Algorithms for Tree Automata with Constraints

Random Generation of Hard Instances of the Emptiness Problem for Tree Automata With Global Equality Constraints

Pierre-Cyrille Héam, Vincent Hugot, Olga Kouchnarenko {pcheam,vhugot,okouchnarenko}@lifc.univ-fcomte.fr

> Université de Franche-Comté LIFC-INRIA/CASSIS, project ACCESS

> > October 10, 2010

Plan of the talk

Introduction and motivation

(short) Preliminaries:

- Vanilla Tree Automata
- Tree Automata with Constraints: TAGEDs
- The Emptiness problem
- Objectives and strategy
- The random generation
 - Cutting dead branches: the cleanup
 - **②** Initial random generation

Separate Section 2017 Separate Section 2017 Section 2017

• Tree automata: powerful theoretical tools useful for

- automated theorem proving
- program verification
- XML schema and query languages
- . . .
- **Extensions**: developed to expand expressiveness (*eg.* TAGEDs add global equality and disequality constraints.).
- Drawback: decidability and complexity of decision problems.
- Long-term goal: finding algorithms efficient enough for practical use. (for now, Emptiness for positive TAGEDs)
- **Problem**: without "real-world" testbeds, how to evaluate efficiency of our algorithms?
- Solution: random generation of TAGEDs.

Tree automaton for True propositional formulæ

$$\begin{split} \mathcal{A} \stackrel{\text{def}}{=} & \left(\Sigma = \left\{ \, \wedge, \vee/_2, \neg/_1, 0, 1/_0 \, \right\}, \ Q = \left\{ \, q_0, q_1 \, \right\}, F = \left\{ \, q_1 \, \right\}, \Delta \right) \\ & \Delta = \left\{ b \to q_b, \\ & \wedge \left(q_b, q_{b'} \right) \to q_{b \wedge b'}, \\ & \vee \left(q_b, q_{b'} \right) \to q_{b \vee b'}, \\ & \neg (q_b) \to q_{\neg b} \\ & \mid \ b, b' \in 0, 1 \right\} \end{split}$$

回 と く ヨ と く ヨ と

Bottom-Up Tree automata Definition through an example

Definition: run of \mathcal{A} on a term $t \in \mathcal{T}(\Sigma)$

A run ho is a mapping from $\mathcal{P} os(t)$ to Q compatible with the transition rules.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Bottom-Up Tree automata Definition through an example

Definition: run of \mathcal{A} on a term $t \in \mathcal{T}(\Sigma)$

A run ρ is a mapping from $\mathcal{P}os(t)$ to Q compatible with the transition rules.

Bottom-Up Tree automata Definition through an example

 $\rho =$ $_{2}\vee_{q_{1}}$ $1 \neg q_1$ 21 0_{q0} 22 ¬q1 $11 \wedge_{q_0}$ 1110_{q_0} 1121_{q_1} $221 0_{q_0}$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

Introduced in Emmanuel Filiot's PhD thesis on XML query languages. See [Filiot et al., 2008].

A TAGED is a tuple $\mathcal{A} = (\Sigma, Q, F, \Delta, =_{\mathcal{A}}, \neq_{\mathcal{A}})$, where

- (Σ, Q, F, Δ) is a tree automaton
- =_A is a reflexive symmetric binary relation on a subset of Q
- ≠_A is an irreflexive and symmetric binary relation on Q. Note that in our work, we have dealt with a slightly more general case, where ≠_A is not necessarily irreflexive.

A TAGED A is said to be *positive* if \neq_A is empty and *negative* if $=_A$ is empty.

Runs must be compatible with equality and disequality constraints.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduced in Emmanuel Filiot's PhD thesis on XML query languages. See [Filiot et al., 2008].

A TAGED is a tuple $\mathcal{A} = (\Sigma, Q, F, \Delta, =_{\mathcal{A}}, \neq_{\mathcal{A}})$, where

- (Σ, Q, F, Δ) is a tree automaton
- =_A is a reflexive symmetric binary relation on a subset of Q
- ≠_A is an irreflexive and symmetric binary relation on Q. Note that in our work, we have dealt with a slightly more general case, where ≠_A is not necessarily irreflexive.

A TAGED A is said to be *positive* if \neq_A is empty and *negative* if $=_A$ is empty.

Runs must be compatible with equality and disequality constraints.

Let ρ be a run of the TAGED \mathcal{A} on a tree t:

Compatibility with the equality constraint $=_{\mathcal{A}}$

$$\forall \alpha, \beta \in \mathcal{P}\!\mathit{os}(t) : \rho(\alpha) \mathrel{=_{\!\!\!\mathcal{A}}} \rho(\beta) \implies t|_{\alpha} = t|_{\beta}.$$

Compatibility with the disequality constraint $\neq_{\mathcal{A}}$ (irreflexive)

$$\forall \alpha, \beta \in \mathcal{P}\!\textit{os}(t) : \rho(\alpha) \neq_{\mathcal{A}} \rho(\beta) \implies t|_{\alpha} \neq t|_{\beta}.$$

Compatibility with the disequality constraint $\neq_{\mathcal{A}}$ (non irreflexive)

$$\forall \alpha, \beta \in \mathcal{P}\!\textit{os}(t) : \alpha \neq \beta \land \rho(\alpha) \neq_{\mathcal{A}} \rho(\beta) \implies t|_{\alpha} \neq t|_{\beta}.$$

Let ρ be a run of the TAGED \mathcal{A} on a tree t:

Compatibility with the equality constraint $=_{\mathcal{A}}$

$$\forall \alpha, \beta \in \mathcal{P}\!\mathit{os}(t) : \rho(\alpha) \mathrel{=_{\!\!\!\mathcal{A}}} \rho(\beta) \implies t|_{\alpha} = t|_{\beta}.$$

Compatibility with the disequality constraint $\neq_{\mathcal{A}}$ (irreflexive)

$$\forall \alpha, \beta \in \mathcal{P}\!\textit{os}(t) : \rho(\alpha) \neq_{\mathcal{A}} \rho(\beta) \implies t|_{\alpha} \neq t|_{\beta}.$$

Compatibility with the disequality constraint $\neq_{\mathcal{A}}$ (non irreflexive)

$$\forall \alpha, \beta \in \mathcal{P}\!\textit{os}(t) : \alpha \neq \beta \land \rho(\alpha) \neq_{\mathcal{A}} \rho(\beta) \implies t|_{\alpha} \neq t|_{\beta}.$$

イロト イヨト イヨト イヨト

TAGED for $\{ f(t,t) \mid f \in \Sigma, t \in \mathcal{T}(\Sigma) \}$ [Filiot et al., 2008]

$$\begin{split} \mathcal{A} \stackrel{\text{def}}{=} \left(\Sigma = \left\{ \begin{array}{l} a/_0, f/_2 \end{array} \right\}, \ \mathcal{Q} = \left\{ \begin{array}{l} q, \widehat{q}, q_f \end{array} \right\}, \ \mathcal{F} = \left\{ \begin{array}{l} q_f \end{array} \right\}, \\ \Delta, \ \widehat{q} =_{\!\mathcal{A}} \widehat{q} \end{array} \right), \\ \text{where } \Delta \stackrel{\text{def}}{=} \left\{ f(\widehat{q}, \widehat{q}) \to q_f, \ f(q, q) \to q, \ f(q, q) \to \widehat{q}, \\ a \to q, \ a \to \widehat{q}, \end{array} \right\} \end{split}$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

