
Algorithms for
Tree Automata with Constraints

Efficiently tackling the Emptiness Problem for Tree

Automata With Global Equality Constraints

Pierre-Cyrille Héam, Vincent Hugot, Olga Kouchnarenko
{pcheam,okouchnarenko}@lifc.univ-fcomte.fr,

vhugot@edu.univ-fcomte.fr

Université de Franche-Comté
LIFC-INRIA/CASSIS, project ACCESS

July 7, 2010

1/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Plan of the talk

1 Introduction of notions:

1 Vanilla Tree Automata
2 Tree Automata with Constraints: TAGEDs
3 The emptiness problem

2 A general strategy:
1 Global algorithm
2 Remarks on experimental protocol

3 Proposed tactics:
1 Cleanup: hunting for spuriousness
2 Signature quotienting
3 Parenting relations
4 A brutal algorithm

4 Conclusion.

2/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Plan of the talk

1 Introduction of notions:

1 Vanilla Tree Automata
2 Tree Automata with Constraints: TAGEDs
3 The emptiness problem

2 A general strategy:
1 Global algorithm
2 Remarks on experimental protocol

3 Proposed tactics:
1 Cleanup: hunting for spuriousness
2 Signature quotienting
3 Parenting relations
4 A brutal algorithm

4 Conclusion.

2/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Plan of the talk

1 Introduction of notions:

1 Vanilla Tree Automata
2 Tree Automata with Constraints: TAGEDs
3 The emptiness problem

2 A general strategy:
1 Global algorithm
2 Remarks on experimental protocol

3 Proposed tactics:
1 Cleanup: hunting for spuriousness
2 Signature quotienting
3 Parenting relations
4 A brutal algorithm

4 Conclusion.

2/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Plan of the talk

1 Introduction of notions:

1 Vanilla Tree Automata
2 Tree Automata with Constraints: TAGEDs
3 The emptiness problem

2 A general strategy:
1 Global algorithm
2 Remarks on experimental protocol

3 Proposed tactics:
1 Cleanup: hunting for spuriousness
2 Signature quotienting
3 Parenting relations
4 A brutal algorithm

4 Conclusion.

2/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Introduction
Tree automata and extensions

Tree automata: powerful theoretical tools useful for

automated theorem proving
program verification
XML schema and query languages
. . .

Extensions: created to expand expressiveness.

Problem: decidability and complexity of associated decision
problems. Usable tools difficult to implement.

Theme of my Master’s project and internship: efficient
algorithms for tree automata with constraints. For this
internship: emptiness problem for positive TAGEDs
(EXPTIME-complete)

3/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Introduction
Tree automata and extensions

Tree automata: powerful theoretical tools useful for

automated theorem proving
program verification
XML schema and query languages
. . .

Extensions: created to expand expressiveness.

Problem: decidability and complexity of associated decision
problems. Usable tools difficult to implement.

Theme of my Master’s project and internship: efficient
algorithms for tree automata with constraints. For this
internship: emptiness problem for positive TAGEDs
(EXPTIME-complete)

3/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Introduction
Tree automata and extensions

Tree automata: powerful theoretical tools useful for

automated theorem proving
program verification
XML schema and query languages
. . .

Extensions: created to expand expressiveness.

Problem: decidability and complexity of associated decision
problems. Usable tools difficult to implement.

Theme of my Master’s project and internship: efficient
algorithms for tree automata with constraints. For this
internship: emptiness problem for positive TAGEDs
(EXPTIME-complete)

3/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Introduction
Tree automata and extensions

Tree automata: powerful theoretical tools useful for

automated theorem proving
program verification
XML schema and query languages
. . .

Extensions: created to expand expressiveness.

Problem: decidability and complexity of associated decision
problems. Usable tools difficult to implement.

Theme of my Master’s project and internship: efficient
algorithms for tree automata with constraints. For this
internship: emptiness problem for positive TAGEDs
(EXPTIME-complete)

3/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Tree automata
Definition through an example

Tree automaton for True propositional formulæ

A
def
=
(
Σ = {∧,∨/2,¬/1, 0, 1/0 } , Q = { q0, q1 } ,F = { q1 } ,∆

)

∆ = {b → qb,

∧ (qb, qb′)→ qb∧b′ ,

∨ (qb, qb′)→ qb∨b′ ,

¬(qb)→ q¬b

| b, b′ ∈ 0, 1}

4/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Tree automata
Definition through an example

∧

¬

∧

0 1

∨

0 ¬

0

Definition: run of A on a term t ∈ T (Σ)

A run ρ is a mapping from Pos(t) to Q compatible with the
transition rules.

5/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Tree automata
Definition through an example

0→ q0, 1→ q1 ∈ ∆

∧

¬

∧

0 1

∨

0 ¬

0

→∗∆ ∧

¬

∧

q0 q1

∨

q0 ¬

q0

Definition: run of A on a term t ∈ T (Σ)

A run ρ is a mapping from Pos(t) to Q compatible with the
transition rules.

5/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Tree automata
Definition through an example

∧(q0, q1)→ q0,¬(q0)→ q1 ∈ ∆

∧

¬

∧

0 1

∨

0 ¬

0

→∗∆ ∧

¬

∧

q0 q1

∨

q0 ¬

q0

→∗∆ ∧

¬

q0

∨

q0 q1

Definition: run of A on a term t ∈ T (Σ)

A run ρ is a mapping from Pos(t) to Q compatible with the
transition rules.

5/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Tree automata
Definition through an example

¬(q0)→ q1,∨(q0, q1)→ q1 ∈ ∆

∧

¬

∧

0 1

∨

0 ¬

0

→∗∆ ∧

¬

∧

q0 q1

∨

q0 ¬

q0

→∗∆ ∧

¬

q0

∨

q0 q1

→∗∆ ∧

q1 q1

Definition: run of A on a term t ∈ T (Σ)

A run ρ is a mapping from Pos(t) to Q compatible with the
transition rules.

