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Plan of the talk
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2 Tree Automata with Constraints: TAGEDs
3 The emptiness problem

2 A general strategy:
1 Global algorithm
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3 Parenting relations
4 A brutal algorithm
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Introduction
Tree automata and extensions

Tree automata: powerful theoretical tools useful for

automated theorem proving
program verification
XML schema and query languages
. . .

Extensions: created to expand expressiveness.

Problem: decidability and complexity of associated decision
problems. Usable tools difficult to implement.

Theme of my Master’s project and internship: efficient
algorithms for tree automata with constraints. For this
internship: emptiness problem for positive TAGEDs
(EXPTIME-complete)
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Tree automata
Definition through an example

Tree automaton for True propositional formulæ

A
def
=
(
Σ = {∧,∨/2,¬/1, 0, 1/0 } , Q = { q0, q1 } ,F = { q1 } ,∆

)

∆ = {b → qb,

∧ (qb, qb′)→ qb∧b′ ,

∨ (qb, qb′)→ qb∨b′ ,

¬(qb)→ q¬b

| b, b′ ∈ 0, 1}
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Tree automata
Definition through an example

∧

¬

∧

0 1

∨

0 ¬

0

Definition: run of A on a term t ∈ T (Σ)

A run ρ is a mapping from Pos(t) to Q compatible with the
transition rules.
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TAGEDs
Tree Automata With Global Equality and Disequality Constraints

Introduced in Emmanuel Filiot’s PhD thesis on XML query
languages. See [Filiot et al., 2008].

A TAGED is a tuple A = (Σ,Q,F ,∆,=A, 6=A), where

(Σ,Q,F ,∆) is a tree automaton

=A is a reflexive symmetric binary relation on a subset of Q

6=A is an irreflexive and symmetric binary relation on Q. Note
that in our work, we have dealt with a slightly more general
case, where 6=A is not necessarily irreflexive.

A TAGED A is said to be positive if 6=A is empty and negative if =A
is empty.

Runs must be compatible with equality and disequality constraints.
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TAGEDs
Compatibility with global constraints

Le ρ be a run of the TAGED A on a tree t:

Compatibility with the equality constraint =A

∀α, β ∈ Pos(t) : ρ(α) =A ρ(β) =⇒ t|α = t|β .

Compatibility with the disequality constraint 6=A (irreflexive)

∀α, β ∈ Pos(t) : ρ(α) 6=A ρ(β) =⇒ t|α 6= t|β .

Compatibility with the disequality constraint 6=A (non irreflexive)

∀α, β ∈ Pos(t) : α 6= β ∧ ρ(α) 6=A ρ(β) =⇒ t|α 6= t|β .
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TAGEDs
A non-regular language accepted by TAGEDs

TAGED for { f (t, t) | f ∈ Σ, t ∈ T (Σ) }

A
def
= (Σ = { a/0, f /2 } , Q = { q, q̂, qf } , F = { qf } ,

∆, q̂ =A q̂),

where ∆
def
= {f (q̂, q̂)→ qf , f (q, q)→ q, f (q, q)→ q̂,

a→ q, a→ q̂, }

f

f

a a

f

a a

→∗∆ fqf

fq̂

aq aq

fq̂

aq aq
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TAGED emptiness

Emptiness Problem

INPUT: A a positive TAGED.
OUTPUT: Lng (A) = ∅ ?

Applications

Introduced for XML query languages

in model-checking. . .

Theorem [Filiot2008]

The Emptiness Problem for positive TAGEDs is EXPTIME-complete.
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Global Strategy

A high-level view of how we tackled the problem

1 Part I: A strategy and several tactics
1 Inexpensive reductions
2 Splitting the TAGED

3 Semi-expensive heuristics
4 Brutal algorithm

2 Part II: experiments random TAGEDs
1 Random generation of tree automata

(4 generations)
2 Random generation of constraints

(3 generations)
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Global Strategy

Emptiness Problem

INPUT: A a positive TAGED.
OUTPUT: Lng (A) = ∅ ?

