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Plan of the talk

1 Introduction and motivation

2 (short) Preliminaries:
1 Vanilla Tree Automata
2 Tree Automata with Constraints: TAGEDs
3 The Emptiness problem

3 Objectives and strategy

4 The random generation
1 Cutting dead branches: the cleanup
2 Initial random generation

5 Experimental results and conclusion.
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Introduction
Tree automata and extensions

Tree automata: powerful theoretical tools useful for

automated theorem proving
program verification
XML schema and query languages
. . .

Extensions: developed to expand expressiveness (eg. TAGEDs
add global equality and disequality constraints.).

Drawback: decidability and complexity of decision problems.

Long-term goal: finding algorithms efficient enough for
practical use. (for now, Emptiness for positive TAGEDs)

Problem: without “real-world” testbeds, how to evaluate
efficiency of our algorithms?

Solution: random generation of TAGEDs.
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Bottom-Up Tree automata
Definition through an example

Tree automaton for True propositional formulæ

A
def
=
(
Σ = {∧,∨/2,¬/1, 0, 1/0 } , Q = { q0, q1 } ,F = { q1 } ,∆

)

∆ = {b → qb,

∧ (qb, qb′)→ qb∧b′ ,

∨ (qb, qb′)→ qb∨b′ ,

¬(qb)→ q¬b

| b, b′ ∈ 0, 1}
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Bottom-Up Tree automata
Definition through an example

0→ q0, 1→ q1 ∈ ∆ ∧(q0, q1)→ q0,¬(q0)→ q1 ∈ ∆
¬(q0)→ q1,∨(q0, q1)→ q1 ∈ ∆ ∧(q1, q1)→ q1 ∈ ∆

∧

¬

∧

0 1

∨

0 ¬

0

→∗∆ ∧

¬

∧

q0 q1

∨

q0 ¬

q0

→∗∆ ∧

¬

q0

∨

q0 q1

→∗∆ ∧

q1 q1

→∆ q1

Definition: run of A on a term t ∈ T (Σ)

A run ρ is a mapping from Pos(t) to Q compatible with the
transition rules.
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Bottom-Up Tree automata
Definition through an example
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TAGEDs
Tree Automata With Global Equality and Disequality Constraints

Introduced in Emmanuel Filiot’s PhD thesis on XML query
languages. See [Filiot et al., 2008].

A TAGED is a tuple A = (Σ,Q,F ,∆,=A, 6=A), where

(Σ,Q,F ,∆) is a tree automaton

=A is a reflexive symmetric binary relation on a subset of Q

6=A is an irreflexive and symmetric binary relation on Q. Note
that in our work, we have dealt with a slightly more general
case, where 6=A is not necessarily irreflexive.

A TAGED A is said to be positive if 6=A is empty and negative if =A
is empty.

Runs must be compatible with equality and disequality constraints.
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TAGEDs
Compatibility with global constraints

Let ρ be a run of the TAGED A on a tree t:

Compatibility with the equality constraint =A

∀α, β ∈ Pos(t) : ρ(α) =A ρ(β) =⇒ t|α = t|β .

Compatibility with the disequality constraint 6=A (irreflexive)

∀α, β ∈ Pos(t) : ρ(α) 6=A ρ(β) =⇒ t|α 6= t|β .

Compatibility with the disequality constraint 6=A (non irreflexive)

∀α, β ∈ Pos(t) : α 6= β ∧ ρ(α) 6=A ρ(β) =⇒ t|α 6= t|β .
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TAGEDs
A non-regular language accepted by TAGEDs

TAGED for { f (t, t) | f ∈ Σ, t ∈ T (Σ) } [Filiot et al., 2008]

A
def
= (Σ = { a/0, f /2 } , Q = { q, q̂, qf } , F = { qf } ,

∆, q̂ =A q̂),

where ∆
def
= {f (q̂, q̂)→ qf , f (q, q)→ q, f (q, q)→ q̂,

a→ q, a→ q̂, }

f

f

a a

f

a a

→∗∆ fqf

fq̂

aq aq

fq̂

aq aq
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TAGED emptiness

Emptiness Problem

INPUT: A a positive TAGED.
OUTPUT: Lng (A) = ∅ ?

Applications

XML query languages

model-checking, eg. cryptographic protocol verification, . . .

