2 is the set of all simple loops of A on
a given subtree u = t|α, then S∗ is the set of all loops of A on u.

Proof. Every looping run is either trivial or non-trivial. All trivial loops are in
S∗ by the reflexive closure. Furthermore, every non-trivial looping run can easily
be decomposed into one or more simple runs. Indeed, any non-trivial looping
run ` has the following general form, where βki C α for all k, i, and the notation
[xk]k∈J1,mK designates the run obtained by concatenating the runs x1, . . . , xm:

` = (α, p0),
[
(βk1 , sk1), . . . , (βknk

, sknk
), (α, pk)

]k∈J1,mK
.

This is the composition of m simple looping runs `k, for k ∈ J1,mK, forming the
simple loops (pk−1, pk). The remaining loops are obtained by transitive closure:{

(pk−1, pk)
∣∣ k ∈ J1,mK

}+ =
{

(pk−1, pl)
∣∣ k, l ∈ J1,mK , k 6 l

}
.

Let us denote by fτ(u) the set of all loops of A on a subtree u, where τ is the
type of the root of u; if u is the subtree t|α then τ = \α. Note that thanks to the
above-mentioned restriction in the definition of loops, the type of the subtree’s
root is the only information which is actually needed from the context.

Let a ∈ Σ0 be a leaf of type τ . We compute the loops on a. By definition of
a looping run, A cannot move up; nor can it move down since leaves have no
children. So the only transitions which can be activated are 			-transitions. As we
are only interested in simple loops, we can only activate one of these transitions
once, thus creating runs of the form (α, p)� (α, q), and the corresponding loops
(p, q). Let us have a general notation for this:

Definition 4 (Simple Here-Loops). Hτ
σ

/

= { (p, q) | 〈σ, p, τ →			, q〉 ∈ ∆ } .

Thus the simple loops on a are Hτ
a. By Lemma 3 we have fτ(a) = (Hτ

a)∗. We
now deal with inner nodes. Let f ∈ Σ2, and u = f(u0 , u1); again, τ denotes the
type of the root of u. Clearly the elements of Hτ

f are loops on u, as above, but this
time A can move down as well. It cannot move up on the first move (that would
mean leaving the subtree), but it will obviously need to move up to rejoin the root
if it ever moves down. To clarify all that, let us reason on what the first move of
a simple looping run can be. It cannot be ↑ and all simple loops whose first move
is 			 are already computed in Hτ

f . Say the first move is ↙: then the run can do

5

whatever it wants in the left subtree u0 , after which it has to move back up to
the root to complete the loop. Again, we only consider simple loops, so no move
can be made past this point, as the root has been reached twice already. Thus
the general form of such a run is (ε, p), (0, p0), (β1, s1), . . . , (βn, sn), (0, q0), (ε, q),
with all βk E 0. But by definition, this means that (p0 , q0) is a loop on u0 ,
i.e. (p0 , q0) ∈ f0(u0). Needless to say, the same applies (with 1 instead of 0) if
the first move is ↘. It follows that to determine whether (p, q) forms a simple
loop on u, we need only check three things: (1) A can move down (left or right)
from state p into a state pθ, (2) there is a loop (pθ, qθ) on this subtree and (3)
in state qθ, A can move up from this subtree and into the state q. Formally:

fτ(u) =
(
Hτ
f ∪

{
(p, q)

∣∣∣∣ ∃θ ∈ S :
∃(pθ, qθ) ∈ fθ(uθ)

st. 〈f, p, τ → χ(θ), pθ〉 ∈ ∆
〈uθ(ε), qθ, θ → ↑, q〉 ∈ ∆

})∗
.

Theorem 5 (Loops). Let A be a TWA and t ∈ T (Σ). Then for all α ∈ Pos(t),
f\α(t|α), as defined above, is the set of all loops of A on t|α.

Example: For the TWA X , f0(a) = { (q`, qu) }∗ = { (q`, q`), (qu, qu), (q`, qu) }, and
f?(f(a, b)) = (∅ ∪ {(q`, qu)})∗ (no simple here-loop, and one loop built on the
left child). On the other hand, f?(f(b, a)) = ∅∗, because f1(a) = f0(b) = ∅∗.

3.2. A Direct Application of Loops to Membership Testing
Note that a reasonably efficient algorithm for testing membership is straightfor-
wardly derived from the above computation of loops:

Corollary 6 (TWA Membership). Let A be a TWA and t ∈ T (Σ). Then we have
t ∈ Lng (A) if and only if f?(t) ∩ (I × F) 6= ∅.

Proof. There is a loop (qi, qf) ∈ I × F of A on t iff there is a run of the form
(ε, qi), . . . , (ε, qf). The first configuration is initial, and the last final. Therefore
it is an accepting run, and t ∈ Lng (A).

Corollary 7. The complexity of TWA membership is O
(
|∆|+ ‖t‖ · |Q|3

)
.

Proof. A naïve computation of f?(t) would be done inO
(
‖t‖ · (|Q|3 + |Q|2 · |∆|)

)
.

