Algorithms for Tree Automata with Constraints

Efficiently tackling the Emptiness Problem for Tree Automata With Global Equality Constraints

Pierre-Cyrille Héam, Vincent Hugot, Olga Kouchnarenko \{pcheam,okouchnarenko\}@lifc.univ-fcomte.fr, vhugot@edu.univ-fcomte.fr

Université de Franche-Comté LIFC-INRIA/CASSIS, project ACCESS

$$
\text { July 7, } 2010
$$

Plan of the talk

(1) Introduction of notions:
(1) Vanilla Tree Automata
(2) Tree Automata with Constraints: TAGEDs
(3) The emptiness problem
(2) A general strategy:
(1) Global algorithm
(2) Remarks on experimental protocol
(3) Proposed tactics:
(1) Cleanup: hunting for spuriousness
(2) Signature quotienting

- Parenting relations
- A brutal algorithm
(ㄷ) Conclusion.

Plan of the talk

(1) Introduction of notions:
(1) Vanilla Tree Automata
(2) Tree Automata with Constraints: TAGEDs
(3) The emptiness problem
(2) A general strategy:
(1) Global algorithm
(2) Remarks on experimental protocol
(3) Proposed tactics:
(1) Cleanup: hunting for spuriousness
(2) Signature quotienting
(3) Parenting relations
(9) A brutal algorithm

Conclusion.

Plan of the talk

(1) Introduction of notions:
(1) Vanilla Tree Automata
(2) Tree Automata with Constraints: TAGEDs
(3) The emptiness problem
(2) A general strategy:
(1) Global algorithm
(2) Remarks on experimental protocol
(3) Proposed tactics:
(1) Cleanup: hunting for spuriousness
(2) Signature quotienting
(3) Parenting relations
(1) A brutal algorithm
(ㄷ) Conclusion.

Plan of the talk

(1) Introduction of notions:
(1) Vanilla Tree Automata
(3) Tree Automata with Constraints: TAGEDs
(3) The emptiness problem
(2) A general strategy:
(1) Global algorithm
(2) Remarks on experimental protocol
(3) Proposed tactics:
(1) Cleanup: hunting for spuriousness
(2) Signature quotienting
(3) Parenting relations
(1) A brutal algorithm
(3) Conclusion.

Introduction

Tree automata and extensions

- Tree automata: powerful theoretical tools useful for
- automated theorem proving
- program verification
- XML schema and query languages
- ..
- Extensions: created to expand expressiveness.
- Problem: decidability and complexity of associated decision problems. Usable tools difficult to implement.
- Theme of my Master's project and internship: efficient algorithms for tree automata with constraints. For this internship: emptiness problem for positive TAGEDs (EXPTIME-complete)
- Tree automata: powerful theoretical tools useful for
- automated theorem proving
- program verification
- XML schema and query languages
- ..
- Extensions: created to expand expressiveness.
- Problem: decidability and complexity of associated decision problems. Usable tools difficult to implement.
- Theme of my Master's project and internshin: efficient algorithms for tree automata with constraints. For this internship: emptiness problem for positive TAGEDs (EXPTIME-complete)
- Tree automata: powerful theoretical tools useful for
- automated theorem proving
- program verification
- XML schema and query languages
- . .
- Extensions: created to expand expressiveness.
- Problem: decidability and complexity of associated decision problems. Usable tools difficult to implement.
- Theme of my Master's project and internship: efficient algorithms for tree automata with constraints. For this internship: emptiness problem for positive TAGEDs (EXPTIME-complete)

Introduction

Tree automata and extensions

- Tree automata: powerful theoretical tools useful for
- automated theorem proving
- program verification
- XML schema and query languages
- ..
- Extensions: created to expand expressiveness.
- Problem: decidability and complexity of associated decision problems. Usable tools difficult to implement.
- Theme of my Master's project and internship: efficient algorithms for tree automata with constraints. For this internship: emptiness problem for positive TAGEDs (EXPTIME-complete)

Tree automata

Tree automaton for True propositional formulæ

$$
\begin{gathered}
\mathcal{A} \stackrel{\text { def }}{=}\left(\Sigma=\{\wedge, \vee / 2, \neg / 1,0,1 / 0\}, Q=\left\{q_{0}, q_{1}\right\}, F=\left\{q_{1}\right\}, \Delta\right) \\
\Delta=\left\{b \rightarrow q_{b},\right. \\
\wedge\left(q_{b}, q_{b^{\prime}}\right) \rightarrow q_{b \wedge b^{\prime}}, \\
\vee\left(q_{b}, q_{b^{\prime}}\right) \rightarrow q_{b \vee b^{\prime}}, \\
\neg\left(q_{b}\right) \rightarrow q_{\neg b} \\
\\
\left.\mid b, b^{\prime} \in 0,1\right\}
\end{gathered}
$$

Tree automata

Definition through an example

Definition: run of \mathcal{A} on a term $t \in \mathcal{T}(\Sigma)$
A run ρ is a mapping from $\operatorname{Pos}(t)$ to Q compatible with the
transition rules.