Theorem [Godoy et al., ]

The Emptiness Problem for TAGEDs is decidable.

Theorem [Filiot et al., 2008]

The Emptiness Problem for positive TAGEDs is EXPTIME-complete.
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Objectives and Strategy
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Constraints of generation
Fleshing out our objectives

Long-term objective

Develop reasonably efficient approaches for deciding the Emptiness
problem for positive TAGEDs

Role of the random generation scheme

Experimental protocol to discriminate between efficient and
inefficient approaches, as replacement of a real-world testbed.

The generated instances must be

Difficult: Else we cannot discriminate between algorithms.

Realistic: failing that, the results bear little relevance to
expected practical performance.
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What is “difficult” ?

not difficult =

Deeply flawed generation scheme (eg. always empty)

Often falls into special trivial case

eg. empty underlying vanilla TA
eg. diagonal positive TAGEDs [Filiot et al., 2008]

Trivial by brute-force (eg. “leaf languages”)

All final states in dead branches
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What is “realistic” ?

not realistic =

Enormous or tiny. . .

“soup blender” or “waffle iron”

eg. languages almost entirely composed of “leaves”
eg. languages where all trees are isomorphic

“Frankenstein” automaton

eg. unreachable states
eg. states that are never used
eg. rules that immediately violate the constraints
everything which we will call “dead branches” in general.
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Our generation strategy
. . . and plan of the next two sections

Generation mechanism

1 Generate a raw TAGED A, as “interesting” as possible.

2 Detect whether A is clearly easy. Throw it away if it is.

3 Remove dead branches from A.

4 A is good, ship it!

Detect easy cases, remove dead branches

Done at the same time. We call this the cleanup. # next section.

Generate “quite” interesting TAGEDs

Generating rules with the desired structure of the automaton and
its accepted language as guide. # next2 section.
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Cleanup

Improved version of standard reduction (reachability) algorithm for
TAs. Takes advantage of equality constraints to remove useless

rules and states.
ie. remove dead branches.

Not enough time: in annex
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Raw TAGED Generation
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Final random generation
A compromise

Rough outline of random generation of TA

1 Build a pool of head states from skeleton-driven generation.
Keep track of minimum accepted height.

2 Store the rules in ∆.
3 while requested minimum height not reached, do

1 purge too old states from pool
2 let q be a fresh state
3 let δ be a random number (of rules), then do δ times

1 let n be a random number (arity)
2 let σ be a random symbol of Σn

3 let p1, . . . , pn be random states from pool
4 add rule σ(p1, . . . , pn)→ q to ∆
5 add q to pool

4 F = some random final states from pool
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5 add q to pool

4 F = some random final states from pool

q in pool: m(q) is “height of the smallest term t ∈ Lng (A, q)”
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1 Build a pool of head states from skeleton-driven generation.
Keep track of minimum accepted height.

2 Store the rules in ∆.
3 while requested minimum height not reached, do
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2 let σ be a random symbol of Σn

3 let p1, . . . , pn be random states from pool
4 add rule σ(p1, . . . , pn)→ q to ∆
5 add q to pool

4 F = some random final states from pool

Initial (skeleton generation) rules. Other rules will be added later.
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1 Build a pool of head states from skeleton-driven generation.
Keep track of minimum accepted height.

2 Store the rules in ∆.
3 while requested minimum height not reached, do

1 purge too old states from pool
2 let q be a fresh state
3 let δ be a random number (of rules), then do δ times
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2 let σ be a random symbol of Σn

3 let p1, . . . , pn be random states from pool
4 add rule σ(p1, . . . , pn)→ q to ∆
5 add q to pool

4 F = some random final states from pool

Here q is “too old” if m(q) is too small compared to

max
p∈pool

m(p).
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1 Build a pool of head states from skeleton-driven generation.
Keep track of minimum accepted height.

2 Store the rules in ∆.
3 while requested minimum height not reached, do

1 purge too old states from pool
2 let q be a fresh state
3 let δ be a random number (of rules), then do δ times

1 let n be a random number (arity)
2 let σ be a random symbol of Σn

3 let p1, . . . , pn be random states from pool
4 add rule σ(p1, . . . , pn)→ q to ∆
5 add q to pool

4 F = some random final states from pool

Selected according to discrete probability distributions.
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1 Build a pool of head states from skeleton-driven generation.
Keep track of minimum accepted height.