The following algorithm, while still simple, runs in O
(
|∆|+ ‖t‖ · |Q|3

)
, at the

cost of a O(‖t‖ · |Q|2) space complexity. Preliminaries. Transitions and loops
will be represented by relations from Q to Q, coded as matrices of M|Q| (B)
within the classical Boolean algebra (B,+, ·). The states of Q are numbered
and assimilated to their indices J1, nK for the sake of denotational simplicity.
A relation R ⊆ Q2 is represented by the matrix M[R] = (M[R]ij), such that
M[R]ij = 1 iff jRi. The sum and product of matrices are defined as usual.
With those conventions we have the expected result regarding composition: let
R,R′ ⊆ Q2 and P =M[R′]×M[R]; then Pij =

∑n
k=1M[R′]ikM[R]kj . Thus

Pij = 1 iff there exists k such that jRk and kR′i, that is to say, j(R′ ◦R)i. In
other wordsM[R′ ◦R] =M[R′]×M[R]. Input & Variables. A TWA A and
a tree t form the input. The core of the algorithm is the sub-function f , which

6

takes as input α (a position in Pos(t)). Its call defines a matrix Lα, representing
the loops at position α. Algorithm. Initialisation. For each σ ∈ Σ, τ ∈ T,
µ ∈ M, a matrix Tσ,τ,µ is built such that Tσ,τ,µqp = 1 iff 〈σ, p, τ → µ, q〉 ∈ ∆.
The positions of Pos(t) are topologically ordered as α1, . . . , αm = ε. Body.
For k = 1 to m, f(αk) is called. Then Lε is returned. On a call to f(α): (1)
Populate the matrix

Lα = T t(α),\α,			 +
∑
θ∈S

[
T t(α.θ),\(α.θ),↑ × Lα.θ × T t(α),\α,χ(θ)

]
.

(2) Compute the reflexive and transitive closure of Lα in place. Complexity.
The initial topological sorting is done in O(‖t‖), and the construction of the
Tσ,τ,µ matrices is done in O(|Σ| · |Q|2 + |∆|). Within each call of f we have the
following complexities: (1) O(|Q|2.3727) using the latest Coppersmith–Winograd–
Stothers–Williams algorithm — or simply O(|Q|3) with the conventional product
(2) Θ(|Q|3) using the Roy–Floyd–Warshall algorithm. The complexity of any
call to f is therefore O(|Q|3); there are ‖t‖ calls to f . Hence the announced
total complexity of O

(
|∆|+ ‖t‖ · |Q|3

)
. Correctness. After the call to f(α),

it is plain that Lα encodes f\α(t|α), as the computation of (1) and (2) is a
straight-forward reformulation of the formula of Thm. 5[p6] in terms of a Boolean
matrix representation. The recursive nature of that formula has been unwound
in this algorithm by the prior topological sorting of the positions.

3.3. From Loops to Overloops
We now introduce a new notion related to tree loops: tree overloops. An overloop
is formed by a looping run followed by a move up; this apparently minor change
has a number of positive consequences which we discuss in the next sections.

Definition 8 (Over-Root, Extended Positions and Transitions). The extended po-
sitions Pos(t) of a tree t ∈ T (Σ) are the set Pos(t) ∪ {ε}, where ε is called the
overroot. The parent function p(·) is extended over Pos(t) into the extended
parent function p(·), such that p(ε) = ε and ε C ε. The notion of configuration is
extended as well, so that the transitions of 〈Σ, Q, ?→ ↑, Q〉 become valid. Their
application yields configurations of the form (ε, q).

Definition 9 (Tree Over-Loops). Let A be a TWA and t a tree. A pair of states
(p, q) ∈ Q2 forms an overloop of A on t|α if there exists a run (α, p), (β1, s1), . . . ,
(βn, sn), (p(α) , q) such that βk E α for all k ∈ J1, nK.

A way to compute overloops is to compute loops, then check for ↑-transitions:

Definition 10 (Up-Closure). Let L ⊆ Q2, τ ∈ T and σ ∈ Σ:
Uτσ[L]

/

=
{

(p, q) ∈ Q2 ∣∣ ∃p′ ∈ Q : (p, p′) ∈ L and 〈σ, p′, τ → ↑, q〉 ∈ ∆
}
.

Lemma 11 (Up-Closure). Let A be a TWA. If L is the set of all loops of A on a
subtree u = t|α, then U

\α
t(α)[L] is the set of all overloops of A on u.

7

Proof. Immediate from Def. 9, as we have necessarily βn = α. Thus any overloop
is a loop followed by a move up, and conversely.