TAGED for $\{ f(t,t) \mid f \in \Sigma, t \in \mathcal{T}(\Sigma) \}$ [Filiot et al., 2008]

$$\begin{split} \mathcal{A} \stackrel{\text{def}}{=} \left(\Sigma = \left\{ \begin{array}{l} a/_0, f/_2 \end{array} \right\}, \ \mathcal{Q} = \left\{ \begin{array}{l} q, \widehat{q}, q_f \end{array} \right\}, \ \mathcal{F} = \left\{ \begin{array}{l} q_f \end{array} \right\}, \\ \Delta, \ \widehat{q} =_{\!\mathcal{A}} \widehat{q} \right), \end{split}$$

where $\Delta \stackrel{\text{def}}{=} \left\{ f(\widehat{q}, \widehat{q}) \to q_f, \ f(q, q) \to q, \ f(q, q) \to \widehat{q}, \\ a \to q, \ a \to \widehat{q}, \end{array} \right\}$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

э

Emptiness Problem

INPUT: \mathcal{A} a positive TAGED. **OUTPUT:** $\mathcal{L}ng(\mathcal{A}) = \emptyset$?

Applications

- XML query languages
- model-checking, eg. cryptographic protocol verification, ...

Theorem [Godoy et al.,]

The Emptiness Problem for TAGEDs is decidable.

Theorem [Filiot et al., 2008]

The Emptiness Problem for *positive* TAGEDs is *EXPTIME*-complete.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Objectives and Strategy

→ Ξ →

Long-term objective

Develop reasonably efficient approaches for deciding the Emptiness problem for positive TAGEDs

Role of the random generation scheme

Experimental protocol to *discriminate* between *efficient* and *inefficient* approaches, as replacement of a real-world testbed.

The generated instances must be

- Difficult: Else we cannot discriminate between algorithms.
- **Realistic:** failing that, the results bear little relevance to expected practical performance.

・ 同 ト ・ ヨ ト ・ ヨ ト

Long-term objective

Develop reasonably efficient approaches for deciding the Emptiness problem for positive TAGEDs

Role of the random generation scheme

Experimental protocol to *discriminate* between *efficient* and *inefficient* approaches, as replacement of a real-world testbed.

The generated instances must be

- Difficult: Else we cannot discriminate between algorithms.
- **Realistic:** failing that, the results bear little relevance to expected practical performance.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Deeply flawed generation scheme (eg. always empty)
- Often falls into special trivial case
 - eg. empty underlying vanilla TA
 - eg. diagonal positive TAGEDs [Filiot et al., 2008]
- Trivial by brute-force (eg. "leaf languages")
- All final states in dead branches

- Deeply flawed generation scheme (eg. always empty)
- Often falls into special trivial case
 - eg. empty underlying vanilla TA
 - eg. diagonal positive TAGEDs [Filiot et al., 2008]
- Trivial by brute-force (eg. "leaf languages")
- All final states in dead branches

- Deeply flawed generation scheme (eg. always empty)
- Often falls into special trivial case
 - eg. empty underlying vanilla TA
 - eg. diagonal positive TAGEDs [Filiot et al., 2008]
- Trivial by brute-force (eg. "leaf languages")
- All final states in dead branches

- Deeply flawed generation scheme (eg. always empty)
- Often falls into special trivial case
 - eg. empty underlying vanilla TA
 - eg. diagonal positive TAGEDs [Filiot et al., 2008]
- Trivial by brute-force (eg. "leaf languages")
- All final states in dead branches

not realistic =

- Enormous or tiny...
- "soup blender" or "waffle iron"
 - eg. languages almost entirely composed of "leaves"
 - eg. languages where all trees are isomorphic
- "Frankenstein" automaton
 - eg. unreachable states
 - eg. states that are never used
 - eg. rules that immediately violate the constraints
 - everything which we will call "dead branches" in general.

not realistic =

- Enormous or tiny...
- "soup blender" or "waffle iron"
 - eg. languages almost entirely composed of "leaves"
 - eg. languages where all trees are isomorphic
- "Frankenstein" automaton
 - eg. unreachable states
 - eg. states that are never used
 - eg. rules that immediately violate the constraints
 - everything which we will call "dead branches" in general.

not realistic =

- Enormous or tiny...
- "soup blender" or "waffle iron"
 - eg. languages almost entirely composed of "leaves"
 - eg. languages where all trees are isomorphic
- "Frankenstein" automaton
 - eg. unreachable states
 - eg. states that are never used
 - eg. rules that immediately violate the constraints
 - everything which we will call "dead branches" in general.

- Generate a raw TAGED A, as "interesting" as possible.
- 2 Detect whether \mathcal{A} is clearly easy. Throw it away if it is.
- **③** Remove dead branches from \mathcal{A} .
- \mathcal{A} is good, ship it!

Detect easy cases, remove dead branches

Done at the same time. We call this the **cleanup**. \rightarrow *next section*.

Generate "quite" interesting TAGEDs

Generating rules with the desired **structure** of the automaton and its accepted language as guide. $\hookrightarrow next^2$ section.

- **(**) Generate a raw TAGED A, as "interesting" as possible.
- **②** Detect whether \mathcal{A} is clearly easy. Throw it away if it is.
- **③** Remove dead branches from \mathcal{A} .
- \mathcal{A} is good, ship it!

Detect easy cases, remove dead branches

Done at the same time. We call this the **cleanup**. \rightarrow *next section*.

Generate "quite" interesting TAGEDs

Generating rules with the desired **structure** of the automaton and its accepted language as guide. $\hookrightarrow next^2$ section.

- **(**) Generate a raw TAGED A, as "interesting" as possible.
- 2 Detect whether \mathcal{A} is clearly easy. Throw it away if it is.
- **③** Remove dead branches from A.
- \mathcal{A} is good, ship it!

Detect easy cases, remove dead branches

Done at the same time. We call this the **cleanup**. \rightarrow *next section*.

Generate "quite" interesting TAGEDs

Generating rules with the desired **structure** of the automaton and its accepted language as guide. $\hookrightarrow next^2$ section.

- **(**) Generate a raw TAGED A, as "interesting" as possible.
- 2 Detect whether \mathcal{A} is clearly easy. Throw it away if it is.
- **③** Remove dead branches from \mathcal{A} .
- \mathcal{A} is good, ship it!

Detect easy cases, remove dead branches

Done at the same time. We call this the **cleanup**. \hookrightarrow *next section*.

Generate "quite" interesting TAGEDs

Generating rules with the desired **structure** of the automaton and its accepted language as guide. $\hookrightarrow next^2$ section.

- **(**) Generate a raw TAGED A, as "interesting" as possible.
- **②** Detect whether \mathcal{A} is clearly easy. Throw it away if it is.
- **8** Remove dead branches from *A*.
- \mathcal{A} is good, ship it!

Detect easy cases, remove dead branches

Done at the same time. We call this the **cleanup**. \rightarrow *next section*.