Tree automata

Definition through an example

$$
\begin{aligned}
& 0 \rightarrow q_{0}, 1 \rightarrow q_{1} \in \Delta
\end{aligned}
$$

Definition: run of \mathcal{A} on a term $t \in T(\Sigma)$
A run ρ is a mapping from $\operatorname{Pos}(t)$ to Q compatible with the
transition rules.

Tree automata

Definition through an example

Definition: run of \mathcal{A} on a term $t \in T(\Sigma)$
A run ρ is a mapping from $\operatorname{Pos}(t)$ to Q compatible with the transition rules.

Tree automata

Definition through an example

Definition: run of \mathcal{A} on a term $t \in \mathcal{T}(\Sigma)$
A run ρ is a mapping from $\operatorname{Pos}(t)$ to Q compatible with the transition rules.

Tree automata

Definition through an example

Definition: run of \mathcal{A} on a term $t \in \mathcal{T}(\Sigma)$
A run ρ is a mapping from $\operatorname{Pos}(t)$ to Q compatible with the transition rules.

Tree automata

Definition: run of \mathcal{A} on a term $t \in \mathcal{T}(\Sigma)$
A run ρ is a mapping from $\operatorname{Pos}(t)$ to Q compatible with the transition rules.

Tree automata

Definition through an example

$$
\rho=
$$

Introduced in Emmanuel Filiot's PhD thesis on XML query languages. See [Filiot et al., 2008].

A TAGED is a tuple $\mathcal{A}=(\Sigma, Q, F, \Delta,=\mathcal{A}, \neq \mathcal{A})$, where

- (Σ, Q, F, Δ) is a tree automaton
- $=_{\mathcal{A}}$ is a reflexive symmetric binary relation on a subset of Q
 that in our work, we have dealt with a slightly more general case, where $\neq \mathcal{A}$ is not necessarily irreflexive.
A TAGED \mathcal{A} is said to be positive if $\neq \mathcal{A}$ is empty and negative if $=_{\mathcal{A}}$ is empty.

Runs must be compatible with equality and disequality constraints.

Introduced in Emmanuel Filiot's PhD thesis on XML query languages. See [Filiot et al., 2008].

A TAGED is a tuple $\mathcal{A}=(\Sigma, Q, F, \Delta,=\mathcal{A}, \neq \mathcal{A})$, where

- (Σ, Q, F, Δ) is a tree automaton
- $=_{\mathcal{A}}$ is a reflexive symmetric binary relation on a subset of Q
 that in our work, we have dealt with a slightly more general case, where $\neq \mathcal{A}$ is not necessarily irreflexive.
 is empty.

Runs must be compatible with equality and disequality constraints.

TAGEDs

Compatibility with global constraints

Le ρ be a run of the TAGED \mathcal{A} on a tree t :
Compatibility with the equality constraint $=\mathcal{A}$

$$
\forall \alpha, \beta \in \operatorname{Pos}(t): \rho(\alpha)=\left.\mathcal{A} \rho(\beta) \Longrightarrow t\right|_{\alpha}=\left.t\right|_{\beta}
$$

Compatibility with the disequality constraint $\neq \mathcal{A}$ (irreflexive)

$$
\forall \alpha, \beta \in \operatorname{Pos}(t): \rho(\alpha) \neq\left.\mathcal{A} \rho(\beta) \Longrightarrow t\right|_{\alpha} \neq\left. t\right|_{\beta}
$$

Compatibility with the disequality constraint $\neq \mathcal{A}$ (non irreflexive)

$$
\forall \alpha, \beta \in \operatorname{Pos}(t): \alpha \neq \beta \wedge \rho(\alpha) \neq\left.\mathcal{A} \rho(\beta) \Longrightarrow t\right|_{\alpha} \neq\left. t\right|_{\beta} .
$$