5/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Tree automata
Definition through an example

∧(q1, q1)→ q1 ∈ ∆

∧

¬

∧

0 1

∨

0 ¬

0

→∗∆ ∧

¬

∧

q0 q1

∨

q0 ¬

q0

→∗∆ ∧

¬

q0

∨

q0 q1

→∗∆ ∧

q1 q1

→∆ q1

Definition: run of A on a term t ∈ T (Σ)

A run ρ is a mapping from Pos(t) to Q compatible with the
transition rules.

5/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Tree automata
Definition through an example

∧

¬

∧

0 1

∨

0 ¬

0

→∗∆ ∧

¬

∧

q0 q1

∨

q0 ¬

q0

→∗∆ ∧

¬

q0

∨

q0 q1

→∗∆ ∧

q1 q1

→∆ q1

Definition: run of A on a term t ∈ T (Σ)

A run ρ is a mapping from Pos(t) to Q compatible with the
transition rules.

5/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Tree automata
Definition through an example

∧

¬

∧

0 1

∨

0 ¬

0

→∗∆ ∧

¬

∧

q0 q1

∨

q0 ¬

q0

→∗∆ ∧

¬

q0

∨

q0 q1

→∗∆ ∧

q1 q1

→∆ q1

ρ = ε ∧q1

1 ¬q1

11 ∧q0

111 0q0 112 1q1

2 ∨q1

21 0q0 22 ¬q1

221 0q0

5/37 Vincent HUGOT Solving the TAGED membership problem with SAT

TAGEDs
Tree Automata With Global Equality and Disequality Constraints

Introduced in Emmanuel Filiot’s PhD thesis on XML query
languages. See [Filiot et al., 2008].

A TAGED is a tuple A = (Σ,Q,F ,∆,=A, 6=A), where

(Σ,Q,F ,∆) is a tree automaton

=A is a reflexive symmetric binary relation on a subset of Q

6=A is an irreflexive and symmetric binary relation on Q. Note
that in our work, we have dealt with a slightly more general
case, where 6=A is not necessarily irreflexive.

A TAGED A is said to be positive if 6=A is empty and negative if =A
is empty.

Runs must be compatible with equality and disequality constraints.

6/37 Vincent HUGOT Solving the TAGED membership problem with SAT

TAGEDs
Tree Automata With Global Equality and Disequality Constraints

Introduced in Emmanuel Filiot’s PhD thesis on XML query
languages. See [Filiot et al., 2008].

A TAGED is a tuple A = (Σ,Q,F ,∆,=A, 6=A), where

(Σ,Q,F ,∆) is a tree automaton

=A is a reflexive symmetric binary relation on a subset of Q

6=A is an irreflexive and symmetric binary relation on Q. Note
that in our work, we have dealt with a slightly more general
case, where 6=A is not necessarily irreflexive.

A TAGED A is said to be positive if 6=A is empty and negative if =A
is empty.

Runs must be compatible with equality and disequality constraints.

6/37 Vincent HUGOT Solving the TAGED membership problem with SAT

TAGEDs
Compatibility with global constraints

Le ρ be a run of the TAGED A on a tree t:

Compatibility with the equality constraint =A

∀α, β ∈ Pos(t) : ρ(α) =A ρ(β) =⇒ t|α = t|β .

Compatibility with the disequality constraint 6=A (irreflexive)

∀α, β ∈ Pos(t) : ρ(α) 6=A ρ(β) =⇒ t|α 6= t|β .

Compatibility with the disequality constraint 6=A (non irreflexive)

∀α, β ∈ Pos(t) : α 6= β ∧ ρ(α) 6=A ρ(β) =⇒ t|α 6= t|β .

7/37 Vincent HUGOT Solving the TAGED membership problem with SAT

TAGEDs
Compatibility with global constraints

Le ρ be a run of the TAGED A on a tree t:

Compatibility with the equality constraint =A

∀α, β ∈ Pos(t) : ρ(α) =A ρ(β) =⇒ t|α = t|β .

Compatibility with the disequality constraint 6=A (irreflexive)

∀α, β ∈ Pos(t) : ρ(α) 6=A ρ(β) =⇒ t|α 6= t|β .

Compatibility with the disequality constraint 6=A (non irreflexive)

∀α, β ∈ Pos(t) : α 6= β ∧ ρ(α) 6=A ρ(β) =⇒ t|α 6= t|β .

7/37 Vincent HUGOT Solving the TAGED membership problem with SAT

TAGEDs
A non-regular language accepted by TAGEDs

TAGED for { f (t, t) | f ∈ Σ, t ∈ T (Σ) }

A
def
= (Σ = { a/0, f /2 } , Q = { q, q̂, qf } , F = { qf } ,

∆, q̂ =A q̂),

where ∆
def
= {f (q̂, q̂)→ qf , f (q, q)→ q, f (q, q)→ q̂,

a→ q, a→ q̂, }

f

f

a a

f

a a

→∗∆ fqf

fq̂

aq aq

fq̂

aq aq

8/37 Vincent HUGOT Solving the TAGED membership problem with SAT

TAGEDs
A non-regular language accepted by TAGEDs

TAGED for { f (t, t) | f ∈ Σ, t ∈ T (Σ) }

A
def
= (Σ = { a/0, f /2 } , Q = { q, q̂, qf } , F = { qf } ,

∆, q̂ =A q̂),

where ∆
def
= {f (q̂, q̂)→ qf , f (q, q)→ q, f (q, q)→ q̂,

a→ q, a→ q̂, }

f

f

a a

a

→∗∆ fqf

fq̂

aq aq

aq̂

8/37 Vincent HUGOT Solving the TAGED membership problem with SAT

TAGED emptiness

Emptiness Problem

INPUT: A a positive TAGED.
OUTPUT: Lng (A) = ∅ ?