2 Store the rules in ∆.
3 while requested minimum height not reached, do
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2 let σ be a random symbol of Σn
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5 add q to pool

4 F = some random final states from pool

Random symbols in Σn are selected uniformly.
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1 Build a pool of head states from skeleton-driven generation.
Keep track of minimum accepted height.

2 Store the rules in ∆.
3 while requested minimum height not reached, do
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2 let σ be a random symbol of Σn

3 let p1, . . . , pn be random states from pool
4 add rule σ(p1, . . . , pn)→ q to ∆
5 add q to pool

4 F = some random final states from pool

DPD biased towards states with higher min height.
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2 let σ be a random symbol of Σn

3 let p1, . . . , pn be random states from pool
4 add rule σ(p1, . . . , pn)→ q to ∆
5 add q to pool

4 F = some random final states from pool

The first time, q /∈ pool: reachable. Afterwards, just update m(q).

17/23 Vincent HUGOT Random Generation of Hard Instances for TAGED Emptiness



1 Build a pool of head states from skeleton-driven generation.
Keep track of minimum accepted height.

2 Store the rules in ∆.
3 while requested minimum height not reached, do

1 purge too old states from pool
2 let q be a fresh state
3 let δ be a random number (of rules), then do δ times

1 let n be a random number (arity)
2 let σ be a random symbol of Σn

3 let p1, . . . , pn be random states from pool
4 add rule σ(p1, . . . , pn)→ q to ∆
5 add q to pool

4 F = some random final states from pool

DPD, strongly biased towards higher min heights.
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Final random generation
Generating the constraints

Number of constraints p =A q logarithmic in |Q|.

Bias towards diagonal constraints.
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Height |Q| ‖A‖ ‖A‖ / |Q| |∆| |∆| / |Q|

4 6.89 43.49 6.31 11.30 1.64
10 18.14 119.84 6.61 27.12 1.50
16 29.58 196.94 6.66 43.13 1.46
22 41.31 276.70 6.70 59.67 1.44
28 52.58 353.26 6.72 75.47 1.44
34 64.47 434.65 6.74 92.36 1.43
40 75.38 507.81 6.74 107.55 1.43
46 87.00 588.54 6.76 124.14 1.43
52 99.45 672.86 6.77 141.87 1.43
58 110.41 745.74 6.75 156.70 1.42
64 122.41 826.10 6.75 173.27 1.42
70 133.68 903.50 6.76 189.26 1.42
76 145.09 981.29 6.76 205.39 1.42

Table: Generation 4: size statistics
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|Q| Run ρ Lng (A) 6= ∅ Lng (A) = ∅ Failure

4. 26.8% 73.2% 0.0% 0.0%
7. 43.6% 55.6% 0.8% 0.0%
10. 48.8% 50.8% 0.4% 0.0%
13. 49.2% 50.8% 0.0% 0.0%
16. 50.0% 50.0% 0.0% 0.0%
19. 42.4% 57.6% 0.0% 0.0%
22. 41.2% 58.4% 0.4% 0.0%
25. 34.8% 65.2% 0.0% 0.0%
28. 30.4% 69.6% 0.0% 0.0%
31. 36.4% 63.6% 0.0% 0.0%
34. 38.8% 61.2% 0.0% 0.0%
37. 35.6% 64.4% 0.0% 0.0%
40. 28.0% 72.0% 0.0% 0.0%

Table: “Soup blender” typical results
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min H Run ρ A 6= ∅ A = ∅ Failure ≺

6 0.4% 69.6% 28.8% 1.2% 2.8%
9 0.4% 69.2% 25.6% 4.8% 6.4%
12 0.0% 55.6% 36.4% 8.0% 9.2%
15 0.0% 61.2% 26.4% 12.4% 7.6%
18 0.0% 53.2% 30.0% 16.8% 6.4%
21 0.0% 50.8% 30.0% 19.2% 8.8%
24 0.0% 46.8% 35.6% 17.6% 7.2%
27 0.0% 49.2% 28.8% 22.0% 8.8%

27 0.0% 45.6% 31.2% 23.2% 5.6%
30 0.0% 45.2% 31.2% 23.6% 6.8%
31 0.0% 50.8% 25.2% 24.0% 6.0%
34 0.0% 50.8% 26.8% 22.4% 6.4%
37 0.0% 43.6% 26.8% 29.6% 7.2%

Table: Latest generation: results
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Conclusion
This scheme avoids the experimental pitfalls of previous
attempts.