TAGEDs

Compatibility with global constraints

Le ρ be a run of the TAGED \mathcal{A} on a tree t :
Compatibility with the equality constraint $=_{\mathcal{A}}$

$$
\forall \alpha, \beta \in \operatorname{Pos}(t): \rho(\alpha)=\left.{ }_{\mathcal{A}} \rho(\beta) \Longrightarrow t\right|_{\alpha}=\left.t\right|_{\beta} .
$$

Compatibility with the disequality constraint $\neq \mathcal{A}$ (irreflexive)

$$
\forall \alpha, \beta \in \operatorname{Pos}(t): \rho(\alpha) \neq\left.\mathcal{A} \rho(\beta) \Longrightarrow t\right|_{\alpha} \neq\left. t\right|_{\beta}
$$

Compatibility with the disequality constraint $\neq \mathcal{A}$ (non irreflexive)

$$
\forall \alpha, \beta \in \operatorname{Pos}(t): \alpha \neq \beta \wedge \rho(\alpha) \neq\left.\mathcal{A} \rho(\beta) \Longrightarrow t\right|_{\alpha} \neq\left. t\right|_{\beta} .
$$

TAGEDs

A non-regular language accepted by TAGEDs

TAGED for $\{f(t, t) \mid f \in \Sigma, t \in \mathcal{T}(\Sigma)\}$

$$
\begin{gathered}
\mathcal{A} \stackrel{\text { def }}{=}\left(\Sigma=\{a / 0, f / 2\}, Q=\left\{q, \widehat{q}, q_{f}\right\}, F=\left\{q_{f}\right\},\right. \\
\Delta, \hat{q}=\mathcal{A} \widehat{q})
\end{gathered}
$$

where $\Delta \stackrel{\text { def }}{=}\left\{f(\hat{q}, \hat{q}) \rightarrow q_{f}, f(q, q) \rightarrow q, f(q, q) \rightarrow \hat{q}\right.$,

$$
a \rightarrow q, a \rightarrow \widehat{q},\}
$$

TAGEDs

A non-regular language accepted by TAGEDs

TAGED for $\{f(t, t) \mid f \in \Sigma, t \in \mathcal{T}(\Sigma)\}$

$$
\begin{gathered}
\mathcal{A} \stackrel{\text { def }}{=}\left(\Sigma=\{a / 0, f / 2\}, Q=\left\{q, \widehat{q}, q_{f}\right\}, F=\left\{q_{f}\right\},\right. \\
\Delta, \hat{q}=\mathcal{A} \widehat{q})
\end{gathered}
$$

where $\Delta \stackrel{\text { def }}{=}\left\{f(\hat{q}, \hat{q}) \rightarrow q_{f}, f(q, q) \rightarrow q, f(q, q) \rightarrow \hat{q}\right.$,

$$
a \rightarrow q, a \rightarrow \widehat{q},\}
$$

TAGED emptiness

Emptiness Problem
 INPUT: \mathcal{A} a positive TAGED.
 OUTPUT: $\mathcal{L} \operatorname{ng}(\mathcal{A})=\varnothing$?

Applications
 - Introduced for XML query languages
 - in model-checking

Theorem [Filiot2008]
 The Emptiness Problem for positive TAGEDs is EXPTIME-complete.

TAGED emptiness

Emptiness Problem
INPUT: \mathcal{A} a positive TAGED.
OUTPUT: $\operatorname{L} \operatorname{ng}(\mathcal{A})=\varnothing$?

Applications

- Introduced for XML query languages
- in model-checking. . .

Theorem [Filiot2008]

The Emptiness Problem for positive TAGEDs is EXPTIME-complete.

TAGED emptiness

Emptiness Problem

INPUT: \mathcal{A} a positive TAGED.
OUTPUT: $\operatorname{L} \operatorname{ng}(\mathcal{A})=\varnothing$?

Applications

- Introduced for XML query languages
- in model-checking. . .

Theorem [Filiot2008]

The Emptiness Problem for positive TAGEDs is EXPTIME-complete.