Applications

Introduced for XML query languages

in model-checking. . .

Theorem [Filiot2008]

The Emptiness Problem for positive TAGEDs is EXPTIME-complete.

9/37 Vincent HUGOT Solving the TAGED membership problem with SAT

TAGED emptiness

Emptiness Problem

INPUT: A a positive TAGED.
OUTPUT: Lng (A) = ∅ ?

Applications

Introduced for XML query languages

in model-checking. . .

Theorem [Filiot2008]

The Emptiness Problem for positive TAGEDs is EXPTIME-complete.

9/37 Vincent HUGOT Solving the TAGED membership problem with SAT

TAGED emptiness

Emptiness Problem

INPUT: A a positive TAGED.
OUTPUT: Lng (A) = ∅ ?

Applications

Introduced for XML query languages

in model-checking. . .

Theorem [Filiot2008]

The Emptiness Problem for positive TAGEDs is EXPTIME-complete.

9/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Global Strategy

A high-level view of how we tackled the problem

1 Part I: A strategy and several tactics
1 Inexpensive reductions
2 Splitting the TAGED

3 Semi-expensive heuristics
4 Brutal algorithm

2 Part II: experiments random TAGEDs
1 Random generation of tree automata

(4 generations)
2 Random generation of constraints

(3 generations)

10/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Global Strategy

A high-level view of how we tackled the problem

1 Part I: A strategy and several tactics
1 Inexpensive reductions
2 Splitting the TAGED

3 Semi-expensive heuristics
4 Brutal algorithm

2 Part II: experiments random TAGEDs
1 Random generation of tree automata

(4 generations)
2 Random generation of constraints

(3 generations)

10/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Global Strategy

Emptiness Problem

INPUT: A a positive TAGED.
OUTPUT: Lng (A) = ∅ ?

Reducing the problem

INPUT: A a positive TAGED.
OUTPUT: A′ a smaller positive TAGED.
։ Standard reduction, cleanup, signature-quotienting

Quick negative decision

։ Lng (ta (A)) = ∅?

Quick positive decision

։ parenting relations

If all else fails

General exponential algorithm: brutal algorithm

11/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Global Strategy

Emptiness Problem

INPUT: A a positive TAGED.
OUTPUT: Lng (A) = ∅ ?

Reducing the problem

INPUT: A a positive TAGED.
OUTPUT: A′ a smaller positive TAGED.
։ Standard reduction, cleanup, signature-quotienting

Quick negative decision

։ Lng (ta (A)) = ∅?

Quick positive decision

։ parenting relations

If all else fails

General exponential algorithm: brutal algorithm

11/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Global Strategy

Emptiness Problem

INPUT: A a positive TAGED.
OUTPUT: Lng (A) = ∅ ?

Reducing the problem

INPUT: A a positive TAGED.
OUTPUT: A′ a smaller positive TAGED.
։ Standard reduction, cleanup, signature-quotienting

Quick negative decision

։ Lng (ta (A)) = ∅?

Quick positive decision

։ parenting relations

If all else fails

General exponential algorithm: brutal algorithm

11/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Global Strategy

Emptiness Problem

INPUT: A a positive TAGED.
OUTPUT: Lng (A) = ∅ ?

Reducing the problem

INPUT: A a positive TAGED.
OUTPUT: A′ a smaller positive TAGED.
։ Standard reduction, cleanup, signature-quotienting

Quick negative decision

։ Lng (ta (A)) = ∅?

Quick positive decision

։ parenting relations

If all else fails

General exponential algorithm: brutal algorithm

11/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup

Improved version of standard reduction (reachability) algorithm for
tree automata, which takes advantage of equality constraints to

remove useless rules and states.

1 Spurious rules

2 Useless states

3 Σ-spurious states

4 Spurious states

12/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Spurious Rules

Definition (Spurious rule)

Let A be a TAGED. A rule f (q1, . . . , qn)→ q ∈ ∆ is spurious if
there exists k ∈ J1, nK such that qk =A q.

α fq

α.1 xq1 α.2 xq2 α.k xqk α.n xqn

13/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Spurious Rules

Definition (Spurious rule)

Let A be a TAGED. A rule f (q1, . . . , qn)→ q ∈ ∆ is spurious if
there exists k ∈ J1, nK such that qk =A q.

α fq

α.1 xq1 α.2 xq2 α.k xqk α.n xqn

Lemma (Removal of spurious rules)

All spurious rules can be removed without altering the accepted
language.

13/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Spurious Rules

Definition (Spurious rule)

Let A be a TAGED. A rule f (q1, . . . , qn)→ q ∈ ∆ is spurious if
there exists k ∈ J1, nK such that qk =A q.

α fq

α.1 xq1 α.2 xq2 α.k xqk α.n xqn

Proof idea

If a spurious rule was used, a term would have to be equal with
one of its strict subterms. Which is absurd.