Generate "quite" interesting TAGEDs

Generating rules with the desired **structure** of the automaton and its accepted language as guide. $\hookrightarrow next^2$ section.

- **O** Generate a raw TAGED A, as "interesting" as possible.
- 2 Detect whether \mathcal{A} is clearly easy. Throw it away if it is.
- **③** Remove dead branches from \mathcal{A} .
- \mathcal{A} is good, ship it!

Detect easy cases, remove dead branches

Done at the same time. We call this the **cleanup**. \rightarrow *next section*.

Generate "quite" interesting TAGEDs

Generating rules with the desired **structure** of the automaton and its accepted language as guide. $\hookrightarrow next^2$ section.

< 同 > < 三 > < 三 >

Cleanup

Improved version of standard reduction (reachability) algorithm for TAs. Takes advantage of equality constraints to remove useless rules and states.

ie. remove dead branches.

Not enough time: in annex

Raw TAGED Generation

• • = • • =

э

Final random generation A compromise

Rough outline of random generation of TA

- Build a *pool* of head states from skeleton-driven generation.
 Keep track of minimum accepted height.
- **2** Store the rules in Δ .
- S while requested minimum height not reached, do
 - purge too old states from pool
 - \bigcirc let q be a fresh state
 - ${\ensuremath{\mathfrak{O}}}$ let δ be a random number (of rules), then do δ times
 - Iet n be a random number (arity)
 - **Q** let σ be a random symbol of Σ_n
 - (a) let p_1, \ldots, p_n be random states from pool
 - () add rule $\sigma(p_1,\ldots,p_n) o q$ to Δ
 - add q to pool

• F = some random final states from pool

伺 ト イヨト イヨト

- Build a *pool* of head states from skeleton-driven generation.
 Keep track of minimum accepted height.
- **2** Store the rules in Δ .
- S while requested minimum height not reached, do
 - purge too old states from pool
 - \bigcirc let q be a fresh state
 - (a) let δ be a random number (of rules), then do δ times
 - let *n* be a random number (arity)
 - **②** let σ be a random symbol of Σ_n
 - (a) let p_1, \ldots, p_n be random states from pool
 - () add rule $\sigma(p_1,\ldots,p_n) \to q$ to Δ
 - add q to pool
- F = some random final states from pool

q in pool: m(q) is "height of the smallest term $t \in \mathcal{L}ng(\mathcal{A},q)$ "

< 同 > < 三 > < 三 >

- Build a *pool* of head states from skeleton-driven generation. Keep track of minimum accepted height.
- **2** Store the rules in Δ .

while requested minimum height not reached, do

- purge too old states from pool
- \bigcirc let q be a fresh state
- \bullet let δ be a random number (of rules), then do δ times
 - let *n* be a random number (arity)
 - **②** let σ be a random symbol of Σ_n
 - (a) let p_1, \ldots, p_n be random states from pool
 - () add rule $\sigma(p_1,\ldots,p_n) \to q$ to Δ
 - add q to pool

• F = some random final states from pool

Initial (skeleton generation) rules. Other rules will be added later.

通 ト イ ヨ ト イ ヨ ト

- Build a *pool* of head states from skeleton-driven generation. Keep track of minimum accepted height.
- **2** Store the rules in Δ .

S while requested minimum height not reached, do

- purge too old states from pool
- \bigcirc let q be a fresh state
- (a) let δ be a random number (of rules), then do δ times
 - let *n* be a random number (arity)
 - **②** let σ be a random symbol of Σ_n
 - (a) let p_1, \ldots, p_n be random states from pool
 - () add rule $\sigma(p_1,\ldots,p_n) \to q$ to Δ
 - add q to pool

• F = some random final states from pool

Here q is "too old" if m(q) is too small compared to

 $\max_{p\in \text{pool}} m(p).$
- Build a *pool* of head states from skeleton-driven generation. Keep track of minimum accepted height.
- **Q** Store the rules in Δ .

S while requested minimum height not reached, do

- purge too old states from pool
- \bigcirc let q be a fresh state
- **a** let δ be a random number (of rules), then do δ times
 - let *n* be a random number (arity)
 - **②** let σ be a random symbol of Σ_n
 - (a) let p_1, \ldots, p_n be random states from pool
 - () add rule $\sigma(p_1,\ldots,p_n) \to q$ to Δ
 - add q to pool
- F = some random final states from pool

Selected according to discrete probability distributions.

- Build a *pool* of head states from skeleton-driven generation. Keep track of minimum accepted height.
- **Q** Store the rules in Δ .
- S while requested minimum height not reached, do
 - purge too old states from pool
 - \bigcirc let q be a fresh state
 - (a) let δ be a random number (of rules), then do δ times
 - let *n* be a random number (arity)
 - **2** let σ be a random symbol of Σ_n
 - (a) let p_1, \ldots, p_n be random states from pool
 - () add rule $\sigma(p_1,\ldots,p_n) \to q$ to Δ
 - add q to pool
- F = some random final states from pool

Random symbols in Σ_n are selected uniformly.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- Build a *pool* of head states from skeleton-driven generation. Keep track of minimum accepted height.
- **Q** Store the rules in Δ .
- S while requested minimum height not reached, do
 - purge too old states from pool
 - \bigcirc let q be a fresh state
 - (a) let δ be a random number (of rules), then do δ times
 - let *n* be a random number (arity)
 - **②** let σ be a random symbol of Σ_n
 - **③** let p_1, \ldots, p_n be random states from pool
 - () add rule $\sigma(p_1,\ldots,p_n) \to q$ to Δ
 - add q to pool
- F = some random final states from pool

DPD biased towards states with higher min height.

- Build a *pool* of head states from skeleton-driven generation. Keep track of minimum accepted height.
- **Q** Store the rules in Δ .
- S while requested minimum height not reached, do
 - purge too old states from pool
 - \bigcirc let q be a fresh state
 - (a) let δ be a random number (of rules), then do δ times
 - let *n* be a random number (arity)
 - **②** let σ be a random symbol of Σ_n
 - (a) let p_1, \ldots, p_n be random states from pool
 - () add rule $\sigma(p_1,\ldots,p_n) \to q$ to Δ
 - **add** *q* to pool
- F = some random final states from pool

The first time, $q \notin \text{pool}$: reachable. Afterwards, just update m(q).

- Build a *pool* of head states from skeleton-driven generation. Keep track of minimum accepted height.
- **②** Store the rules in Δ .
- S while requested minimum height not reached, do
 - purge too old states from pool
 - \bigcirc let q be a fresh state
 - (a) let δ be a random number (of rules), then do δ times
 - let *n* be a random number (arity)
 - **②** let σ be a random symbol of Σ_n
 - (a) let p_1, \ldots, p_n be random states from pool
 - () add rule $\sigma(p_1,\ldots,p_n) \to q$ to Δ
 - add q to pool
- F = some random final states from pool

DPD, strongly biased towards higher min heights.

- Number of constraints $p =_{\mathcal{A}} q$ logarithmic in |Q|.
- Bias towards diagonal constraints.