Reducing the problem

INPUT: A a positive TAGED.
OUTPUT: A′ a smaller positive TAGED.
։ Standard reduction, cleanup, signature-quotienting

Quick negative decision

։ Lng (ta (A)) = ∅?

Quick positive decision

։ parenting relations

If all else fails

General exponential algorithm: brutal algorithm
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Cleanup

Improved version of standard reduction (reachability) algorithm for
tree automata, which takes advantage of equality constraints to

remove useless rules and states.

1 Spurious rules

2 Useless states

3 Σ-spurious states

4 Spurious states

12/37 Vincent HUGOT Solving the TAGED membership problem with SAT



Cleanup: hunting for spuriousness
Spurious Rules

Definition (Spurious rule)

Let A be a TAGED. A rule f (q1, . . . , qn)→ q ∈ ∆ is spurious if
there exists k ∈ J1, nK such that qk =A q.

α fq

α.1 xq1 α.2 xq2 α.k xqk α.n xqn
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Definition (Spurious rule)

Let A be a TAGED. A rule f (q1, . . . , qn)→ q ∈ ∆ is spurious if
there exists k ∈ J1, nK such that qk =A q.

α fq

α.1 xq1 α.2 xq2 α.k xqk α.n xqn

Lemma (Removal of spurious rules)

All spurious rules can be removed without altering the accepted
language.
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Cleanup: hunting for spuriousness
Spurious Rules

Definition (Spurious rule)

Let A be a TAGED. A rule f (q1, . . . , qn)→ q ∈ ∆ is spurious if
there exists k ∈ J1, nK such that qk =A q.

α fq

α.1 xq1 α.2 xq2 α.k xqk α.n xqn

Proof idea

If a spurious rule was used, a term would have to be equal with
one of its strict subterms. Which is absurd.
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Cleanup: hunting for spuriousness
Sure and Potential requirements

Let px
y , p, q ∈ Q, σ1, . . . , σm ∈ Σ, and

Rul(q) =






σ1(p
1
1 , . . . , p

1
n1
, p, p′11 , . . . , p

′1
n′

1
)→ q

...
σm(pm

1 , . . . , p
m
nm
, p, p′m1 , . . . , p

′m
n′m

)→ q






Sure requirements

p ∈ sReq(q)

Potential Requirements

pReq(q) = { p } ∪
{

px
y , p
′x
y

∣∣∣ x , y ∈ . . .
}

14/37 Vincent HUGOT Solving the TAGED membership problem with SAT



Cleanup: hunting for spuriousness
Sure and Potential requirements

Let px
y , p, q ∈ Q, σ1, . . . , σm ∈ Σ, and

Rul(q) =






σ1(p
1
1 , . . . , p

1
n1
, p, p′11 , . . . , p

′1
n′

1
)→ q

...
σm(pm

1 , . . . , p
m
nm
, p, p′m1 , . . . , p

′m
n′m

)→ q






Sure requirements

p ∈ sReq(q)

Potential Requirements

pReq(q) = { p } ∪
{

px
y , p
′x
y

∣∣∣ x , y ∈ . . .
}

14/37 Vincent HUGOT Solving the TAGED membership problem with SAT



Cleanup: hunting for spuriousness
Sure and Potential requirements

Let px
y , p, q ∈ Q, σ1, . . . , σm ∈ Σ, and

Rul(q) =






σ1(p
1
1 , . . . , p

1
n1
, p, p′11 , . . . , p

′1
n′

1
)→ q

...
σm(pm

1 , . . . , p
m
nm
, p, p′m1 , . . . , p

′m
n′m

)→ q






Sure requirements

p ∈ sReq(q)