13/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Sure and Potential requirements

Let px
y , p, q ∈ Q, σ1, . . . , σm ∈ Σ, and

Rul(q) =






σ1(p
1
1 , . . . , p

1
n1
, p, p′11 , . . . , p

′1
n′

1
)→ q

...
σm(pm

1 , . . . , p
m
nm
, p, p′m1 , . . . , p

′m
n′m

)→ q






Sure requirements

p ∈ sReq(q)

Potential Requirements

pReq(q) = { p } ∪
{

px
y , p
′x
y

∣∣∣ x , y ∈ . . .
}

14/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Sure and Potential requirements

Let px
y , p, q ∈ Q, σ1, . . . , σm ∈ Σ, and

Rul(q) =






σ1(p
1
1 , . . . , p

1
n1
, p, p′11 , . . . , p

′1
n′

1
)→ q

...
σm(pm

1 , . . . , p
m
nm
, p, p′m1 , . . . , p

′m
n′m

)→ q






Sure requirements

p ∈ sReq(q)

Potential Requirements

pReq(q) = { p } ∪
{

px
y , p
′x
y

∣∣∣ x , y ∈ . . .
}

14/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Sure and Potential requirements

Let px
y , p, q ∈ Q, σ1, . . . , σm ∈ Σ, and

Rul(q) =






σ1(p
1
1 , . . . , p

1
n1
, p, p′11 , . . . , p

′1
n′

1
)→ q

...
σm(pm

1 , . . . , p
m
nm
, p, p′m1 , . . . , p

′m
n′m

)→ q






Sure requirements

p ∈ sReq(q)

Potential Requirements

pReq(q) = { p } ∪
{

px
y , p
′x
y

∣∣∣ x , y ∈ . . .
}

14/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Sure and Potential requirements

Let px
y , p, q ∈ Q, σ1, . . . , σm ∈ Σ, and

Rul(q) =






σ1(p
1
1 , . . . , p

1
n1
, p, p′11 , . . . , p

′1
n′

1
)→ q

...
σm(pm

1 , . . . , p
m
nm
, p, p′m1 , . . . , p

′m
n′m

)→ q






Sure requirements

sReq(q)
def
=

⋂

r∈Rul(q)
q/∈Ant(r)

Ant(r),

Potential Requirements

pReq(q)
def
=

⋃

r∈Rul(q)

Ant(r).

14/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Needs and friends

Frnd(q) = “transitive closure of pReq(q)”.
Need(q) = “transitive closure of sReq(q)”.

Definition (Friend states)

Frnd(q): the smallest subset of Q satisfying

1 pReq(q) ⊆ Frnd(q)

2 if p ∈ Frnd(q) then pReq(p) ⊆ Frnd(q)

Definition (Needs)

Need(q): smallest subset of Q satisfying

1 sReq(q) ⊆ Need(q)

2 if p ∈ Need(q) then sReq(p) ⊆ Need(q)

15/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Needs and friends

“Only friends of q appear under q”

Lemma (“Rely on your Friends” principle)

Let ρ a run: ∀α, β ∈ Pos(t) : β ⊳ α =⇒ ρ(β) ∈ Frnd (ρ(α)).

“Every need of q appears under q”

Lemma (Needs)

Let ρ a run such that ρ(β) = q. For any p ∈ Need(q), there exists
a position αp ⊳ β such that ρ(αp) = p.

16/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Needs and friends

“Only friends of q appear under q”

Lemma (“Rely on your Friends” principle)

Let ρ a run: ∀α, β ∈ Pos(t) : β ⊳ α =⇒ ρ(β) ∈ Frnd (ρ(α)).

“Every need of q appears under q”

Lemma (Needs)

Let ρ a run such that ρ(β) = q. For any p ∈ Need(q), there exists
a position αp ⊳ β such that ρ(αp) = p.

16/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Useless states

“Only friends of a final state are useful”

Theorem (Removal of useless states)

Let A = (Σ,Q,F ,∆) be a tree automaton. Then

Lng (A) = Lng
(
A′
)

with A′
def
= Rst



A,F ∪
⋃

qf ∈F

Frnd(qf)



 .

Furthermore, the accepting runs are the same for A and A′.

Proof idea

Every accepting run is rooted in a final state. Therefore they
cannot use any state not in F ∪

⋃
qf ∈F Frnd(qf).

17/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Useless states

“Only friends of a final state are useful”

Theorem (Removal of useless states)

Let A = (Σ,Q,F ,∆) be a tree automaton. Then

Lng (A) = Lng
(
A′
)

with A′
def
= Rst



A,F ∪
⋃

qf ∈F

Frnd(qf)



 .

Furthermore, the accepting runs are the same for A and A′.

Proof idea

Every accepting run is rooted in a final state. Therefore they
cannot use any state not in F ∪

⋃
qf ∈F Frnd(qf).

17/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Σ-spurious states

Definition (Support of a state)

Support of q: the set of all symbols of Σ in which a term which
evaluates to q may be rooted.

Sup(q)
def
= { f ∈ Σ | ∃f (. . .)→ q ∈ ∆ } .

Definition (Σ-spurious state)

A state q ∈ Q is a Σ-spurious state if there exists p, p′ ∈ Need(q)
such that p =A p′ and Sup(p) ∩Sup(p′) = ∅.

Lemma (Removal of Σ-spurious states)

Let A be a TAGED, S ⊆ Q the set of all its Σ-spurious states, and
A′ = Rst (A,Q \ S). Then Lng (A) = Lng (A′).

18/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Σ-spurious states

Definition (Support of a state)

Support of q: the set of all symbols of Σ in which a term which
evaluates to q may be rooted.

Sup(q)
def
= { f ∈ Σ | ∃f (. . .)→ q ∈ ∆ } .

Definition (Σ-spurious state)

A state q ∈ Q is a Σ-spurious state if there exists p, p′ ∈ Need(q)
such that p =A p′ and Sup(p) ∩Sup(p′) = ∅.

Lemma (Removal of Σ-spurious states)

Let A be a TAGED, S ⊆ Q the set of all its Σ-spurious states, and
A′ = Rst (A,Q \ S). Then Lng (A) = Lng (A′).

18/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Σ-spurious states

Definition (Σ-spurious state)

A state q ∈ Q is a Σ-spurious state if there exists p, p′ ∈ Need(q)
such that p =A p′ and Sup(p) ∩Sup(p′) = ∅.

Lemma (Removal of Σ-spurious states)

Let A be a TAGED, S ⊆ Q the set of all its Σ-spurious states, and
A′ = Rst (A,Q \ S). Then Lng (A) = Lng (A′).