Structured language
Coherent automaton
Sane size and density

A better experimental protocol than hand-written automata

Many parameters can be modelled on statistics for more
realism

Made for the Emptiness problem, but useful for other
problems eg. Membership (with a term generation scheme)

Forthcoming research report, more exhaustive than the slides.
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Related generation schemes

A successful scheme for NFAs [Tabakov and Vardi, 2005]

To generate a NFA (Σ,Q,Q0,F , δ), fix |Q|, and Σ = { 0, 1 },
generate transitions and final states according to ratios:

r = rσ =
|{ (p, σ, q) ∈ δ }|

|Q|
,∀σ ∈ Σ and f =

|F |

|Q|
.

24/23 Vincent HUGOT Random Generation of Hard Instances for TAGED Emptiness



Related generation schemes

A successful scheme for NFAs [Tabakov and Vardi, 2005]

To generate a NFA (Σ,Q,Q0,F , δ), fix |Q|, and Σ = { 0, 1 },
generate transitions and final states according to ratios:

r = rσ =
|{ (p, σ, q) ∈ δ }|

|Q|
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.

Successful scheme for word automata

. . . adaptation to Tree Automata?
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,∀σ ∈ Σ and f =

|F |

|Q|
.

An adaptation to NTAs

To generate a NTA (Σ,Q,F ,∆), fix |Q| and Σ, generate rules
according to ratios:

r =
|∆|

|{ f (q1, . . . , qn) | f (q1, . . . , qn)→ q ∈ ∆ }|
and f =

|F |

|Q|
.

24/23 Vincent HUGOT Random Generation of Hard Instances for TAGED Emptiness



Related generation schemes

An adaptation to NTAs

To generate a NTA (Σ,Q,F ,∆), fix |Q| and Σ, generate rules
according to ratios:

r =
|∆|

|{ f (q1, . . . , qn) | f (q1, . . . , qn)→ q ∈ ∆ }|
and f =

|F |

|Q|
.

Used for Universality

Experimental protocol not fully explained
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Schemes which did not work well
Dense generation

Dense generation

Fix alphabet Σ = { a, b, c/0, f , g , h/2 }, |Q|, and probas p∆and pF .
Build

∆ ⊆ ∆ where ∆
def
=
⊎

k∈N

Σk × Qk+1,

by choosing each rule in ∆ with proba p∆. Build F ⊆ Q by
choosing each state with proba pF .

Generates automata that are very dense. Real-world automata

are mostly sparse.

Rules for symbols of high arity are overly represented. eg. try
with symbol σ ∈ Σ10

soup blender: “leaf language”, mostly dead branches. ie.

cleanup kills everything.

25/23 Vincent HUGOT Random Generation of Hard Instances for TAGED Emptiness



Schemes which did not work well
Dense generation

Dense generation

Fix alphabet Σ = { a, b, c/0, f , g , h/2 }, |Q|, and probas p∆and pF .
Build

∆ ⊆ ∆ where ∆
def
=
⊎

k∈N

Σk × Qk+1,

by choosing each rule in ∆ with proba p∆. Build F ⊆ Q by
choosing each state with proba pF .

Generates automata that are very dense. Real-world automata

are mostly sparse.

Rules for symbols of high arity are overly represented. eg. try
with symbol σ ∈ Σ10

soup blender: “leaf language”, mostly dead branches. ie.

cleanup kills everything.

25/23 Vincent HUGOT Random Generation of Hard Instances for TAGED Emptiness



Schemes which did not work well
Sparse generation

Sparse generation

As in dense generation, but fix expected in-degree δ,

∀k ∈ N, p∆(k) =






δ

|ArΣ| · |Σk | · |Q|
k

if Σk 6= ∅

0 if Σk = ∅

.