Similarly to loops, we denote by f↑τ(u) the set of all overloops of A on a subtree
u, where τ is the type of the root of u. By Lem. 11 we have f↑τ(u) = Uτu(ε)[fτ(u)],
and in the case of leaves this yields f↑τ(a) = Uτa[(Hτ

a)∗]. However, in the case
of inner nodes (say u = f(u0 , u1)), in order to have an inductive computation
of overloops instead of one based on loops, we need to compute the overloops
of the father, knowing the overloops of the children. The simplest way is to
compute the loops of the father and take the up-closure. We only need to check
whether (1) the automaton can go down and left (resp. right) from p to a state
p0 and (2) there is a left (resp. right) overloop (p0 , q0): this forms a loop (p, q0).
Formally:

f↑τ(u) = Uτf

[(
Hτ
f ∪

{
(p, qθ)

∣∣∣∣ ∃θ ∈ S :
∃pθ ∈ Q

st. 〈f, p, τ → χ(θ), pθ〉 ∈ ∆
and (pθ, qθ) ∈ f↑θ(uθ)

})∗]
.

Theorem 12 (Overloops). Let A be a TWA and t ∈ T (Σ). Then for all α ∈
Pos(t), f↑ \α(t|α), as defined above, is the set of all overloops of A on t|α.

Example: For the TWA X , f↑0(a) = U0
a

[
f0(a)

]
= {(qu, qu), (q`, qu)}. However

f?(f(a, b)) is the empty set. Thus a small adjustment is needed to test member-
ship using overloops, as standard TWA – such as X – never admit any overloop
at the root of a tree, for the lack of ↑-transitions.

Definition 13 (Overfinal State & Escaped TWA). Let A = 〈Σ, Q, I, F,∆〉 be a
TWA; it can be transformed into an escaped TWA

A′ =
〈

Σ, Q] {X} , I, F, ∆] 〈Σ, F, ?→ ↑,X〉
〉
,

where X /∈ Q is a fresh state, called overfinal state. [Clearly Lng (A) = Lng (A′).]

Example: Once X is escaped, we have f↑?(f(a, b)) = { (qu,X), (q`,X) }.

Corollary 14 (TWA Membership Redux). LetA be an escaped TWA and t ∈ T (Σ).
Then t ∈ Lng (A) if and only if f↑?(t) ∩ (I × {X}) 6= ∅.

Proof. The couple (qi,X) ∈ I × {X} is an overloop iff there is a run (ε, qi), . . . ,
(ε, qf), (ε,X). By Def. 13, we must have qf ∈ F ; therefore, by Cor. 6 we have
immediately t ∈ Lng (A).

4. Transforming TWA into equivalent BUTA

It is well-known that every TWA is equivalent to a BUTA; a more general
version of this result has been proven in [15] – using game-theoretic arguments
– and the main idea of a loop-based transformation from TWA into BUTA is
outlined in [9] and [10, p143]. In this section we present two versions of it: the
classical, loop-based one (Algo. 2[p9]) and an overloop-based variant (Algo. 3[p9]).
Since those algorithms share a strong common structure, they are given as

8

Data: A TWA A = 〈Σ, Q, I, F,∆〉
Input: 〈Pinit〉, 〈P0 〉, 〈P1 〉, 〈Pindu〉, 〈F 〉
Result: A BUTA B
initialise States and Rules to ∅
foreach a ∈ Σ0, τ ∈ T do

A add a→ 〈Pinit〉 to Rules and 〈Pinit〉 to States
repeat

foreach f ∈ Σ2, τ ∈ T do
B add every f(〈P0 〉 , 〈P1 〉)→ 〈Pindu〉 to Rules and 〈Pindu〉 to States

where 〈P0 〉 , 〈P1 〉 ∈ States
until Rules remains unchanged
return B = 〈Σ,States, 〈F 〉 ,Rules〉

Algorithm 1: Meta-Transformation into BUTA

Data: A TWA A = 〈Σ, Q, I, F,∆〉
Result: A BUTA B such that Lng (B) = Lng (A)
Meta-Algorithm 1 where

〈Pinit〉 ≡ (a, τ,Hτ
a
∗) 〈Pindu〉 ≡ (f, τ, (Hτ

f ∪ S)∗)
〈P0 〉 ≡ (σ0 ,0 , S0) 〈P1 〉 ≡ (σ1 ,1 , S1)
〈F 〉 ≡ { (σ, ?, L) ∈ States | L ∩ (I × F) 6= ∅ }

S =
{

(p, q)
∣∣∣∣ ∃θ ∈ S, (pθ, qθ) ∈ Sθ :

∣∣∣∣ 〈f, p, τ → χ(θ), pθ〉 ∈ ∆ and
〈σθ, qθ, θ → ↑, q〉 ∈ ∆

}
Algorithm 2: Tranformation into BUTA, with loops

Data: An escaped TWA A = 〈Σ, Q, I, F,∆〉 (see Def. 13)
Result: A BUTA B such that Lng (B) = Lng (A)
Meta-Algorithm 1 where

〈Pinit〉 ≡ (τ,Uτa[Hτ
a
∗]) 〈Pindu〉 ≡ (τ,Uτf

[
(Hτ

f ∪ S)∗
]
)

〈P0 〉 ≡ (σ0 , S0) 〈P1 〉 ≡ (σ1 , S1)
〈F 〉 ≡ { (?,O) ∈ States | O ∩ (I × {X}) 6= ∅ }

S =
{

(p, qθ)
∣∣∣∣ ∃θ ∈ S, pθ ∈ Q :

∣∣∣∣ 〈f, p, τ → χ(θ), pθ〉 ∈ ∆
and (pθ, qθ) ∈ Sθ

}
Algorithm 3: Tranformation into BUTA, with overloops

9

instantiations of Meta-Algorithm 1, whose inputs (between angle brackets 〈·〉)
are substituted into its body. We go on to show that, in the case of deterministic
TWA, the overloop-based construction results in much smaller equivalent BUTA
than the classical one.