Proof idea

If q appears in an accepting run, then so must p and p′. But they
cannot satisfy the equality (rooted in different symbols). Absurd.
So q cannot appear in any accepting run.

18/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Σ-spurious states

Definition (Σ-spurious state)

A state q ∈ Q is a Σ-spurious state if there exists p, p′ ∈ Need(q)
such that p =A p′ and Sup(p) ∩Sup(p′) = ∅.

Lemma (Removal of Σ-spurious states)

Let A be a TAGED, S ⊆ Q the set of all its Σ-spurious states, and
A′ = Rst (A,Q \ S). Then Lng (A) = Lng (A′).

Proof idea

If q appears in an accepting run, then so must p and p′. But they
cannot satisfy the equality (rooted in different symbols). Absurd.
So q cannot appear in any accepting run.

18/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Spurious states

Definition (Spurious states)

Let A be a TAGED. A state q ∈ Q is said to be a spurious state if
there exists p ∈ Need(q) such that p =A q.

Lemma (Removal of spurious states)

Let A be a TAGED, S ⊆ Q the set of all its spurious states, and
A′ = Rst (A,Q \ S). Then Lng (A) = Lng (A′).

Proof idea

Suppose q appears in an accepting run at position β, then
∃αp ⊳ β st. ρ(αp) = p. A strict subterm and its parent are equal.
Absurd. So q does not appear.

19/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Spurious states

Definition (Spurious states)

Let A be a TAGED. A state q ∈ Q is said to be a spurious state if
there exists p ∈ Need(q) such that p =A q.

Lemma (Removal of spurious states)

Let A be a TAGED, S ⊆ Q the set of all its spurious states, and
A′ = Rst (A,Q \ S). Then Lng (A) = Lng (A′).

Proof idea

Suppose q appears in an accepting run at position β, then
∃αp ⊳ β st. ρ(αp) = p. A strict subterm and its parent are equal.
Absurd. So q does not appear.

19/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
Spurious states

Definition (Spurious states)

Let A be a TAGED. A state q ∈ Q is said to be a spurious state if
there exists p ∈ Need(q) such that p =A q.

Lemma (Removal of spurious states)

Let A be a TAGED, S ⊆ Q the set of all its spurious states, and
A′ = Rst (A,Q \ S). Then Lng (A) = Lng (A′).

Proof idea

Suppose q appears in an accepting run at position β, then
∃αp ⊳ β st. ρ(αp) = p. A strict subterm and its parent are equal.
Absurd. So q does not appear.

19/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
An example

TAGED ’example 1’ [64] = {

states = #7{q0, q1, q2, q3, q4, q5, q6}

final = #1{q6}

rules = #16{

a2()->q0, a2()->q2, a2()->q4, a3()->q3, a5()->q0, a5()->q2,

a5()->q4, f1(q5)->q5, f3(q1)->q5, g1(q1, q5)->q5, g3(q0, q0)->q5,

g3(q1, q5)->q5, g5(q1, q1)->q5, h2(q2, q3, q4)->q1,

h3(q0, q0, q1)->q6, h3(q2, q3, q4)->q1

}

==rel = #3{(q0,q0), (q3,q4), (q4,q3)}

}

State q1 is Σ-spurious, because it depends on q3 and q4

(q3, q4 ∈ Need(q1) and Sup(q3) ∩Sup(q4) = { a3 } ∩ { a2, a5 } = ∅).
Furthermore q1 ∈ Need(q6), so q6 is unreachable, and Lng (A) = ∅.

20/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Cleanup: hunting for spuriousness
An example

TAGED ’example 1’ [64] = {

states = #7{q0, q1, q2, q3, q4, q5, q6}

final = #1{q6}

rules = #16{

a2()->q0, a2()->q2, a2()->q4, a3()->q3, a5()->q0, a5()->q2,

a5()->q4, f1(q5)->q5, f3(q1)->q5, g1(q1, q5)->q5, g3(q0, q0)->q5,

g3(q1, q5)->q5, g5(q1, q1)->q5, h2(q2, q3, q4)->q1,

h3(q0, q0, q1)->q6, h3(q2, q3, q4)->q1

}

==rel = #3{(q0,q0), (q3,q4), (q4,q3)}

}

State q1 is Σ-spurious, because it depends on q3 and q4

(q3, q4 ∈ Need(q1) and Sup(q3) ∩Sup(q4) = { a3 } ∩ { a2, a5 } = ∅).
Furthermore q1 ∈ Need(q6), so q6 is unreachable, and Lng (A) = ∅.

20/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Signature-Quotienting

Taking advantage of similarities between rules: postponing choice
of symbols

Rul(qchar) =






a→ qchar, . . . , z → qchar

0→ qchar, . . . , 9→ qchar

A→ qchar, . . . ,Z → qchar






“ { a, . . . , z , 0, . . . , 9,A, . . . ,Z } → qchar ∈ ∆′′

21/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Signature-Quotienting

Taking advantage of similarities between rules: postponing choice
of symbols

Rul(qchar) =






a→ qchar, . . . , z → qchar

0→ qchar, . . . , 9→ qchar

A→ qchar, . . . ,Z → qchar






“ { a, . . . , z , 0, . . . , 9,A, . . . ,Z } → qchar ∈ ∆′′

21/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Signature-Quotienting

Taking advantage of similarities between rules: postponing choice
of symbols

Rul(qchar) =






a→ qchar, . . . , z → qchar

0→ qchar, . . . , 9→ qchar

A→ qchar, . . . ,Z → qchar






“ { a, . . . , z , 0, . . . , 9,A, . . . ,Z } → qchar ∈ ∆′′

21/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Signature-Quotiented TAGED
Definition

Definition (Conservation of arity)

Let ≅
s an equivalence relation over Σ. It is arity-preserving if

∀f , g ∈ Σ : f ≅
s g =⇒ arity(f) = arity(g).