More sparse automata: avg. |∆| = δ |Q|

No high arity explosion

. . . but still lots of dead branches (cleanup ratio 1/30)

. . . and still “leaf language”.
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Schemes which did not work well
Sparse generation

More sparse automata: avg. |∆| = δ |Q|

No high arity explosion

. . . but still lots of dead branches (cleanup ratio 1/30)

. . . and still “leaf language”.

Probability of final leaf

P = 1− (1− pF )L = 1− (1− pF )
δ|Q|

|ArΣ| ∼= 1−

(
4

5

)|Q|
.

P 0.5 0.75 0.9 0.99 0.999
|Q| 3 6 10 20 30
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Sparse generation

More sparse automata: avg. |∆| = δ |Q|

No high arity explosion

. . . but still lots of dead branches (cleanup ratio 1/30)

. . . and still “leaf language”.

Probability of final leaf

P = 1− (1− pF )L = 1− (1− pF )
δ|Q|

|ArΣ| ∼= 1−

(
4

5

)|Q|
.

P 0.5 0.75 0.9 0.99 0.999
|Q| 3 6 10 20 30

This is a pervasive problem with unstructured generation!
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Towards a scheme that works better
Skeleton-driven generation

Lessons learned from previous attempts

We want sparse automata: keep number of rules small

Avoid high arity rules explosion

Avoid “leaf languages”: too easy for brute force.
=⇒ reason in terms of the minimal height of accepted terms

Preliminary Idea

Fix alphabet to say, Σ5 with
Σn def

= { a1, . . . , an/0, f1, . . . , fn/1, g1, . . . , gn/2, h1, . . . , hn/3 } .

1 Generate skeletons s1, . . . , sn, within constraints of height and
width and arity 6 3.

2 Then generate rules sets ∆1, . . . ,∆n to accept terms
isomorphic to these skeletons.

3 Topmost states qk in each ∆k = final states
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Towards a scheme that works better
Skeleton-driven generation

ts = 2

3

1

0

0 0

1

0
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a1 a2
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Towards a scheme that works better
Skeleton-driven generation

ts = 2

3

1

0

0 0

1

0q0

Generated rules examples (the real algorithm is recursive from top)

new state q0, a2 → q0, a5 → q0 ∈ ∆, etc
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Generated rules examples (the real algorithm is recursive from top)

new state q0, a2 → q0, a5 → q0 ∈ ∆, etc
new state q1, f3(q0)→ q1, f2(q0)→ q1, f5(q0)→ q1 ∈ ∆, etc
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Towards a scheme that works better
Skeleton-driven generation

ts = 2

3qx

1

0

0 0

1q1

0q0

Generated rules examples (the real algorithm is recursive from top)

new state q0, a2 → q0, a5 → q0 ∈ ∆, etc
new state q1, f3(q0)→ q1, f2(q0)→ q1, f5(q0)→ q1 ∈ ∆, etc
new state qx , obtained after a few steps
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Towards a scheme that works better
Skeleton-driven generation

ts = 2qf

3qx

1

0

0 0

1q1

0q0

Generated rules examples (the real algorithm is recursive from top)

new state q0, a2 → q0, a5 → q0 ∈ ∆, etc
new state q1, f3(q0)→ q1, f2(q0)→ q1, f5(q0)→ q1 ∈ ∆, etc
new state qx , obtained after a few steps
new final state qf , g1(qx , q1)→ qf ∈ ∆
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Towards a scheme that works better
Skeleton-driven generation

Getting (∆k , qk) from sk (OCaml code)

let conversion δ skel =
let ∆ = ref ∆.∅ in

let make_rules ar [q1, . . . , qn] q m = for k = 1 to m do

let σ = gene_symbol ar in ∆.←֓ (σ,[q1, . . . , qn],q) ∆
done in let rec f = λ
| Leaf 0 →

let qx = fresh_state() in make_rules 0 ∅ qx δ; return qx

| Node (ar, subs) →
let qx = fresh_state() and [q1, . . . , qn] = L.map f subs in

make_rules ar [q1, . . . , qn] qx δ; return qx

in let head = f skel in (!∆, head)

Getting a TA from (∆k , qk)

We have Σ fixed, just extract all states from all ∆k to Q,
F = { qk | k = 1..n }, ∆ = ∪k∆k .
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Towards a scheme that works better
Skeleton-driven generation

Guaranteed minimal height (difficulty?)