Potential Requirements

pReq(q) = { p } ∪
{

px
y , p
′x
y

∣∣∣ x , y ∈ . . .
}

14/37 Vincent HUGOT Solving the TAGED membership problem with SAT



Cleanup: hunting for spuriousness
Sure and Potential requirements

Let px
y , p, q ∈ Q, σ1, . . . , σm ∈ Σ, and

Rul(q) =






σ1(p
1
1 , . . . , p

1
n1
, p, p′11 , . . . , p

′1
n′

1
)→ q

...
σm(pm

1 , . . . , p
m
nm
, p, p′m1 , . . . , p

′m
n′m

)→ q






Sure requirements

sReq(q)
def
=

⋂

r∈Rul(q)
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Cleanup: hunting for spuriousness
Needs and friends

Frnd(q) = “transitive closure of pReq(q)”.
Need(q) = “transitive closure of sReq(q)”.

Definition (Friend states)

Frnd(q): the smallest subset of Q satisfying

1 pReq(q) ⊆ Frnd(q)

2 if p ∈ Frnd(q) then pReq(p) ⊆ Frnd(q)

Definition (Needs)

Need(q): smallest subset of Q satisfying

1 sReq(q) ⊆ Need(q)

2 if p ∈ Need(q) then sReq(p) ⊆ Need(q)
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Cleanup: hunting for spuriousness
Needs and friends

“Only friends of q appear under q”

Lemma (“Rely on your Friends” principle)

Let ρ a run: ∀α, β ∈ Pos(t) : β ⊳ α =⇒ ρ(β) ∈ Frnd (ρ(α)).

“Every need of q appears under q”

Lemma (Needs)

Let ρ a run such that ρ(β) = q. For any p ∈ Need(q), there exists
a position αp ⊳ β such that ρ(αp) = p.
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Cleanup: hunting for spuriousness
Useless states

“Only friends of a final state are useful”

Theorem (Removal of useless states)

Let A = (Σ,Q,F ,∆) be a tree automaton. Then

Lng (A) = Lng
(
A′
)

with A′
def
= Rst



A,F ∪
⋃

qf ∈F

Frnd(qf )



 .

Furthermore, the accepting runs are the same for A and A′.

Proof idea

Every accepting run is rooted in a final state. Therefore they
cannot use any state not in F ∪

⋃
qf ∈F Frnd(qf ).
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Cleanup: hunting for spuriousness
Σ-spurious states

Definition (Support of a state)

Support of q: the set of all symbols of Σ in which a term which
evaluates to q may be rooted.

Sup(q)
def
= { f ∈ Σ | ∃f (. . . )→ q ∈ ∆ } .

Definition (Σ-spurious state)

A state q ∈ Q is a Σ-spurious state if there exists p, p′ ∈ Need(q)
such that p =A p′ and Sup(p) ∩Sup(p′) = ∅.

Lemma (Removal of Σ-spurious states)

Let A be a TAGED, S ⊆ Q the set of all its Σ-spurious states, and
A′ = Rst (A,Q \ S). Then Lng (A) = Lng (A′).
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Definition (Σ-spurious state)

A state q ∈ Q is a Σ-spurious state if there exists p, p′ ∈ Need(q)
such that p =A p′ and Sup(p) ∩Sup(p′) = ∅.

Lemma (Removal of Σ-spurious states)

Let A be a TAGED, S ⊆ Q the set of all its Σ-spurious states, and
A′ = Rst (A,Q \ S). Then Lng (A) = Lng (A′).

Proof idea

If q appears in an accepting run, then so must p and p′. But they
cannot satisfy the equality (rooted in different symbols). Absurd.
So q cannot appear in any accepting run.
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Cleanup: hunting for spuriousness
Spurious states

Definition (Spurious states)

Let A be a TAGED. A state q ∈ Q is said to be a spurious state if
there exists p ∈ Need(q) such that p =A q.

Lemma (Removal of spurious states)

Let A be a TAGED, S ⊆ Q the set of all its spurious states, and
A′ = Rst (A,Q \ S). Then Lng (A) = Lng (A′).