Definition (Signature-quotiented TAGED)

Let A = (Σ,Q,F ,∆,=A, 6=A) be a TAGED. Then its
signature-quotiented TAGED, or signature-TAGED for short, is the
TAGED As = (Σs ,Q,F ,∆s ,=A, 6=A), where

Σs def
= Σ/≅

s

∆s def
= { [σ] (p1, . . . , pn)→ q | σ(p1, . . . , pn)→ q ∈ ∆ } .

22/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Signature-Quotiented TAGED
Approximation

Theorem (Signature-TAGED as over-approximation)

Let A be a positive TAGED and As its signature-TAGED. Then
Lng (As) = ∅ =⇒ Lng (A) = ∅.

Definition (Signature-identity relation)

We define the signature-identity relation (denoted ≡s), such that:

f ≡s g ⇐⇒ sigs(f) = sigs(g),

where sigs(σ)
def
= { (p1, . . . , pn, q) | σ(p1, . . . , pn)→ q ∈ ∆ }.

Theorem (Friendly quotient)

Let A be a positive TAGED and As
≡s its signature-TAGED, using ≡s

instead of ≅
s . Then Lng (As

≡s) = ∅ ⇐⇒ Lng (A) = ∅.

23/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Signature-Quotiented TAGED
Approximation

Theorem (Signature-TAGED as over-approximation)

Let A be a positive TAGED and As its signature-TAGED. Then
Lng (As) = ∅ =⇒ Lng (A) = ∅.

Definition (Signature-identity relation)

We define the signature-identity relation (denoted ≡s), such that:

f ≡s g ⇐⇒ sigs(f) = sigs(g),

where sigs(σ)
def
= { (p1, . . . , pn, q) | σ(p1, . . . , pn)→ q ∈ ∆ }.

Theorem (Friendly quotient)

Let A be a positive TAGED and As
≡s its signature-TAGED, using ≡s

instead of ≅
s . Then Lng (As

≡s) = ∅ ⇐⇒ Lng (A) = ∅.

23/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Signature-Quotiented TAGED
Approximation

Theorem (Signature-TAGED as over-approximation)

Let A be a positive TAGED and As its signature-TAGED. Then
Lng (As) = ∅ =⇒ Lng (A) = ∅.

Definition (Signature-identity relation)

We define the signature-identity relation (denoted ≡s), such that:

f ≡s g ⇐⇒ sigs(f) = sigs(g),

where sigs(σ)
def
= { (p1, . . . , pn, q) | σ(p1, . . . , pn)→ q ∈ ∆ }.

Theorem (Friendly quotient)

Let A be a positive TAGED and As
≡s its signature-TAGED, using ≡s

instead of ≅
s . Then Lng (As

≡s) = ∅ ⇐⇒ Lng (A) = ∅.

23/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Signature-Quotiented TAGED
Example (with an approximation relation)

TAGED ’restricted’ [58] = {

states = #6{q0, q1, q2, q3, q4, q5}

final = #2{q1, q5}

rules = #16{

a1()->q0, a1()->q3, a3()->q2, a3()->q4, a4()->q0,

a4()->q4, a5()->q2, a5()->q3, f1(q1)->q5, f5(q1)->q5,

g1(q1, q5)->q5, g3(q0, q5)->q5, g5(q0, q5)->q5,

g5(q1, q5)->q5, h3(q2, q3, q4)->q1, h4(q2, q3, q4)->q1

}}

Classes = #{<g5 g3 g1>; <h4 h3>; <a5 a4 a3 a1>; <f5 f1>}#

TAGED ’sig-quotient’ [34] = {

states = #6{q0, q1, q2, q3, q4, q5}

final = #2{q1, q5}

rules = #8{

a4()->q0, a4()->q2, a4()->q3, a4()->q4,

f5(q1)->q5, g5(q0, q5)->q5, g5(q1, q5)->q5,

h4(q2, q3, q4)->q1

}}

24/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Signature-Quotiented TAGED
Example (with an approximation relation)

TAGED ’restricted’ [58] = {

states = #6{q0, q1, q2, q3, q4, q5}

final = #2{q1, q5}

rules = #16{

a1()->q0, a1()->q3, a3()->q2, a3()->q4, a4()->q0,

a4()->q4, a5()->q2, a5()->q3, f1(q1)->q5, f5(q1)->q5,

g1(q1, q5)->q5, g3(q0, q5)->q5, g5(q0, q5)->q5,

g5(q1, q5)->q5, h3(q2, q3, q4)->q1, h4(q2, q3, q4)->q1

}}

Classes = #{<g5 g3 g1>; <h4 h3>; <a5 a4 a3 a1>; <f5 f1>}#

TAGED ’sig-quotient’ [34] = {

states = #6{q0, q1, q2, q3, q4, q5}

final = #2{q1, q5}

rules = #8{

a4()->q0, a4()->q2, a4()->q3, a4()->q4,

f5(q1)->q5, g5(q0, q5)->q5, g5(q1, q5)->q5,

h4(q2, q3, q4)->q1

}}

24/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Parenting Relations

Building successful and easy runs for cheap

1 Emptiness is easy for diagonal positive TAGEDs

2 Partial adaptation to non-diagonal cases

3 Previous tactics useful for (sometimes) proving emptiness.

4 This one useful for (sometimes) proving non-emptiness.

25/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Emptiness for diagonal positive TAGEDs
Easy and linear

Definition (Diagonal positive TAGED)

A positive TAGED is diagonal if

(=A) ⊆ { (q, q) | q ∈ Q } .