→ Ξ →

Height	Q	 A	$\ oldsymbol{A}\ / oldsymbol{Q} $	$ \Delta $	$ \Delta / Q $
4	6.89	43.49	6.31	11.30	1.64
10	18.14	119.84	6.61	27.12	1.50
16	29.58	196.94	6.66	43.13	1.46
22	41.31	276.70	6.70	59.67	1.44
28	52.58	353.26	6.72	75.47	1.44
34	64.47	434.65	6.74	92.36	1.43
40	75.38	507.81	6.74	107.55	1.43
46	87.00	588.54	6.76	124.14	1.43
52	99.45	672.86	6.77	141.87	1.43
58	110.41	745.74	6.75	156.70	1.42
64	122.41	826.10	6.75	173.27	1.42
70	133.68	903.50	6.76	189.26	1.42
76	145.09	981.29	6.76	205.39	1.42

Table: Generation 4: size statistics

イロン イ団 と イヨン イヨン

2

Q	Run ρ	\mathcal{L} ng (A) $\neq \emptyset$	\mathcal{L} ng (A) = \emptyset	Failure
4.	26.8%	73.2%	0.0%	0.0%
7.	43.6%	55.6%	0.8%	0.0%
10.	48.8%	50.8%	0.4%	0.0%
13.	49.2%	50.8%	0.0%	0.0%
16.	50.0%	50.0%	0.0%	0.0%
19.	42.4%	57.6%	0.0%	0.0%
22.	41.2%	58.4%	0.4%	0.0%
25.	34.8%	65.2%	0.0%	0.0%
28.	30.4%	69.6%	0.0%	0.0%
31.	36.4%	63.6%	0.0%	0.0%
34.	38.8%	61.2%	0.0%	0.0%
37.	35.6%	64.4%	0.0%	0.0%
40.	28.0%	72.0%	0.0%	0.0%

Table: "Soup blender" typical results

æ

min H	Run ρ	$A \neq \emptyset$	$A = \emptyset$	Failure	\prec
6	0.4%	69.6%	28.8%	1.2%	2.8%
9	0.4%	69.2%	25.6%	4.8%	6.4%
12	0.0%	55.6%	36.4%	8.0%	9.2%
15	0.0%	61.2%	26.4%	12.4%	7.6%
18	0.0%	53.2%	30.0%	16.8%	6.4%
21	0.0%	50.8%	30.0%	19.2%	8.8%
24	0.0%	46.8%	35.6%	17.6%	7.2%
27	0.0%	49.2%	28.8%	22.0%	8.8%
27	0.0%	45.6%	31.2%	23.2%	5.6%
30	0.0%	45.2%	31.2%	23.6%	6.8%
31	0.0%	50.8%	25.2%	24.0%	6.0%
34	0.0%	50.8%	26.8%	22.4%	6.4%
37	0.0%	43.6%	26.8%	29.6%	7.2%

Table: Latest generation: results

(日) (同) (日) (日)

æ

Conclusion

- This scheme avoids the experimental pitfalls of previous attempts.
 - Structured language
 - Coherent automaton
 - Sane size and density
- A better experimental protocol than hand-written automata
- Many parameters can be modelled on statistics for more realism
- Made for the Emptiness problem, but useful for other problems *eg.* Membership (with a term generation scheme)
- Forthcoming research report, more exhaustive than the slides.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., and Tommasi, M. (2007).
Tree Automata Techniques and Applications.
release October, 12th 2007.
Filiot, E., Talbot, JM., and Tison, S. (2008). Tree Automata with Global Constraints
In 12th International Conference on Developments in Language Theory (DLT), pages 314–326, Kyoto Japon.
Godoy, L., Jacquemard, F., and Vacher, C. The Emptiness Problem for Tree Automata with Global Constraints.
Tabakov, D. and Vardi, M. (2005). Experimental evaluation of classical automata constructions. In <i>Logic for Programming, Artificial Intelligence, and Reasoning,</i> pages 396–411. Springer.

A successful scheme for NFAs [Tabakov and Vardi, 2005]

To generate a NFA (Σ , Q, Q_0 , F, δ), fix |Q|, and $\Sigma = \{0, 1\}$, generate transitions and final states according to ratios:

$$r = r_{\sigma} = \frac{|\{(p, \sigma, q) \in \delta\}|}{|Q|}, \forall \sigma \in \Sigma \text{ and } f = \frac{|F|}{|Q|}.$$

A successful scheme for NFAs [Tabakov and Vardi, 2005]

To generate a NFA (Σ , Q, Q_0 , F, δ), fix |Q|, and $\Sigma = \{0, 1\}$, generate transitions and final states according to ratios:

$$r = r_{\sigma} = \frac{|\{(p, \sigma, q) \in \delta\}|}{|Q|}, \forall \sigma \in \Sigma \text{ and } f = \frac{|F|}{|Q|}$$

- Successful scheme for word automata
- ... adaptation to Tree Automata?

A successful scheme for NFAs [Tabakov and Vardi, 2005]

To generate a NFA (Σ , Q, Q_0 , F, δ), fix |Q|, and $\Sigma = \{0, 1\}$, generate transitions and final states according to ratios:

$$r = r_{\sigma} = rac{|\{(p, \sigma, q) \in \delta\}|}{|Q|}, \forall \sigma \in \Sigma \quad \text{and} \quad f = rac{|F|}{|Q|}.$$

An adaptation to NTAs

To generate a NTA (Σ , Q, F, Δ), fix |Q| and Σ , generate rules according to ratios:

$$r = \frac{|\Delta|}{|\{f(q_1, \dots, q_n) \mid f(q_1, \dots, q_n) \to q \in \Delta\}|} \quad \text{and} \quad f = \frac{|F|}{|G|}$$

An adaptation to NTAs

To generate a NTA (Σ , Q, F, Δ), fix |Q| and Σ , generate rules according to ratios:

$$r = \frac{|\Delta|}{|\{f(q_1,\ldots,q_n) \mid f(q_1,\ldots,q_n) \to q \in \Delta\}|} \quad \text{and} \quad f = \frac{|F|}{|Q|}.$$

- Used for Universality
- Experimental protocol not fully explained

Schemes which did not work well Dense generation

Dense generation

Fix alphabet $\Sigma = \{ a, b, c/_0, f, g, h/_2 \}$, |Q|, and probas p_{Δ} and p_F . Build

$$\Delta \subseteq \overline{\Delta}$$
 where $\overline{\Delta} \stackrel{\mathsf{def}}{=} igoplus_{k \in \mathbb{N}} \Sigma_k imes Q^{k+1},$

by choosing each rule in $\overline{\Delta}$ with proba p_{Δ} . Build $F \subseteq Q$ by choosing each state with proba p_F .

- Generates automata that are very dense. *Real-world automata* are mostly sparse.
- Rules for symbols of high arity are overly represented. *eg.* try with symbol $\sigma \in \Sigma_{10}$
- *soup blender*: "leaf language", mostly dead branches. *ie.* cleanup kills everything.

Schemes which did not work well Dense generation

Dense generation

Fix alphabet $\Sigma = \{ a, b, c/_0, f, g, h/_2 \}$, |Q|, and probas p_{Δ} and p_F . Build

$$\Delta \subseteq \overline{\Delta}$$
 where $\overline{\Delta} \stackrel{\mathsf{def}}{=} \biguplus_{k \in \mathbb{N}} \Sigma_k \times Q^{k+1},$

by choosing each rule in $\overline{\Delta}$ with proba p_{Δ} . Build $F \subseteq Q$ by choosing each state with proba p_F .