No dead branches for TA

The automata are sparse, but the number of states explodes
with the height.

waffle iron: all accepted terms are isomorphic to one of n

trees (n small). This by construction. Compromises difficulty!

Many kinds of transition rules are not represented

rules with immediate cycles eg. f (. . . , q, . . . )→ q

repetitions of the same state eg. f (. . . , p, . . . , p, . . . )→ q

reusing old states eg. f (. . . , p, . . . )→ q, with p not fresh

for any q ∈ Q, all rules in Rul(q) share the same signature!
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Cleanup

Improved version of standard reduction (reachability) algorithm for
tree automata, which takes advantage of equality constraints to

remove useless rules and states. In other words,
remove dead branches.

1 Spurious rules

2 Useless states

3 Σ-spurious states

4 Spurious states
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Cleanup: hunting for spuriousness
Spurious Rules

Definition (Spurious rule)

Let A be a TAGED. A rule f (q1, . . . , qn)→ q ∈ ∆ is spurious if
there exists k ∈ J1, nK such that qk =A q.

α fq

α.1 xq1 α.2 xq2 α.k xqk α.n xqn
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Cleanup: hunting for spuriousness
Spurious Rules

Definition (Spurious rule)

Let A be a TAGED. A rule f (q1, . . . , qn)→ q ∈ ∆ is spurious if
there exists k ∈ J1, nK such that qk =A q.

α fq

α.1 xq1 α.2 xq2 α.k xqk α.n xqn

Lemma (Removal of spurious rules)

All spurious rules can be removed without altering the accepted

language.
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Cleanup: hunting for spuriousness
Spurious Rules

Definition (Spurious rule)

Let A be a TAGED. A rule f (q1, . . . , qn)→ q ∈ ∆ is spurious if
there exists k ∈ J1, nK such that qk =A q.

α fq

α.1 xq1 α.2 xq2 α.k xqk α.n xqn

Proof idea

If a spurious rule was used, a term would have to be equal with
one of its strict subterms. Which is absurd.
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Cleanup: hunting for spuriousness
Sure and Potential requirements

Let px
y , p, q ∈ Q, σ1, . . . , σm ∈ Σ, and

Rul(q) =






σ1(p
1
1 , . . . , p

1
n1
, p, p′11 , . . . , p

′1
n′

1
)→ q

...
σm(pm

1 , . . . , p
m
nm
, p, p′m1 , . . . , p

′m
n′m

)→ q






Sure requirements

p ∈ sReq(q)

Potential Requirements

pReq(q) = { p } ∪
{

px
y , p
′x
y

∣∣∣ x , y ∈ . . .
}
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Cleanup: hunting for spuriousness
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Let px
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...
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1 , . . . , p
m
nm
, p, p′m1 , . . . , p

′m
n′m

)→ q






Sure requirements

sReq(q)
def
=

⋂

r∈Rul(q)
q/∈Ant(r)

Ant(r),

Potential Requirements

pReq(q)
def
=

⋃

r∈Rul(q)

Ant(r).
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Cleanup: hunting for spuriousness
Needs and friends

Frnd(q) = “transitive closure of pReq(q)”.
Need(q) = “transitive closure of sReq(q)”.

Definition (Friend states)

Frnd(q): the smallest subset of Q satisfying

1 pReq(q) ⊆ Frnd(q)

2 if p ∈ Frnd(q) then pReq(p) ⊆ Frnd(q)

Definition (Needs)

Need(q): smallest subset of Q satisfying

1 sReq(q) ⊆ Need(q)

2 if p ∈ Need(q) then sReq(p) ⊆ Need(q)
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Cleanup: hunting for spuriousness
Needs and friends

“Only friends of q appear under q”

Lemma (“Rely on your Friends” principle)

Let ρ a run: ∀α, β ∈ Pos(t) : β ⊳ α =⇒ ρ(β) ∈ Frnd (ρ(α)).

“Every need of q appears under q”

Lemma (Needs)

Let ρ a run such that ρ(β) = q. For any p ∈ Need(q), there exists

a position αp ⊳ β such that ρ(αp) = p.
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Cleanup: hunting for spuriousness
Useless states

“Only friends of a final state are useful”

Theorem (Removal of useless states)

Let A = (Σ,Q,F ,∆) be a tree automaton. Then

Lng (A) = Lng
(
A′
)

with A′
def
= Rst



A,F ∪
⋃

qf ∈F

Frnd(qf )



 .