Theorem (Diagonal testing)

Let A be a diagonal positive TAGED. Then

Lng (A) = ∅ ⇐⇒ Lng (ta (A)) = ∅.

Proof idea

See beginning of proof of [Filiot et al., 2008, Theorem 1].

26/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Parenting relations
Introductory example

TAGED ’Heam’ [146] = {

alphab = #5{a/0, b/0, c/0, d/0, f/2}

states = #10{q, q1, q2, q3, q4, q5, q6, q7, q8, qf}

final = #1{qf}

rules = #39{

a()->q, a()->q1, a()->q2, b()->q, b()->q1, b()->q2,

c()->q, c()->q1, c()->q2, d()->q, d()->q1, d()->q2,

f(q, q)->q, f(q, q)->q1, f(q, q)->q2, f(q, q1)->q3,

f(q, q1)->q5, f(q, q2)->q4, f(q, q2)->q6, f(q, q3)->q3,

f(q, q3)->q5, f(q, q4)->q4, f(q, q4)->q6, f(q, q6)->q8,

f(q, q7)->q7, f(q, qf)->qf, f(q1, q)->q3, f(q1, q)->q5,

f(q2, q)->q4, f(q2, q)->q6, f(q3, q)->q3, f(q3, q)->q5,

f(q4, q)->q4, f(q4, q)->q6, f(q5, q)->q7, f(q6, q)->q8,

f(q7, q8)->qf, f(q8, q7)->qf, f(qf, q)->qf

}

==rel = #2{(q1,q2), (q2,q1)}

}

27/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Parenting relations
Introductory example

qq1 q2

q5 q6

q7 q8

qf

q

q1

q2

q3

q4

q5

q6

q7

q8

qf

q

q1 q2

q5 q6

q7 q8

qf

28/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Parenting relations

Definition (Parenting relation)

Let A be a positive TAGED, and qf ∈ F one of its final states. Then
a relation on Q ≺ is a parenting relation of A (for qf) if it satisfies
the four following properties:

(qf -domination):
The ordered set (dom(≺),≺+) has a greatest element, which
is qf .

(Transitionality):
∀q ∈ dom(≺) : ∃r ∈ Rul(q) st. Ant(r) = { p | p ≺ q }

(Strictness):
≺+ is a strict partial order on its domain.

(Aspuriousness):
There are no two states p, q ∈ dom(≺) such that p ≺+ q and
p =A q.

29/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Parenting relations

Definition (Parenting relation)

Let A be a positive TAGED, and qf ∈ F one of its final states. Then
a relation on Q ≺ is a parenting relation of A (for qf) if it satisfies
the four following properties:

(qf -domination):
The ordered set (dom(≺),≺+) has a greatest element, which
is qf .

(Transitionality):
∀q ∈ dom(≺) : ∃r ∈ Rul(q) st. Ant(r) = { p | p ≺ q }

(Strictness):
≺+ is a strict partial order on its domain.

(Aspuriousness):
There are no two states p, q ∈ dom(≺) such that p ≺+ q and
p =A q.

29/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Parenting relations

Definition (Parenting relation)

Let A be a positive TAGED, and qf ∈ F one of its final states. Then
a relation on Q ≺ is a parenting relation of A (for qf) if it satisfies
the four following properties:

(qf -domination):
The ordered set (dom(≺),≺+) has a greatest element, which
is qf .

(Transitionality):
∀q ∈ dom(≺) : ∃r ∈ Rul(q) st. Ant(r) = { p | p ≺ q }

(Strictness):
≺+ is a strict partial order on its domain.

(Aspuriousness):
There are no two states p, q ∈ dom(≺) such that p ≺+ q and
p =A q.

29/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Parenting relations

Definition (Parenting relation)

Let A be a positive TAGED, and qf ∈ F one of its final states. Then
a relation on Q ≺ is a parenting relation of A (for qf) if it satisfies
the four following properties:

(qf -domination):
The ordered set (dom(≺),≺+) has a greatest element, which
is qf .

(Transitionality):
∀q ∈ dom(≺) : ∃r ∈ Rul(q) st. Ant(r) = { p | p ≺ q }

(Strictness):
≺+ is a strict partial order on its domain.

(Aspuriousness):
There are no two states p, q ∈ dom(≺) such that p ≺+ q and
p =A q.

29/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Parenting relations

Definition (Restriction by states, projection)

Let A = (Σ,Q,F ,∆,=A, 6=A) be a TAGED, and let S ⊆ Q be a set
of states. We call restriction of A to S and denote Rst (A,S) the
TAGED (Σ,S,F ∩ S,∆′,=A ∩S2, 6=A ∩S2) where

∆′
def
= { f (q1, . . . , qn)→ q ∈ ∆ | { q, q1, . . . , qn } ⊆ S } .

We also call projection of A on S the TAGED

Prj (A,S)
def
= (Σ,Q,S,∆,=A, 6=A).

Definition (Automaton under a state)

Let ≺ be a parenting relation of a TAGED A, and q ∈ dom(≺). We
call automaton under the state q and denote Udr(q,≺), or simply
Udr(q), the automaton

Udr(q,≺) = Prj
(
Rst
(
A,
{

p | p 4
+ q
})
, q
)
.

30/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Parenting relations

Definition (Restriction by states, projection)

Let A = (Σ,Q,F ,∆,=A, 6=A) be a TAGED, and let S ⊆ Q be a set of
states. We call restriction of A to S and denote Rst (A, S) the TAGED

(Σ, S,F ∩ S,∆′,=A ∩S2, 6=A ∩S2) where

∆′
def
= { f (q1, . . . , qn)→ q ∈ ∆ | { q, q1, . . . , qn } ⊆ S } .

We also call projection of A on S the TAGED

Prj (A, S)
def
= (Σ,Q, S,∆,=A, 6=A).