4.1. Two Variants: Loops and Overloops
Lemma 15 (Loop-Based Algorithm). Let A be a TWA, B the BUTA constructed
by Algorithm 2, t ∈ T (Σ) and a position α ∈ Pos(t). Then for every type τ ∈ T
there is a unique run ρ of B on t|α, which is such that ρ(ε) = (t(α), τ,fτ(t|α)).

Proof. By structural induction on u = t|α. Base Case: u = a ∈ Σ0. By line A
in Algorithm 2, ρ(ε) = P = (a, τ,Hτ

a
∗) = (t(α), τ,Hτ

a
∗). This is the only possible

run, as only one transition a→ P is generated for each couple a, τ . By Theorem 5
we have Hτ

a
∗ = fτ(a). Inductive Case: u = f(u0 , u1). By induction

hypothesis the run ρ0 on u0 is such that ρ0 (ε) = P0 = (u0 (ε),0 ,f0(u0)), and
the run ρ1 on u1 is such that ρ1 (ε) = P1 = (u1 (ε),1 ,f1(u1)). By line B in
Algo. 2 we use the rule f(P0 , P1)→ P to build a run ρ such that ρ(ε) = P =
(f, τ, (Hτ

f ∪ S)∗) = (u(ε), τ, (Hτ
f ∪ S)∗), ρ|0 = ρ0 and ρ|1 = ρ1 . Since ρ0 and ρ1

are unique, so is ρ. By Theorem 5, (Hτ
f ∪ S)∗ = fτ(u).

Theorem 16. Algorithm 2 is correct; that is, Lng (A) = Lng (B).

Proof. The following statements are equivalent by Lem. 15 and Cor. 6: (1)
t ∈ Lng (A) (2) there is a loop (qi, qf) ∈ I × F of A on t (3) the run ρ of B on t
is such that ρ(ε) = (t(ε), ?,f?(t)), with (qi, qf) ∈ f?(t) (4) ρ(ε) is a final state
for B (5) t ∈ Lng (B).

Two short but important remarks are in order. First: it might seem strange that
our states are in Σ× T× 2Q2 , and not more simply in T× 2Q2 , as suggested in
[10]. In [9] a similar construction – albeit deterministic, see the second remark
– is proposed, which does not include Σ either. However, it is not clear how
loops could be considered independently from the root symbol of the subtree
that bears them. Consider for instance a, b ∈ Σ0 with only the transitions
〈{ a, b } , p, τ → 			, q〉 and 〈b, q, τ → ↑, s′〉 ∈ ∆. Then the loops on a and b are
exactly the same – {(p, q)}∗ – and yet, from their father’s point of view, they
behave very differently. If A can go down from a state s to p, it can form a
loop (s, s′) if the child is b, but not if it is a. In contrast to the loop-based
construction, the overloop-based algorithm (Algo. 3) suppresses this problem
completely.

Second: the observation made in Lemma 15 that the run of B is unique, given a
subtree and a type, makes it easy to adapt the algorithm to yield a deterministic
BUTA. Indeed, every tree in T (Σ) is non-deterministically evaluated by B into
exactly three possible states (one per type); the correct one is chosen according to
the context during the run. Recall that rules f(P0 , P1)→ P are built such that
the “type” component of Pθ is θ, and final states bear the root type ?. Hence, it

10

suffices to group those three possible states into one element of Σ× (2Q2)|T| to
achieve determinism3, which brings us back to the states suggested in [9].

Lemma 17 (Overloop-Based Algorithm). Let A be a TWA, B the BUTA con-
structed by Algorithm 3, t ∈ T (Σ) and a position α ∈ Pos(t). Then for every type
τ ∈ T there is a unique run ρ of B on t|α, which is such that ρ(ε) = (τ,f↑τ(t|α)).

Proof. See proof of Lemma 15. The only change is that this time, we build the
loops, then deduce the overloops from them (Lem. 11[p7], Thm. 12).

Theorem 18. Algorithm 3 is correct; that is, Lng (A) = Lng (B).

Proof. By construction (i,X) ∈ I × {X} is an overloop iff there exists f ∈ F
such that (i, f) is a loop. Same proof as Theorem 16.

Note that this construction can be adapted to yield deterministic BUTA in
exactly the same way as for Algo. 2.

4.2. Overloops and the Deterministic Case: an Upper-Bound for the Size
Definition 19 (Deterministic TWA). A TWA A = 〈Σ, Q, I, F,∆〉 is deterministic
(ie. a DTWA) if4 |〈σ, p, τ →M, Q〉 ∩∆| 6 1 for all σ ∈ Σ, p ∈ Q, τ ∈ T.