Proof idea

Suppose q appears in an accepting run at position β, then
∃αp ⊳ β st. ρ(αp) = p. A strict subterm and its parent are equal.
Absurd. So q does not appear.
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Cleanup: hunting for spuriousness
An example

TAGED ’example 1’ [64] = {

states = #7{q0, q1, q2, q3, q4, q5, q6}

final = #1{q6}

rules = #16{

a2()->q0, a2()->q2, a2()->q4, a3()->q3, a5()->q0, a5()->q2,

a5()->q4, f1(q5)->q5, f3(q1)->q5, g1(q1, q5)->q5, g3(q0, q0)->q5,

g3(q1, q5)->q5, g5(q1, q1)->q5, h2(q2, q3, q4)->q1,

h3(q0, q0, q1)->q6, h3(q2, q3, q4)->q1

}

==rel = #3{(q0,q0), (q3,q4), (q4,q3)}

}

State q1 is Σ-spurious, because it depends on q3 and q4

(q3, q4 ∈ Need(q1) and Sup(q3) ∩Sup(q4) = { a3 } ∩ { a2, a5 } = ∅).
Furthermore q1 ∈ Need(q6), so q6 is unreachable, and Lng (A) = ∅.
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Signature-Quotienting

Taking advantage of similarities between rules: postponing choice
of symbols

Rul(qchar) =






a→ qchar, . . . , z → qchar

0→ qchar, . . . , 9→ qchar

A→ qchar, . . . ,Z → qchar






“ { a, . . . , z , 0, . . . , 9,A, . . . ,Z } → qchar ∈ ∆′′
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Signature-Quotiented TAGED
Definition

Definition (Conservation of arity)

Let ≅
s an equivalence relation over Σ. It is arity-preserving if

∀f , g ∈ Σ : f ≅
s g =⇒ arity(f ) = arity(g).

Definition (Signature-quotiented TAGED)

Let A = (Σ,Q,F ,∆,=A, 6=A) be a TAGED. Then its
signature-quotiented TAGED, or signature-TAGED for short, is the
TAGED As = (Σs ,Q,F ,∆s ,=A, 6=A), where

Σs def
= Σ/≅

s

∆s def
= { [σ] (p1, . . . , pn)→ q | σ(p1, . . . , pn)→ q ∈ ∆ } .
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Signature-Quotiented TAGED
Approximation

Theorem (Signature-TAGED as over-approximation)

Let A be a positive TAGED and As its signature-TAGED. Then
Lng (As) = ∅ =⇒ Lng (A) = ∅.

Definition (Signature-identity relation)

We define the signature-identity relation (denoted ≡s), such that:

f ≡s g ⇐⇒ sigs(f ) = sigs(g),

where sigs(σ)
def
= { (p1, . . . , pn, q) | σ(p1, . . . , pn)→ q ∈ ∆ }.

Theorem (Friendly quotient)

Let A be a positive TAGED and As
≡s its signature-TAGED, using ≡s

instead of ≅
s . Then Lng (As

≡s ) = ∅ ⇐⇒ Lng (A) = ∅.
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Signature-Quotiented TAGED
Example (with an approximation relation)

TAGED ’restricted’ [58] = {

states = #6{q0, q1, q2, q3, q4, q5}

final = #2{q1, q5}

rules = #16{

a1()->q0, a1()->q3, a3()->q2, a3()->q4, a4()->q0,

a4()->q4, a5()->q2, a5()->q3, f1(q1)->q5, f5(q1)->q5,

g1(q1, q5)->q5, g3(q0, q5)->q5, g5(q0, q5)->q5,

g5(q1, q5)->q5, h3(q2, q3, q4)->q1, h4(q2, q3, q4)->q1

}}

Classes = #{<g5 g3 g1>; <h4 h3>; <a5 a4 a3 a1>; <f5 f1>}#

TAGED ’sig-quotient’ [34] = {

states = #6{q0, q1, q2, q3, q4, q5}

final = #2{q1, q5}

rules = #8{

a4()->q0, a4()->q2, a4()->q3, a4()->q4,

f5(q1)->q5, g5(q0, q5)->q5, g5(q1, q5)->q5,

h4(q2, q3, q4)->q1

}}
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Parenting Relations

Building successful and easy runs for cheap

1 Emptiness is easy for diagonal positive TAGEDs

2 Partial adaptation to non-diagonal cases

3 Previous tactics useful for (sometimes) proving emptiness.

4 This one useful for (sometimes) proving non-emptiness.
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Emptiness for diagonal positive TAGEDs
Easy and linear