- Generates automata that are very dense. *Real-world automata* are mostly sparse.
- Rules for symbols of high arity are overly represented. eg. try with symbol $\sigma\in\Sigma_{10}$
- *soup blender*: "leaf language", mostly dead branches. *ie.* cleanup kills everything.

Sparse generation

As in dense generation, but fix *expected in-degree* δ ,

$$orall k \in \mathbb{N}, \quad p_{\Delta}(k) = \left\{ egin{array}{cc} rac{\delta}{\left|\mathfrak{At}_{\Sigma}\right| \cdot \left|\Sigma_{k}\right| \cdot \left|Q\right|^{k}} & ext{if } \Sigma_{k}
eq arnothing \ 0 & ext{if } \Sigma_{k} = arnothing \end{array}
ight.$$

- More sparse automata: avg. $|\Delta| = \delta |Q|$
- No high arity explosion
- ... but still lots of dead branches (cleanup ratio 1/30)
- ...and still "leaf language".

Sparse generation

As in dense generation, but fix expected in-degree δ ,

$$orall k \in \mathbb{N}, \quad p_{\Delta}(k) = \left\{ egin{array}{cc} rac{\delta}{\left|\mathfrak{At}_{\Sigma}\right| \cdot \left|\Sigma_{k}\right| \cdot \left|Q\right|^{k}} & ext{if } \Sigma_{k}
eq arnothing \ 0 & ext{if } \Sigma_{k} = arnothing \end{array}
ight.$$

- More sparse automata: avg. $|\Delta| = \delta |Q|$
- No high arity explosion
- ... but still lots of dead branches (cleanup ratio 1/30)
- ...and still "leaf language".

- More sparse automata: avg. $|\Delta| = \delta |Q|$
- No high arity explosion
- ... but still lots of dead branches (cleanup ratio 1/30)
- ... and still "leaf language".

Probability of final leaf

$$P = 1 - (1 - p_F)^L = 1 - (1 - p_F)^{\frac{\delta |Q|}{|\mathfrak{A} \mathfrak{r}_{\Sigma}|}} \cong 1 - \left(\frac{4}{5}\right)^{|Q|}$$

Р	0.5	0.75	0.9	0.99	0.999
Q	3	6	10	20	30

Schemes which did not work well Sparse generation

- More sparse automata: avg. $|\Delta| = \delta |Q|$
- No high arity explosion
- ... but still lots of dead branches (cleanup ratio 1/30)
- ...and still "leaf language".

Probability of final leaf

$$P = 1 - (1 - p_F)^L = 1 - (1 - p_F)^{\frac{\delta |Q|}{|\mathfrak{Ar}_{\Sigma}|}} \cong 1 - \left(\frac{4}{5}\right)^{|G|}$$

Ρ	0.5	0.75	0.9	0.99	0.999
Q	3	6	10	20	30

This is a pervasive problem with unstructured generation!

伺 ト イヨ ト イヨ ト

Skeleton-driven generation

Lessons learned from previous attempts

- We want sparse automata: keep number of rules small
- Avoid high arity rules explosion
- Avoid "leaf languages": too easy for brute force.
 - \implies reason in terms of the minimal height of accepted terms

Preliminary Idea

Fix alphabet to say, Σ^5 with $\Sigma^n \stackrel{\text{def}}{=} \{a_1, \dots, a_n/_0, f_1, \dots, f_n/_1, g_1, \dots, g_n/_2, h_1, \dots, h_n/_3\}.$

- Generate skeletons s_1, \ldots, s_n , within constraints of height and width and arity ≤ 3 .
- Then generate rules sets Δ₁,..., Δ_n to accept terms isomorphic to these skeletons.
- **3** Topmost states q_k in each $\Delta_k =$ final states

Skeleton-driven generation

Lessons learned from previous attempts

- We want sparse automata: keep number of rules small
- Avoid high arity rules explosion
- Avoid "leaf languages": too easy for brute force.
 - \implies reason in terms of the minimal height of accepted terms

Preliminary Idea

Fix alphabet to say, Σ^5 with $\Sigma^n \stackrel{\text{def}}{=} \{a_1, \ldots, a_n/_0, f_1, \ldots, f_n/_1, g_1, \ldots, g_n/_2, h_1, \ldots, h_n/_3\}.$

- Generate skeletons s_1, \ldots, s_n , within constraints of height and width and arity ≤ 3 .
- Then generate rules sets Δ₁,..., Δ_n to accept terms isomorphic to these skeletons.
- Solution Topmost states q_k in each $\Delta_k =$ final states

Skeleton-driven generation

★ 3 → < 3</p>

Skeleton-driven generation

Skeleton-driven generation

Generated rules examples (the real algorithm is recursive from top)

new state $q_0, \; a_2
ightarrow q_0, a_5
ightarrow q_0 \in \Delta$, etc

• • = • • = •

Skeleton-driven generation

Generated rules examples (the real algorithm is recursive from top)

new state $q_0, a_2 \rightarrow q_0, a_5 \rightarrow q_0 \in \Delta$, etc new state $q_1, f_3(q_0) \rightarrow q_1, f_2(q_0) \rightarrow q_1, f_5(q_0) \rightarrow q_1 \in \Delta$, etc

Skeleton-driven generation

Generated rules examples (the real algorithm is recursive from top)

new state $q_0, a_2 \rightarrow q_0, a_5 \rightarrow q_0 \in \Delta$, etc new state $q_1, f_3(q_0) \rightarrow q_1, f_2(q_0) \rightarrow q_1, f_5(q_0) \rightarrow q_1 \in \Delta$, etc new state q_x , obtained after a few steps

Skeleton-driven generation

Generated rules examples (the real algorithm is recursive from top)

new state $q_0, a_2 \rightarrow q_0, a_5 \rightarrow q_0 \in \Delta$, etc new state $q_1, f_3(q_0) \rightarrow q_1, f_2(q_0) \rightarrow q_1, f_5(q_0) \rightarrow q_1 \in \Delta$, etc new state q_x , obtained after a few steps new final state $q_f, g_1(q_x, q_1) \rightarrow q_f \in \Delta$

Skeleton-driven generation

Getting (Δ_k, q_k) from s_k (OCaml code)

```
\begin{array}{l} \text{let conversion } \delta \text{ skel} = \\ \text{let } \Delta = \text{ref } \Delta . \varnothing \text{ in} \\ \text{let make_rules ar } [q_1, \ldots, q_n] \ q \ m = \text{ for } k = 1 \ \text{to } m \ \text{do} \\ \text{let } \sigma = \text{gene\_symbol ar in } \Delta . \hookleftarrow \ (\sigma, [q_1, \ldots, q_n], q) \ \Delta \\ \text{done in let rec } f = \lambda \\ & | \text{ Leaf } 0 \rightarrow \\ \text{ let } q_x = \text{fresh\_state() in make\_rules } 0 \ \varnothing \ q_x \ \delta; \ \text{return } q_x \\ & | \text{ Node (ar, subs)} \rightarrow \\ \text{ let } q_x = \text{fresh\_state() and } [q_1, \ldots, q_n] = \mathcal{L}. \text{map } f \ \text{subs in} \\ & \text{ make\_rules ar } [q_1, \ldots, q_n] \ q_x \ \delta; \ \text{return } q_x \\ \text{ in let head } = f \ \text{skel in } (!\Delta, \text{ head}) \end{array}
```

Getting a TA from (Δ_k, q_k)

We have Σ fixed, just extract all states from all Δ_k to Q, $F = \{ q_k \mid k = 1..n \}, \Delta = \cup_k \Delta_k.$

) Q (?