Example: The running example TWA X happens to be a deterministic TWA.

Definition 20 (Functional Relation). A relation R ⊆ Q2 is functional (or right-
unique, or a partial function) if, for all p, q, q′ ∈ Q, pRq and pRq′ =⇒ q = q′.

Remark 21. There are 2|Q|2 binary relations on Q, of which |Q+ 1||Q| are partial
functions, of which |Q||Q| are total functions.

Remark 22. If a relation R is functional, then so is Rk, for any k ∈ N.

By construction, a BUTA built by Algo. 2 (loop-based) has at most |Σ| · |T| ·2|Q|2

states, while one built by Algo. 3 (overloop-based) has at most |T| · 2|Q|2 . We
will see in this section that, in the deterministic case, this upper bound is in fact
much lower for the overloop-based algorithm than for the traditional loop-based
one. More specifically, we will show that the following holds:

Theorem 23 (Deterministic Upper-Bound). Let A be a deterministic TWA and
B its equivalent BUTA built by an application of Algorithm 3. Then B has at
most |T| · 2|Q| log2(|Q|+1) states.

3 Of course, if one does that, there are a number of optimisations which can be performed.
For instance, since the star-component is only ever useful at the root, it suffices to replace it
with a boolean indicating whether it contains a loop in I × F , i.e. whether it is a final state.
Then we get states in Σ× (2Q2)|S| × {0, 1}.

4 In this paper we do not need the usual, stronger definition, where I is a singleton.

11

The idea is that every state which we build corresponds exactly to the set L of
all loops (resp. overloops) of the automaton A on a certain subtree u. Since
L ⊆ Q2, we can see it as a binary relation on the states. The intuition here is
that, if A is deterministic, and enters the root of u in one given state p, then
there “should be” only one possible outcome. More formally:

Lemma 24. If A is a deterministic TWA, then �A is functional.

Proof. In a given configuration (α, p), over a tree t, |〈t(α), p, \α→M, Q〉 ∩∆|
6 1. Therefore, (α, p) has at most one successor.

However, in the case of loops, this does not suffice to make L functional because,
determinism notwithstanding, a single (non-trivial) loop may reach the root
several times, and in different states, before exiting the subtree. Thus there is
nothing to prevent us from having both pLq and pLq′, for q 6= q′; we show next
that in that case, one of these loops is simply an extension of the other.

Lemma 25 (Hidden Loops). Let (p, q) and (p, q′) be loops of the TWA A on a
given subtree t|α, such that q 6= q′. Then if A is deterministic, either (q, q′) or
(q′, q) must be a loop of A on t|α.

Proof. By Definition 1, there exist two runs c0, . . . , cn and d0, . . . , dm such that
c0 = d0 = (α, p), cn = (α, q) and dm = (α, q′). If n = m then c0 �n cn and
c0 �n dn and by Lemma 24 and Remark 22, it follows that cn = dm. But this
contradicts q 6= q′, so we must have n 6= m. Say that n < m. Then cn = dn, and
(α, q) = dn, . . . , dm = (α, q′) forms a run. Therefore (q, q′) is a loop. Similarly, if
n > m, then by the same arguments (q′, q) is a loop.

Contrariwise, two overloops cannot be combined to form another overloop on
the same subtree, which satisfies the above intuition of a “single outcome”:

Lemma 26. Let p, q, q′ ∈ Q, such that (p, q) and (p, q′) are overloops of the TWA
A on a given subtree t|α. Then if A is deterministic, q = q′.

Proof. By Def. 9, there exist s, s′ ∈ Q such that (α, p), . . . , (α, s), (p(α) , q) and
(α, p), . . . , (α, s′), (p(α) , q′) are runs; thus (p, s) and (p, s′) are loops. If s 6= s′,
then by Lem. 25, say, (s, s′), is a loop. So there exist s1, . . . , sn ∈ Q, β1 E α
, . . . , βn E α such that (α, s), (β1, s1), . . . , (βn, sn), (α, s′) is a run. Thus we have
in particular (α, s)� (p(α) , q) and (α, s)� (β1, s1). It follows that p(α) = β1 E
α, which is contradictory. Hence s = s′. We have both (α, s)� (p(α) , q) and
(α, s)� (p(α) , q′). Since � is functional (Lem. 24), we have finally q = q′.

With this, we can conclude the proof of Theorem 23.

Proof of Theorem 23. By construction, for every state P = (τ, L) generated for B
by Algorithm 3, there exists at least a subtree t such that L is the set of overloops
of A on t. Thus, by Lemma 26, L is functional. Therefore, by Remark 21, there
are at most |T| · |Q+ 1||Q| states (or, equivalently, |T| · 2|Q| log2(|Q|+1)).

12

0
5

10
15
20
25
30
35
40
45
50
55

2 4 6 8 10 12 14 16 18 20 22 24

∅
%

|Q|

Approximation – 2000 samples
Approximation – 200 samples

Exact – 200 samples

Figure 1: Uniform random TWA: Emptiness results

Note that the same bound (with a |Σ| factor) might be achievable using loops,
if special provisions are made to determine which of two loops (p, q) and (p, q′)
subsumes the other, and to remove the superfluous loops from the states as they
are built. However, such provisions would be invalid if A is not deterministic,
unlike the overloops method, which is applicable in all generality.