Definition (Diagonal positive TAGED)

A positive TAGED is diagonal if

(=A) ⊆ { (q, q) | q ∈ Q } .

Theorem (Diagonal testing)

Let A be a diagonal positive TAGED. Then

Lng (A) = ∅ ⇐⇒ Lng (ta (A)) = ∅.

Proof idea

See beginning of proof of [Filiot et al., 2008, Theorem 1].
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Parenting relations
Introductory example

TAGED ’Heam’ [146] = {

alphab = #5{a/0, b/0, c/0, d/0, f/2}

states = #10{q, q1, q2, q3, q4, q5, q6, q7, q8, qf}

final = #1{qf}

rules = #39{

a()->q, a()->q1, a()->q2, b()->q, b()->q1, b()->q2,

c()->q, c()->q1, c()->q2, d()->q, d()->q1, d()->q2,

f(q, q)->q, f(q, q)->q1, f(q, q)->q2, f(q, q1)->q3,

f(q, q1)->q5, f(q, q2)->q4, f(q, q2)->q6, f(q, q3)->q3,

f(q, q3)->q5, f(q, q4)->q4, f(q, q4)->q6, f(q, q6)->q8,

f(q, q7)->q7, f(q, qf)->qf, f(q1, q)->q3, f(q1, q)->q5,

f(q2, q)->q4, f(q2, q)->q6, f(q3, q)->q3, f(q3, q)->q5,

f(q4, q)->q4, f(q4, q)->q6, f(q5, q)->q7, f(q6, q)->q8,

f(q7, q8)->qf, f(q8, q7)->qf, f(qf, q)->qf

}

==rel = #2{(q1,q2), (q2,q1)}

}
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Parenting relations
Introductory example

qq1 q2

q5 q6

q7 q8

qf

q

q1

q2

q3

q4

q5

q6

q7

q8

qf

q

q1 q2

q5 q6

q7 q8

qf
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Parenting relations

Definition (Parenting relation)

Let A be a positive TAGED, and qf ∈ F one of its final states. Then
a relation on Q ≺ is a parenting relation of A (for qf ) if it satisfies
the four following properties:

(qf -domination):
The ordered set (dom(≺),≺+) has a greatest element, which
is qf .

(Transitionality):
∀q ∈ dom(≺) : ∃r ∈ Rul(q) st. Ant(r) = { p | p ≺ q }

(Strictness):
≺+ is a strict partial order on its domain.

(Aspuriousness):
There are no two states p, q ∈ dom(≺) such that p ≺+ q and
p =A q.
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Parenting relations

Definition (Restriction by states, projection)

Let A = (Σ,Q,F ,∆,=A, 6=A) be a TAGED, and let S ⊆ Q be a set
of states. We call restriction of A to S and denote Rst (A,S) the
TAGED (Σ,S,F ∩ S,∆′,=A ∩S2, 6=A ∩S2) where

∆′
def
= { f (q1, . . . , qn)→ q ∈ ∆ | { q, q1, . . . , qn } ⊆ S } .

We also call projection of A on S the TAGED

Prj (A,S)
def
= (Σ,Q,S,∆,=A, 6=A).