Skeleton-driven generation

Getting (Δ_k, q_k) from s_k (OCaml code)

```
\begin{array}{l} \text{let conversion } \delta \text{ skel} = \\ \text{let } \Delta = \text{ref } \Delta . \varnothing \text{ in} \\ \text{let make_rules ar } [q_1, \ldots, q_n] \ q \ m = \text{ for } k = 1 \ \text{to } m \ \text{do} \\ \text{let } \sigma = \text{gene\_symbol ar in } \Delta . \hookleftarrow \ (\sigma, [q_1, \ldots, q_n], q) \ \Delta \\ \text{done in let rec } f = \lambda \\ & | \text{ Leaf } 0 \rightarrow \\ \text{ let } q_x = \text{fresh\_state() in make\_rules } 0 \ \varnothing \ q_x \ \delta; \ \text{return } q_x \\ & | \text{ Node (ar, subs)} \rightarrow \\ \text{ let } q_x = \text{fresh\_state() and } [q_1, \ldots, q_n] = \mathcal{L}. \text{map } f \ \text{subs in} \\ & \text{ make\_rules ar } [q_1, \ldots, q_n] \ q_x \ \delta; \ \text{return } q_x \\ \text{ in let head } = f \ \text{skel in } (!\Delta, \text{ head}) \end{array}
```

Getting a TA from (Δ_k, q_k)

We have Σ fixed, just extract all states from all Δ_k to Q, $F = \{ q_k \mid k = 1..n \}, \Delta = \cup_k \Delta_k.$

- Guaranteed minimal height (difficulty?)
- No dead branches for TA
- The automata are sparse, but the number of states explodes with the height.
- *waffle iron*: all accepted terms are isomorphic to one of *n* trees (*n* small). This by construction. *Compromises difficulty*!
- Many kinds of transition rules are not represented
 - ullet rules with immediate cycles *eg.* $f(\ldots,q,\ldots)
 ightarrow q$
 - repetitions of the same state eg. $f(\ldots, p, \ldots, p, \ldots)
 ightarrow q$
 - reusing old states eg. $f(\ldots, p, \ldots) \rightarrow q$, with p not fresh
 - for any $q \in Q$, all rules in $\mathfrak{Rul}(q)$ share the same signature!

< 同 > < 三 > < 三 >

- Guaranteed minimal height (difficulty?)
- No dead branches for TA
- The automata are sparse, but the number of states explodes with the height.
- *waffle iron*: all accepted terms are isomorphic to one of *n* trees (*n* small). This by construction. *Compromises difficulty!*
- Many kinds of transition rules are not represented
 - ullet rules with immediate cycles *eg.* $f(\ldots,q,\ldots)
 ightarrow q$
 - repetitions of the same state eg. $f(\ldots,p,\ldots,p,\ldots)
 ightarrow q$
 - reusing old states eg. $f(\ldots, p, \ldots) \rightarrow q$, with p not fresh
 - for any $q \in Q$, all rules in $\mathfrak{Rul}(q)$ share the same signature!

< 同 > < 三 > < 三 >

Cleanup

Improved version of standard reduction (reachability) algorithm for tree automata, which takes advantage of equality constraints to remove useless rules and states. In other words, *remove dead branches*.

- Spurious rules
- Oseless states
- **③** Σ -spurious states
- Spurious states

Definition (Spurious rule)

Let \mathcal{A} be a TAGED. A rule $f(q_1, \ldots, q_n) \rightarrow q \in \Delta$ is *spurious* if there exists $k \in \llbracket 1, n \rrbracket$ such that $q_k =_{\mathcal{A}} q$.

• • = • • =

Cleanup: hunting for spuriousness Spurious Rules

Definition (Spurious rule)

Let \mathcal{A} be a TAGED. A rule $f(q_1, \ldots, q_n) \rightarrow q \in \Delta$ is spurious if there exists $k \in \llbracket 1, n \rrbracket$ such that $q_k =_{\mathcal{A}} q$.

Lemma (Removal of spurious rules)

All spurious rules can be removed without altering the accepted language.
Cleanup: hunting for spuriousness Spurious Rules

Definition (Spurious rule)

Let \mathcal{A} be a TAGED. A rule $f(q_1, \ldots, q_n) \rightarrow q \in \Delta$ is spurious if there exists $k \in \llbracket 1, n \rrbracket$ such that $q_k =_{\mathcal{A}} q$.

Proof idea

If a spurious rule was used, a term would have to be equal with one of its strict subterms. Which is absurd.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Let
$$p_y^{\times}, p, q \in Q, \sigma_1, \dots, \sigma_m \in \Sigma$$
, and

$$\mathfrak{Rul}(q) = \begin{cases} \sigma_1(p_1^1, \dots, p_{n_1}^1, p, p_1'^1, \dots, p_{n_1'}'^1) \to q \\ \vdots \\ \sigma_m(p_1^m, \dots, p_{n_m}^m, p, p_1'^m, \dots, p_{n_m'}'^m) \to q \end{cases}$$

Sure requirements

 $p \in \mathfrak{sReq}(q)$

Potential Requirements

$$\mathfrak{pReq}(q) = \{ p \} \cup \left\{ p_y^x, p_y^{\prime x} \mid x, y \in \dots \right\}$$

イロト イボト イヨト イヨト

э

Let
$$p_y^{\mathsf{x}}, p, q \in Q, \sigma_1, \dots, \sigma_m \in \Sigma$$
, and
 $\mathfrak{Rul}(q) = \begin{cases} \sigma_1(p_1^1, \dots, p_{n_1}^1, p, p_1'^1, \dots, p_{n_1'}'^1) \to q \\ \vdots \\ \sigma_m(p_1^m, \dots, p_{n_m}^m, p, p_1'^m, \dots, p_{n_m'}'^m) \to q \end{cases}$

Sure requirements

 $p\in\mathfrak{sReq}(q)$

Potential Requirements

$$\mathfrak{pReq}(q) = \set{p} \cup \left\{ \left. p_y^x, p_y^{\prime x} \right| \, x, y \in \dots \right\}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let
$$p_y^{\times}, p, q \in Q, \sigma_1, \dots, \sigma_m \in \Sigma$$
, and
 $\mathfrak{Rul}(q) = \begin{cases} \sigma_1(p_1^1, \dots, p_{n_1}^1, p, p_1'^1, \dots, p_{n_1'}'^1) \to q \\ \vdots \\ \sigma_m(p_1^m, \dots, p_{n_m}^m, p, p_1'^m, \dots, p_{n_m'}'^m) \to q \end{cases}$