5. A Polynomial Over-Approximation for the Emptiness Problem

Data: An escaped TWA A = 〈Σ, Q, I, F,∆〉 (see Def. 13)
Result: Empty (only if Lng (A) = ∅) or Unknown
initialise L0 , L1 , L? to ∅; foreach a ∈ Σ0, τ ∈ T do Lτ ← Lτ ∪Uτa[Hτ

a
∗]

repeat
foreach f ∈ Σ2, τ ∈ T do Lτ ← Lτ ∪ Uτf

[
(Hτ

f ∪ S)∗
]

where S =
{

(p, qθ)
∣∣∣∣ ∃θ ∈ S, pθ ∈ Q :

∣∣∣∣ 〈f, p, τ → χ(θ), pθ〉 ∈ ∆
and (pθ, qθ) ∈ Lθ

}
until L0,L1,L? remain unchanged
return Empty if L? ∩ (I × {X}) = ∅, else Unknown

Algorithm 4: Approximation for emptiness, with overloops

Testing emptiness of a TWA A is an ExpTime-complete problem [9]. This is
rather unfortunate, as there are practical questions – such as satisfiability of
some XPath fragments – which reduce to the emptiness of the language of a
TWA. We present in this section a crude but fairly accurate and very expeditious
overloops-based algorithm capable of detecting emptiness in a number of cases.
Algorithm 4[p13] is a variant of Algorithm 3 with the following properties:

Lemma 27 (Overloops Over-Approximation). Let A be a TWA; when the execu-
tion of Algorithm 4 ends, then for any τ ∈ T, Lτ ⊇

⋃
t∈T(Σ) f↑τ(t).

13

Proof. This result is fairly clear when comparing Algorithms 3 and 4. Let
us consider a tree t and a subtree u = t|α, with τ = \α. We show that
f↑τ(u) ⊆ Lτ . Base case: u = a ∈ Σ0. Then by the first line of Algo. 4, we
have f↑τ(a) = Uτa[Hτ

a
∗] ⊆ Lτ . Inductive case: If u = f(u0 , u1), f ∈ Σ2, then by

induction hypothesis we have f↑0(u0) ⊆ L0 and f↑1(u1) ⊆ L1 . The expression
computed in the main loop is almost the same as that of Thm. 12 for f↑τ(u), the
only difference being that Lθ is used instead of f↑θ(uθ). Since we have f↑θ(uθ) ⊆ Lθ
for all θ ∈ S, the expression in Algo. 4 computes at least all overloops of f↑τ(u) —
and adds them to Lτ . Thus f↑τ(u) ⊆ Lτ .

Theorem 28. Algorithm 4 is correct; that is, it yields Empty only if Lng (A) = ∅.

Proof. Suppose that Algo. 4 yields Empty. By definition, this is the case if and
only if L? ∩ (I × {X}) = ∅. By Lemma 27, we have

⋃
t∈T(Σ) f↑τ(t) ⊆ Lτ for

all types τ , and it follows that in particular (
⋃
t∈T(Σ) f↑?(t)) ∩ (I × {X}) = ∅.

This can be equivalently rephrased as ∀t ∈ T (Σ), f↑?(t) ∩ (I × {X}) = ∅. By
Corollary 14, this translates into: for all t ∈ T (Σ) , t /∈ Lng (A), that is to say,
Lng (A) = ∅.

Corollary 29 (Complexity of the Approximation). The execution of Algorithm 4
is done in time polynomial in the size of A — more precisely: O(|Σ| · |T|2 · |Q|5).

Proof. For all types τ , all operations in Algo. 4 which alter Lτ add elements
to it. The first loop executes a fixed number of times (|Σ0| × |T|). The main
loop contains only an inner loop which executes a fixed number of times as well
(|Σ2| × |T|), and the main loop itself executes until no element is added to L0 ,
L1 or L? during the iteration. Since an iteration can only add elements, and
each iteration adds at least one, there can be at most∑

τ∈T
|Lτ | =

∑
τ∈T
|Q|2 = |T| × |Q|2

iterations of the main loop. Each iteration of both the first loop and the
main inner loop computes a set of overloops, based on two sets of previously-
computed (potential) overloops. This operation executes in a time which is in
time O(|Q|2 · |∆|) for the initial computation and O(|Q|3) for the computation
of the transitive closure. It is executed in total |Σ0| · |T|+ |T| · |Q|2 · (|Σ2| · |T|)
times. Overall, the number of executions is in O(|Σ| · |T|2 · |Q|2). Globally, the
execution time of Algo. 4 is in O(|Σ| · |T|2 · |Q|5). This is of course a very loose
bound.

Note that Algorithm 4 can easily be made just as coarse or as fine as the need
dictates. At the coarse end of that gamut we have a variant of Algorithm 4
which forgoes type information, thus hoarding up all overloops in a single set L
instead of three, and at the fine end we find something equivalent to Algorithm
3.