Furthermore, the accepting runs are the same for A and A′.

Proof idea

Every accepting run is rooted in a final state. Therefore they
cannot use any state not in F ∪

⋃
qf ∈F Frnd(qf ).

36/23 Vincent HUGOT Random Generation of Hard Instances for TAGED Emptiness



Cleanup: hunting for spuriousness
Useless states

“Only friends of a final state are useful”

Theorem (Removal of useless states)

Let A = (Σ,Q,F ,∆) be a tree automaton. Then

Lng (A) = Lng
(
A′
)

with A′
def
= Rst



A,F ∪
⋃

qf ∈F

Frnd(qf )



 .

Furthermore, the accepting runs are the same for A and A′.

Proof idea

Every accepting run is rooted in a final state. Therefore they
cannot use any state not in F ∪

⋃
qf ∈F Frnd(qf ).

36/23 Vincent HUGOT Random Generation of Hard Instances for TAGED Emptiness



Cleanup: hunting for spuriousness
Σ-spurious states

Definition (Support of a state)

Support of q: the set of all symbols of Σ in which a term which
evaluates to q may be rooted.

Sup(q)
def
= { f ∈ Σ | ∃f (. . . )→ q ∈ ∆ } .

Definition (Σ-spurious state)

A state q ∈ Q is a Σ-spurious state if there exist p, p′ ∈ Need(q)
such that p =A p′ and Sup(p) ∩Sup(p′) = ∅.

Lemma (Removal of Σ-spurious states)

Let A be a TAGED, S ⊆ Q the set of all its Σ-spurious states, and

A′ = Rst (A,Q \ S). Then Lng (A) = Lng (A′).
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Cleanup: hunting for spuriousness
Σ-spurious states

Definition (Σ-spurious state)

A state q ∈ Q is a Σ-spurious state if there exist p, p′ ∈ Need(q)
such that p =A p′ and Sup(p) ∩Sup(p′) = ∅.

Lemma (Removal of Σ-spurious states)

Let A be a TAGED, S ⊆ Q the set of all its Σ-spurious states, and

A′ = Rst (A,Q \ S). Then Lng (A) = Lng (A′).

Proof idea

If q appears in an accepting run, then so must p and p′. But they
cannot satisfy the equality (rooted in different symbols).
Contradiction. So q cannot appear in any accepting run.
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Cleanup: hunting for spuriousness
Spurious states

Definition (Spurious states)

Let A be a TAGED. A state q ∈ Q is said to be a spurious state if
there exists p ∈ Need(q) such that p =A q.

Lemma (Removal of spurious states)

Let A be a TAGED, S ⊆ Q the set of all its spurious states, and

A′ = Rst (A,Q \ S). Then Lng (A) = Lng (A′).

Proof idea

Suppose q appears in an accepting run at position β, then
∃αp ⊳ β st. ρ(αp) = p. A strict subterm and its parent are equal.
Contradiction. So q does not appear.
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Contradiction. So q does not appear.
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Cleanup: hunting for spuriousness
An example

TAGED ’example 1’ [64] = {

states = #7{q0, q1, q2, q3, q4, q5, q6}

final = #1{q6}

rules = #16{

a2()->q0, a2()->q2, a2()->q4, a3()->q3, a5()->q0, a5()->q2,

a5()->q4, f1(q5)->q5, f3(q1)->q5, g1(q1, q5)->q5, g3(q0, q0)->q5,

g3(q1, q5)->q5, g5(q1, q1)->q5, h2(q2, q3, q4)->q1,

h3(q0, q0, q1)->q6, h3(q2, q3, q4)->q1

}

==rel = #3{(q0,q0), (q3,q4), (q4,q3)}

}

State q1 is Σ-spurious, because it depends on q3 and q4

(q3, q4 ∈ Need(q1) and Sup(q3) ∩Sup(q4) = { a3 } ∩ { a2, a5 } = ∅).
Furthermore q1 ∈ Need(q6), so q6 is unreachable, and Lng (A) = ∅.
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