Sure requirements

$$p\in\mathfrak{sReq}(q)$$

Potential Requirements

$$\mathfrak{pReq}(q) = \set{p} \cup \left\{ \left. p_y^x, p_y'^x \; \right| \; x, y \in \dots
ight\}$$

< ロ > < 同 > < 回 > < 回 >

э

Let
$$p_y^x, p, q \in Q, \sigma_1, \dots, \sigma_m \in \Sigma$$
, and

$$\mathfrak{Rul}(q) = \begin{cases} \sigma_1(p_1^1, \dots, p_{n_1}^1, p, p_1'^1, \dots, p_{n_1'}'^1) \to q \\ \vdots \\ \sigma_m(p_1^m, \dots, p_{n_m}^m, p, p_1'^m, \dots, p_{n_m'}'^m) \to q \end{cases}$$

Sure requirements

$$\mathfrak{sReq}(q) \stackrel{\mathsf{def}}{=} \bigcap_{\substack{r \in \mathfrak{Rul}(q) \\ q \notin \mathfrak{Ant}(r)}} \mathfrak{Ant}(r),$$

Potential Requirements

$$\mathfrak{pReq}(q) \stackrel{\mathsf{def}}{=} \bigcup_{r \in \mathfrak{Rul}(q)} \mathfrak{Ant}(r).$$

Vincent HUGOT Random Generation of Hard Instances for TAGED Emptiness

Cleanup: hunting for spuriousness Needs and friends

 $\mathfrak{Frnd}(q) =$ "transitive closure of $\mathfrak{pReq}(q)$ ". $\mathfrak{Need}(q) =$ "transitive closure of $\mathfrak{sReq}(q)$ ".

Definition (Friend states)

 $\mathfrak{Frnd}(q)$: the smallest subset of Q satisfying

)
$$\mathfrak{pReq}(q) \subseteq \mathfrak{Frnd}(q)$$

2 if $p \in \mathfrak{Frnd}(q)$ then $\mathfrak{pReq}(p) \subseteq \mathfrak{Frnd}(q)$

Definition (Needs)

 $\mathfrak{Need}(q)$: smallest subset of Q satisfying

) s
$$\mathfrak{Req}(q)\subseteq\mathfrak{Need}(q)$$

2 if $p \in \mathfrak{Need}(q)$ then $\mathfrak{sReq}(p) \subseteq \mathfrak{Need}(q)$

▲ 同 ▶ ▲ 国 ▶ ▲ 国

"Only friends of q appear under q"

Lemma ("Rely on your Friends" principle)

 $\textit{Let } \rho \textit{ a run: } \forall \alpha, \beta \in \mathcal{P}\!\textit{os}(t) : \beta \lhd \alpha \implies \rho(\beta) \in \mathfrak{Frnd}\left(\rho(\alpha)\right).$

'Every need of q appears under q"

Lemma (Needs)

Let ρ a run such that $\rho(\beta) = q$. For any $p \in \mathfrak{Need}(q)$, there exists a position $\alpha_p \triangleleft \beta$ such that $\rho(\alpha_p) = p$.

・ 同 ト ・ ヨ ト ・ ヨ ト

"Only friends of q appear under q"

Lemma ("Rely on your Friends" principle)

 $\textit{Let } \rho \textit{ a run: } \forall \alpha, \beta \in \mathcal{P} \textit{os}(t) : \beta \lhd \alpha \implies \rho(\beta) \in \mathfrak{Frnd} \left(\rho(\alpha) \right).$

"Every need of q appears under q"

Lemma (Needs)

Let ρ a run such that $\rho(\beta) = q$. For any $p \in \mathfrak{Need}(q)$, there exists a position $\alpha_p \triangleleft \beta$ such that $\rho(\alpha_p) = p$.

・ 同 ト ・ ヨ ト ・ ヨ ト

"Only friends of a final state are useful"

Theorem (Removal of useless states)

Let $\mathcal{A} = (\Sigma, Q, F, \Delta)$ be a tree automaton. Then

$$\mathcal{L}ng(\mathcal{A}) = \mathcal{L}ng\left(\mathcal{A}'
ight) ~~ \textit{with} ~~ \mathcal{A}' \stackrel{def}{=} \mathfrak{Rst}\left(\mathcal{A}, F \cup igcup_{q_f \in F} \mathfrak{Fnd}(q_f)
ight).$$

Furthermore, the accepting runs are the same for \mathcal{A} and \mathcal{A}' .

Proof idea

Every accepting run is rooted in a final state. Therefore they cannot use any state not in $F \cup \bigcup_{q_f \in F} \mathfrak{Fend}(q_f)$.

伺 ト く ヨ ト く ヨ ト

"Only friends of a final state are useful"

Theorem (Removal of useless states)

Let $\mathcal{A} = (\Sigma, Q, F, \Delta)$ be a tree automaton. Then

$$\mathcal{L}ng(\mathcal{A}) = \mathcal{L}ng\left(\mathcal{A}'
ight) ~~ \textit{with} ~~ \mathcal{A}' \stackrel{def}{=} \mathfrak{Rst}\left(\mathcal{A}, F \cup igcup_{q_f \in F} \mathfrak{Frnd}(q_f)
ight).$$

Furthermore, the accepting runs are the same for \mathcal{A} and \mathcal{A}' .

Proof idea

Every accepting run is rooted in a final state. Therefore they cannot use any state not in $F \cup \bigcup_{q_f \in F} \mathfrak{Frnd}(q_f)$.

Cleanup: hunting for spuriousness Σ -spurious states

Definition (Support of a state)

Support of q: the set of all symbols of Σ in which a term which evaluates to q may be rooted.

$$\mathfrak{Sup}(q) \stackrel{\mathsf{def}}{=} \left\{ f \in \Sigma \mid \ \exists f(\dots) \to q \in \Delta \right\}.$$

Definition (Σ -spurious state)

A state $q \in Q$ is a Σ -spurious state if there exist $p, p' \in \mathfrak{Need}(q)$ such that $p =_{\mathcal{A}} p'$ and $\mathfrak{Sup}(p) \cap \mathfrak{Sup}(p') = \emptyset$.

Lemma (Removal of Σ-spurious states)

Let \mathcal{A} be a TAGED, $S \subseteq Q$ the set of all its Σ -spurious states, and $\mathcal{A}' = \mathfrak{Rst}(\mathcal{A}, Q \setminus S)$. Then $\mathcal{L}ng(\mathcal{A}) = \mathcal{L}ng(\mathcal{A}')$.

Cleanup: hunting for spuriousness Σ -spurious states

Definition (Support of a state)

Support of q: the set of all symbols of Σ in which a term which evaluates to q may be rooted.

$$\mathfrak{Sup}(q) \stackrel{\mathsf{def}}{=} \left\{ \, f \in \Sigma \mid \ \exists f(\dots)
ightarrow q \in \Delta \,
ight\}.$$

Definition (Σ -spurious state)

A state $q \in Q$ is a Σ -spurious state if there exist $p, p' \in \mathfrak{Need}(q)$ such that $p =_{\mathcal{A}} p'$ and $\mathfrak{Sup}(p) \cap \mathfrak{Sup}(p') = \emptyset$.