14

1

2

3

2 3 4 5 6 7

‖B
‖/ 10

5

|QA|

‖Bl‖
‖B′

l
‖ (clean)

‖Bo‖
‖B′

o‖ (clean)

2 3 4 5 6 7
0
2
4
6
8
10
12
14
16
18

R
atio

|QA|

‖Bl‖ / ‖Bo‖
‖B′

l
‖ / ‖B′

o‖
‖Bl‖ / ‖B′

l
‖

‖Bo‖ / ‖B′
o‖

Figure 2: Uniform random TWA: Size results

6. Experimental Results

6.1. Evaluating the Approximation’s Effectiveness
Tests have been conducted against two different sets of randomly generated TWA.
The first set comprised roughly twenty thousand random automata of various
sizes (2 6 |Q| 6 20), with a small number of rules (|∆| ≈ 3× |Q|) and the same
alphabet as for our running example X . The random generation scheme which
produced them was ad-hoc and did not have any pertinent statistical grounds.
The approximation yielded astonishingly good results on this set: about 75%
of the automata had empty languages, yet the approximation failed to detect
emptiness in only two cases. To confirm those encouraging results, we gener-
ated a second set of (complete and deterministic5) TWA, this time according
to a uniform probability distribution [11]. The REGAL library [16] was used as
back-end to generate the underlying finite-state automata. More specifically,
2 000 TWA were uniformly generated for each |Q| within the range 2 6 |Q| 6 25.
Figure 1[p13] summarises the performance of the approximation on this set. The
first curve presents the percentage of TWA whose language is detected to be
empty by the approximation among the whole 2 000 TWA, for each |Q|. The
second curve presents the same results, but only for the first 200 TWA6 for each
|Q| 6 10; the third curve presents the exact results for the same data as the
second. It is visible that the approximation performs very well again, as the
second and third curves are almost indistinguishable. Out of the 1 724 TWA
for which both the approximation and an exact algorithm were run, of which
398 had empty languages, only four failures of the approximation were observed.
Furthermore, the first curve shows that the approximation continues to catch

5 Note that |Q| is therefore proportional to the size of the generated TWA.
6With the exception of the last data point (namely, |Q| = 10), for which only the first 124

TWA were tested; this is due to both time constraints and memory limitations of the computer
used for the tests.

15

cases of emptiness even for sizes completely intractable with exact algorithms.
Those results, though statistically sound, are probably much better than what
can be expected in practical applications; it is likely that random instances are
in some sense trivial wrt. emptiness. In the absence of substantial testbeds from
real-world applications of TWA, a study similar to [12] could be conducted to
flesh out the properties which would make an instance “difficult” wrt. emptiness.

6.2. Overloops Yield Smaller BUTA
Comparing the output of Algos. 2 & 3, we noted that the latter generates smaller
automata. By way of example, if Bl is the equivalent BUTA obtained from X
by Algo. 2, and Bo by Algo. 3, then we have ‖Bl‖ = 1986 and ‖Bo‖ = 95, where
the size of a BUTA B = 〈Σ, Q, F,∆〉 is defined – in the usual way [14] – as:

‖B‖

/

= |Q|+
∑

f(p1,...,pn)→q∈∆

(
n+ 2

)
.

Note that the resulting automata are quite large, even for such a trivial TWA as
X ! For comparison, consider the manually constructed (deterministic) minimal
BUTA Bm, and the7 smallest possible non-deterministic BUTA Bs equivalent
to the TWA X : we have ‖Bm‖ = 56 and ‖Bs‖ = 34. In other words, the loops
and overloops-based constructions are about three and sixty times larger than
the optimal, respectively. More important than the size of the final BUTA is
the computation time; it just happens in practice to be roughly proportional to
the size of the result, as far as our two transformations are concerned. Using a
deterministic variant of either transformation and minimising the result would
yield Bm, but at the cost of a considerable increase of the worst-case complexity
and average computation time. Another important point is that the huge size
discrepancy between Bl and Bo cannot be reduced “in post-processing” using
the standard BUTA reduction (elimination of unreachable states [14]): it would
have no effect whatsoever, because Algorithms 2 and 3 yield reduced BUTA by
construction. A more powerful operation such as the cleanup method described
in [12], which removes states which are not co-accessible as well as unreachable
states, can bring down the sizes of Bl and Bo, but does in no way bridge the gap
between them. Case in point, the automata after cleanup B′l and B′o are of sizes8

‖B′l‖ = 1617 and ‖B′o‖ = 78, which yield the following ratios:

‖Bl‖
‖Bo‖

≈ 20.9 and ‖B′l‖
‖B′o‖

≈ 20.7 and ‖Bl‖
‖B′l‖

≈ ‖Bo‖
‖B′o‖

≈ 1.2 .