Definition (Automaton under a state)

Let ≺ be a parenting relation of a TAGED A, and q ∈ dom(≺). We
call automaton under the state q and denote Udr(q,≺), or simply
Udr(q), the automaton

Udr(q,≺) = Prj
(
Rst
(
A,
{

p | p 4
+ q
})
, q
)
.
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Parenting relations
Fruitful TAGEDs

Definition (Fruitful parenting relation)

Let ≺ be a parenting relation of the positive TAGED A, and

(≡A)
def
=
(
=A ∩ dom(≺)2

)∗
We say that ≺ is fruitful if

∀ [q] ∈ dom(≺)/≡A,Card ([q]) > 1 :
⋂

q∈[q]

Lng (Udr(q,≺)) 6= ∅.

Theorem (Fruitful positive TAGEDs)

Let A be a positive TAGED. If there exists a fruitful parenting
relation ≺ for one of its final states qf , then it is non-empty.
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Parenting relations
Characterising the core

Definition (Parenting core)

Let ≺ be a parenting relation of a TAGED A. We call core of ≺ –
and often denote ⋖

+ – the relation

(⋖+)
def
= (≺+) ∩ dom(=A)2.

Definition (Flat and pseudo-flat parenting relations)

Let ≺ be a parenting relation of a TAGED A. It is called flat if its
core ⋖

+ is empty, and pseudo-flat if

∀p, q, p′ ∈ Q : p ⋖
+ q =⇒

(
p =A p′ =⇒ p = p′

)
.
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Parenting relations
Building terms is easy

Theorem (flat and pseudo-flat tests)

Under the conditions and notations of theorem “fruitful TAGEDs”,
let [q] such that Card ([q]) > 1, and let

U =
⊗

q∈[q]

Udr(q,≺).

Then the following statements hold:

1 If ≺ is flat then U is a vanilla tree automaton or a diagonal
positive TAGED with only one constraint, on its sole final state.

2 If ≺ is pseudo-flat then U is a diagonal TAGED.

Problem reduced to generation of parenting relations and
emptiness of diagonal TAGEDs

Will not detect non-emptiness in all cases

The more relations tested, the better
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Experiments: Generations 2 TA / 2 C

|Q| Run Something Nothing Failure

4. 26.8% 73.2% 0.0% 0.0%
7. 43.6% 55.6% 0.8% 0.0%
10. 48.8% 50.8% 0.4% 0.0%
13. 49.2% 50.8% 0.0% 0.0%
16. 50.0% 50.0% 0.0% 0.0%
19. 42.4% 57.6% 0.0% 0.0%
22. 41.2% 58.4% 0.4% 0.0%
25. 34.8% 65.2% 0.0% 0.0%
28. 30.4% 69.6% 0.0% 0.0%
31. 36.4% 63.6% 0.0% 0.0%
34. 38.8% 61.2% 0.0% 0.0%
37. 35.6% 64.4% 0.0% 0.0%
40. 28.0% 72.0% 0.0% 0.0%
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Experiments: Generations 4 TA / 3 C

Height Run Something Nothing Failure ≺ results

6 0.4% 69.6% 28.8% 1.2% 2.8%
9 0.4% 69.2% 25.6% 4.8% 6.4%
12 0.0% 55.6% 36.4% 8.0% 9.2%
15 0.0% 61.2% 26.4% 12.4% 7.6%
18 0.0% 53.2% 30.0% 16.8% 6.4%
21 0.0% 50.8% 30.0% 19.2% 8.8%
24 0.0% 46.8% 35.6% 17.6% 7.2%
27 0.0% 49.2% 28.8% 22.0% 8.8%

27 0.0% 45.6% 31.2% 23.2% 5.6%
30 0.0% 45.2% 31.2% 23.6% 6.8%
31 0.0% 50.8% 25.2% 24.0% 6.0%
34 0.0% 50.8% 26.8% 22.4% 6.4%
37 0.0% 43.6% 26.8% 29.6% 7.2%
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Conclusion
Main points of the internship

1 Reduction and quick decisions:
1 Cleanup
2 Signature-quotienting
3 Parenting relations

2 Brutal algorithm

3 Random generation of tree automata and TAGEDs

4 OCaml implementation of the above (> 2000 LOC).
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