Definition (Automaton under a state)

Let ≺ be a parenting relation of a TAGED A, and q ∈ dom(≺). We
call automaton under the state q and denote Udr(q,≺), or simply
Udr(q), the automaton

Udr(q,≺) = Prj
(
Rst
(
A,
{

p | p 4
+ q
})
, q
)
.

30/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Parenting relations
Fruitful TAGEDs

Definition (Fruitful parenting relation)

Let ≺ be a parenting relation of the positive TAGED A, and

(≡A)
def
=
(
=A ∩ dom(≺)2

)∗
We say that ≺ is fruitful if

∀ [q] ∈ dom(≺)/≡A,Card ([q]) > 1 :
⋂

q∈[q]

Lng (Udr(q,≺)) 6= ∅.

Theorem (Fruitful positive TAGEDs)

Let A be a positive TAGED. If there exists a fruitful parenting
relation ≺ for one of its final states qf , then it is non-empty.

31/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Parenting relations
Characterising the core

Definition (Parenting core)

Let ≺ be a parenting relation of a TAGED A. We call core of ≺ –
and often denote ⋖

+ – the relation

(⋖+)
def
= (≺+) ∩ dom(=A)2.

Definition (Flat and pseudo-flat parenting relations)

Let ≺ be a parenting relation of a TAGED A. It is called flat if its
core ⋖

+ is empty, and pseudo-flat if

∀p, q, p′ ∈ Q : p ⋖
+ q =⇒

(
p =A p′ =⇒ p = p′

)
.

32/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Parenting relations
Building terms is easy

Theorem (flat and pseudo-flat tests)

Under the conditions and notations of theorem “fruitful TAGEDs”,
let [q] such that Card ([q]) > 1, and let

U =
⊗

q∈[q]

Udr(q,≺).

Then the following statements hold:

1 If ≺ is flat then U is a vanilla tree automaton or a diagonal
positive TAGED with only one constraint, on its sole final state.

2 If ≺ is pseudo-flat then U is a diagonal TAGED.

Problem reduced to generation of parenting relations and
emptiness of diagonal TAGEDs

Will not detect non-emptiness in all cases

The more relations tested, the better
33/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Parenting relations
Building terms is easy

Theorem (flat and pseudo-flat tests)

Under the conditions and notations of theorem “fruitful TAGEDs”, let [q] such

that Card ([q]) > 1, and let

U =
⊗

q∈[q]

Udr(q,≺).

Then the following statements hold:

1 If ≺ is flat then U is a vanilla tree automaton or a diagonal positive TAGED

with only one constraint, on its sole final state.

2 If ≺ is pseudo-flat then U is a diagonal TAGED.

Problem reduced to generation of parenting relations and
emptiness of diagonal TAGEDs

Will not detect non-emptiness in all cases

The more relations tested, the better

33/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Experiments: Generations 2 TA / 2 C

|Q| Run Something Nothing Failure

4. 26.8% 73.2% 0.0% 0.0%
7. 43.6% 55.6% 0.8% 0.0%
10. 48.8% 50.8% 0.4% 0.0%
13. 49.2% 50.8% 0.0% 0.0%
16. 50.0% 50.0% 0.0% 0.0%
19. 42.4% 57.6% 0.0% 0.0%
22. 41.2% 58.4% 0.4% 0.0%
25. 34.8% 65.2% 0.0% 0.0%
28. 30.4% 69.6% 0.0% 0.0%
31. 36.4% 63.6% 0.0% 0.0%
34. 38.8% 61.2% 0.0% 0.0%
37. 35.6% 64.4% 0.0% 0.0%
40. 28.0% 72.0% 0.0% 0.0%

34/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Experiments: Generations 4 TA / 3 C

Height Run Something Nothing Failure ≺ results

6 0.4% 69.6% 28.8% 1.2% 2.8%
9 0.4% 69.2% 25.6% 4.8% 6.4%
12 0.0% 55.6% 36.4% 8.0% 9.2%
15 0.0% 61.2% 26.4% 12.4% 7.6%
18 0.0% 53.2% 30.0% 16.8% 6.4%
21 0.0% 50.8% 30.0% 19.2% 8.8%
24 0.0% 46.8% 35.6% 17.6% 7.2%
27 0.0% 49.2% 28.8% 22.0% 8.8%

27 0.0% 45.6% 31.2% 23.2% 5.6%
30 0.0% 45.2% 31.2% 23.6% 6.8%
31 0.0% 50.8% 25.2% 24.0% 6.0%
34 0.0% 50.8% 26.8% 22.4% 6.4%
37 0.0% 43.6% 26.8% 29.6% 7.2%

35/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Conclusion
Main points of the internship

1 Reduction and quick decisions:
1 Cleanup
2 Signature-quotienting
3 Parenting relations

2 Brutal algorithm

3 Random generation of tree automata and TAGEDs

4 OCaml implementation of the above (> 2000 LOC).

36/37 Vincent HUGOT Solving the TAGED membership problem with SAT

Some references
[Comon et al., 2007, Filiot et al., 2008, Tabakov and Vardi, 2005]

Comon, H., Dauchet, M., Gilleron, R., Löding, C.,
Jacquemard, F., Lugiez, D., Tison, S., and Tommasi, M.
(2007).
Tree Automata Techniques and Applications.
release October, 12th 2007.

Filiot, E., Talbot, J.-M., and Tison, S. (2008).
Tree Automata with Global Constraints.
In 12th International Conference on Developments in
Language Theory (DLT), pages 314–326, Kyoto Japon.

Tabakov, D. and Vardi, M. (2005).
Experimental evaluation of classical automata constructions.
In Logic for Programming, Artificial Intelligence, and
Reasoning, pages 396–411. Springer.

37/37 Vincent HUGOT Solving the TAGED membership problem with SAT