These figures suggest that the (substantial) size gains originating from the switch
from loops to overloops-based algorithms are completely unrelated to (and do not

7 It happens to be unique (up to homomorphism) in this particular case.
8 In this trivial example, the sizes of the TWA X , of the “optimal” equivalent BUTA Bm

and Bs, and of the post-cleanup overloops-based BUTA B′
o happen to be quite close. This

observation should of course not be generalised.

16

interfere with) the (modest) size gains from post-processing. The observations
drawn from this single example have been substantiated by more thorough
experiments conducted on the same uniformly generated random TWA as in
Fig. 1, the results of which are summarised in Fig. 2[p15]. The legend uses the
same notations as above. Two hundred TWA have been used to construct each
data point.9

6.3. Demonstration Software
Readers interested in experimenting with this paper’s algorithms will find online10

a proof of concept (binaries and OCaml source code), as well as comprehensive
instructions for use.

7. Conclusion

In this paper we have introduced tree overloops, and applied both loops and
overloops to common operations on TWA: deciding membership, transforming a
TWA into a BUTA, and inexpensively testing emptiness. We have shown that
the use of overloops simplifies the transformation into BUTA, and substantially
lowers the upper bound in the deterministic case. We intend to pursue this
further by using overloops to characterise useful classes of TWA and perform
significant simplifications on the automata, hopefully leading to applications to
XPath. Furthermore, while our theoretical results and experiments show that the
overloops-based transformation yields much smaller BUTA than the loops-based
one, both asymptotically and in average – and yields them proportionally faster,
– it is clear that further advances remain possible in that respect. On-the-fly
variants enabling to test emptiness (for instance) while forgoing the computation
of the whole BUTA would also be of interest.

Acknowledgements. The authors would like to thank the members of the
INRIA ARC ACCESS for interesting discussions on this topic. Our thanks go
as well to the anonymous reviewers – for both the conference version and the
journal version – who provided the tighter complexity bound for Cor. 7, and
whose careful proofreading improved the readability of this paper.

References

[1] A. Aho, J. Ullman, Translations on a context free grammar, Information
and Control 19 (1969) 439–475.

[2] B. ten Cate, L. Segoufin, Transitive closure logic, nested tree walking
automata, and XPath, J. ACM 57 (2010) 251–260.

9The same remark as for Fig. 1 applies: Fig. 2[p15] uses only 156 TWA for its last data
point (|Q| = 7).

10On http://lifc.univ-fcomte.fr/~vhugot/TWA.

17

http://lifc.univ-fcomte.fr/~vhugot/TWA

[3] L. Segoufin, V. Vianu, Validating Streaming XML Documents, in: PODS,
ACM, 2002, pp. 53–64.

[4] M. Bojańczyk, T. Colcombet, Tree-walking automata do not recognize all
regular languages, STOC ’05, ACM, 2005, pp. 234–243.

[5] M. Bojańczyk, 1-bounded TWA cannot be determinized, FSTTCS’03,
LNCS 2914 (2003) 62–73.

[6] M. Bojańczyk, T. Colcombet, Tree-walking automata cannot be deter-
minized, Theoretical Computer Science 350 (2006) 164–173.

[7] D. Knuth, Semantics of context-free languages, Theory of Computing
Systems 2 (1968) 127–145.

[8] J. Shepherdson, The reduction of two-way automata to one-way automata,
IBM Journal of Research and Development 3 (1959) 198–200.

[9] M. Bojańczyk, Tree-Walking Automata, LATA’08 (tutorial), LNCS 5196
(2008).

[10] M. Samuelides, Automates d’arbres à jetons, Ph.D. thesis, Université Paris-
Diderot - Paris VII, 2007.

[11] P.-C. Héam, C. Nicaud, S. Schmitz, Random Generation of Deterministic
Tree (Walking) Automata, LNCS 5642 (2009) 115–124.

[12] P. Heam, V. Hugot, O. Kouchnarenko, Random Generation of Positive
TAGEDs wrt. the Emptiness Problem, Technical Report RR-7441, INRIA,
2010.

[13] P.-C. Héam, V. Hugot, O. Kouchnarenko, Loops and overloops for tree
walking automata, in: CIAA’11, LNCS 6807, pp. 166–177.

[14] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, M. Tommasi, Tree automata techniques and applications, 2007.

[15] S. Cosmadakis, H. Gaifman, P. Kanellakis, M. Vardi, Decidable optimization
problems for database logic programs, STOC ’88, ACM, 1988, pp. 477–490.

[16] F. Bassino, J. David, C. Nicaud, REGAL : A library to randomly and
exhaustively generate automata, in: CIAA, LNCS 4783, pp. 303–305.

18

	Introduction
	Preliminaries
	Loops, Overloops and the Membership Problem
	Defining, Classifying and Computing Loops
	A Direct Application of Loops to Membership Testing
	From Loops to Overloops

	Transforming TWA into equivalent BUTA
	Two Variants: Loops and Overloops
	Overloops and the Deterministic Case: an Upper-Bound for the Size

	A Polynomial Over-Approximation for the Emptiness Problem
	Experimental Results
	Evaluating the Approximation's Effectiveness
	Overloops Yield Smaller BUTA
	Demonstration Software

	Conclusion