Lemma (Removal of Σ -spurious states)

Let \mathcal{A} be a TAGED, $S \subseteq Q$ the set of all its Σ -spurious states, and $\mathcal{A}' = \mathfrak{Rst}(\mathcal{A}, Q \setminus S)$. Then $\mathcal{L}ng(\mathcal{A}) = \mathcal{L}ng(\mathcal{A}')$.

- 4 同 2 4 日 2 4 日 2

Definition (Σ -spurious state)

A state $q \in Q$ is a Σ -spurious state if there exist $p, p' \in \mathfrak{Need}(q)$ such that $p =_{\mathcal{A}} p'$ and $\mathfrak{Sup}(p) \cap \mathfrak{Sup}(p') = \emptyset$.

Lemma (Removal of Σ -spurious states)

Let \mathcal{A} be a TAGED, $S \subseteq Q$ the set of all its Σ -spurious states, and $\mathcal{A}' = \mathfrak{Rst}(\mathcal{A}, Q \setminus S)$. Then $\mathcal{L}ng(\mathcal{A}) = \mathcal{L}ng(\mathcal{A}')$.

Proof idea

If q appears in an accepting run, then so must p and p'. But they cannot satisfy the equality (rooted in different symbols). Contradiction. So q cannot appear in any accepting run.

Definition (Σ -spurious state)

A state $q \in Q$ is a Σ -spurious state if there exist $p, p' \in \mathfrak{Need}(q)$ such that $p =_{\mathcal{A}} p'$ and $\mathfrak{Sup}(p) \cap \mathfrak{Sup}(p') = \emptyset$.

Lemma (Removal of Σ -spurious states)

Let \mathcal{A} be a TAGED, $S \subseteq Q$ the set of all its Σ -spurious states, and $\mathcal{A}' = \mathfrak{Rst}(\mathcal{A}, Q \setminus S)$. Then $\mathcal{L}ng(\mathcal{A}) = \mathcal{L}ng(\mathcal{A}')$.

Proof idea

If q appears in an accepting run, then so must p and p'. But they cannot satisfy the equality (rooted in different symbols). Contradiction. So q cannot appear in any accepting run.

・ ロ ト ・ 同 ト ・ 三 ト ・ 一 ト

Definition (Spurious states)

Let \mathcal{A} be a TAGED. A state $q \in Q$ is said to be a *spurious state* if there exists $p \in \mathfrak{Need}(q)$ such that $p =_{\mathcal{A}} q$.

emma (Removal of spurious states).

Let \mathcal{A} be a TAGED, $S \subseteq Q$ the set of all its spurious states, and $\mathcal{A}' = \mathfrak{Rst}(\mathcal{A}, Q \setminus S)$. Then $\mathcal{L}ng(\mathcal{A}) = \mathcal{L}ng(\mathcal{A}')$.

Proof idea

Suppose q appears in an accepting run at position β , then $\exists \alpha_p \lhd \beta \text{ st. } \rho(\alpha_p) = p$. A strict subterm and its parent are equal. Contradiction. So q does not appear.

< ロ > < 同 > < 三 > < 三 >

Definition (Spurious states)

Let \mathcal{A} be a TAGED. A state $q \in Q$ is said to be a *spurious state* if there exists $p \in \mathfrak{Need}(q)$ such that $p =_{\mathcal{A}} q$.

Lemma (Removal of spurious states)

Let \mathcal{A} be a TAGED, $S \subseteq Q$ the set of all its spurious states, and $\mathcal{A}' = \mathfrak{Rst}(\mathcal{A}, Q \setminus S)$. Then $\mathcal{L}ng(\mathcal{A}) = \mathcal{L}ng(\mathcal{A}')$.

Proof idea

Suppose q appears in an accepting run at position β , then $\exists \alpha_p \lhd \beta \text{ st. } \rho(\alpha_p) = p$. A strict subterm and its parent are equal. Contradiction. So q does not appear.

< ロ > < 同 > < 三 > < 三 >

Definition (Spurious states)

Let \mathcal{A} be a TAGED. A state $q \in Q$ is said to be a *spurious state* if there exists $p \in \mathfrak{Need}(q)$ such that $p =_{\mathcal{A}} q$.

Lemma (Removal of spurious states)

Let \mathcal{A} be a TAGED, $S \subseteq Q$ the set of all its spurious states, and $\mathcal{A}' = \mathfrak{Rst}(\mathcal{A}, Q \setminus S)$. Then $\mathcal{L}ng(\mathcal{A}) = \mathcal{L}ng(\mathcal{A}')$.

Proof idea

Suppose *q* appears in an accepting run at position β , then $\exists \alpha_p \lhd \beta \text{ st. } \rho(\alpha_p) = p$. A strict subterm and its parent are equal. Contradiction. So *q* does not appear.

- 4 同 2 4 日 2 4 日 2

Cleanup: hunting for spuriousness

```
TAGED 'example 1' [64] = {
  states = #7{q0, q1, q2, q3, q4, q5, q6}
  final = #1{q6}
  rules = #16{
  a2()->q0, a2()->q2, a2()->q4, a3()->q3, a5()->q0, a5()->q2,
  a5()->q4, f1(q5)->q5, f3(q1)->q5, g1(q1, q5)->q5, g3(q0, q0)->q5,
  g3(q1, q5)->q5, g5(q1, q1)->q5, h2(q2, q3, q4)->q1,
  h3(q0, q0, q1)->q6, h3(q2, q3, q4)->q1
  }
  ==rel = #3{(q0,q0), (q3,q4), (q4,q3)}
}
```

State q_1 is Σ -spurious, because it depends on q_3 and q_4 $(q_3, q_4 \in \mathfrak{Meed}(q_1)$ and $\mathfrak{Sup}(q_3) \cap \mathfrak{Sup}(q_4) = \{a_3\} \cap \{a_2, a_5\} = \varnothing)$. Furthermore $q_1 \in \mathfrak{Meed}(q_6)$, so q_6 is unreachable, and $\mathcal{Lng}(\mathcal{A}) = \varnothing$.

・ロット (四) ・ (日) ・ (日)

Cleanup: hunting for spuriousness

```
TAGED 'example 1' [64] = {
  states = #7{q0, q1, q2, q3, q4, q5, q6}
  final = #1{q6}
  rules = #16{
  a2()->q0, a2()->q2, a2()->q4, a3()->q3, a5()->q0, a5()->q2,
  a5()->q4, f1(q5)->q5, f3(q1)->q5, g1(q1, q5)->q5, g3(q0, q0)->q5,
  g3(q1, q5)->q5, g5(q1, q1)->q5, h2(q2, q3, q4)->q1,
  h3(q0, q0, q1)->q6, h3(q2, q3, q4)->q1
  }
  ==rel = #3{(q0,q0), (q3,q4), (q4,q3)}
}
```

State q_1 is Σ -spurious, because it depends on q_3 and q_4 $(q_3, q_4 \in \mathfrak{Meed}(q_1) \text{ and } \mathfrak{Sup}(q_3) \cap \mathfrak{Sup}(q_4) = \{a_3\} \cap \{a_2, a_5\} = \emptyset).$ Furthermore $q_1 \in \mathfrak{Meed}(q_6)$, so q_6 is unreachable, and $\mathcal{Lng}(\mathcal{A}) = \emptyset$.

ヘロト 人間 とくほう 人 ヨト 二日