Global Strategy

A high-level view of how we tackled the problem

(1) Part I: A strategy and several tactics
(1) Inexpensive reductions
(2) Splitting the TAGED
(3) Semi-expensive heuristics
(9) Brutal algorithm
(2) Part II: experiments random TAGEDs
(1) Random generation of tree automata
(4 generations)
(2) Random generation of constraints
(3 generations)

Global Strategy

A high-level view of how we tackled the problem
(1) Part I: A strategy and several tactics
(1) Inexpensive reductions
(2) Splitting the TAGED
(3) Semi-expensive heuristics
(9) Brutal algorithm
(2) Part II: experiments random TAGEDs
(1) Random generation of tree automata
(4 generations)
(2) Random generation of constraints
(3 generations)

Global Strategy

Emptiness Problem
 INPUT: \mathcal{A} a positive TAGED.
 OUTPUT: $\mathcal{L} \operatorname{ng}(\mathcal{A})=\varnothing$?

```
Reducing the problem
INPUT: \mathcal{A a positive TAGED}
OUTPUT: \mathcal{A}}\mathrm{ ' a smaller positive TAGED
\standard reduction, cleanup, signature-quotienting
```


Quick negative decision

$\mathcal{L} \operatorname{ng}(\operatorname{ta}(\mathcal{A}))=\varnothing$?

Quick positive decision

parenting relations

If all else fails
General exponential algorithm: brutal algorithm

Global Strategy

Emptiness Problem
 INPUT: \mathcal{A} a positive TAGED.
 OUTPUT: $\mathcal{L} \operatorname{ng}(\mathcal{A})=\varnothing$?

Reducing the problem

INPUT: \mathcal{A} a positive TAGED.
OUTPUT: \mathcal{A}^{\prime} a smaller positive TAGED.
\rightarrow Standard reduction, cleanup, signature-quotienting

Global Strategy

Emptiness Problem
INPUT: \mathcal{A} a positive TAGED.
OUTPUT: $\mathcal{L} \operatorname{ng}(\mathcal{A})=\varnothing$?
Reducing the problem
INPUT: \mathcal{A} a positive TAGED.
OUTPUT: \mathcal{A}^{\prime} a smaller positive TAGED.
\rightarrow Standard reduction, cleanup, signature-quotienting

Quick negative decision
$\rightarrow \mathcal{L} \operatorname{ng}(\mathfrak{t a}(\mathcal{A}))=\varnothing$?

Quick positive decision

\rightarrow parenting relations

Global Strategy

Emptiness Problem
INPUT: \mathcal{A} a positive TAGED.
OUTPUT: $\mathcal{L} \operatorname{ng}(\mathcal{A})=\varnothing$?
Reducing the problem
INPUT: \mathcal{A} a positive TAGED.
OUTPUT: \mathcal{A}^{\prime} a smaller positive TAGED.
\rightarrow Standard reduction, cleanup, signature-quotienting

Quick negative decision
$\rightarrow \mathcal{L} \operatorname{ng}(\mathfrak{t a}(\mathcal{A}))=\varnothing$?

Quick positive decision

\rightarrow parenting relations

If all else fails

General exponential algorithm: brutal algorithm

Cleanup

Improved version of standard reduction (reachability) algorithm for tree automata, which takes advantage of equality constraints to remove useless rules and states.
(1) Spurious rules
(2) Useless states
(3) \sum-spurious states
(3) Spurious states

Cleanup: hunting for spuriousness Spurious Rules

Definition (Spurious rule)

Let \mathcal{A} be a TAGED. A rule $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta$ is spurious if there exists $k \in \llbracket 1, n \rrbracket$ such that $q_{k}=\mathcal{A} q$.

Cleanup: hunting for spuriousness

 Spurious Rules
Definition (Spurious rule)

Let \mathcal{A} be a TAGED. A rule $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta$ is spurious if there exists $k \in \llbracket 1, n \rrbracket$ such that $q_{k}=\mathcal{A} q$.

Lemma (Removal of spurious rules)

All spurious rules can be removed without altering the accepted language.

Cleanup: hunting for spuriousness Spurious Rules

Definition (Spurious rule)

Let \mathcal{A} be a TAGED. A rule $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta$ is spurious if there exists $k \in \llbracket 1, n \rrbracket$ such that $q_{k}={ }_{\mathcal{A}} q$.

Proof idea

If a spurious rule was used, a term would have to be equal with one of its strict subterms. Which is absurd.

Cleanup: hunting for spuriousness

Sure and Potential requirements

Let $p_{y}^{x}, p, q \in Q, \sigma_{1}, \ldots, \sigma_{m} \in \Sigma$, and

$$
\mathfrak{R u l}(q)=\left\{\begin{array}{c}
\sigma_{1}\left(p_{1}^{1}, \ldots, p_{n_{1}}^{1}, p, p_{1}^{\prime 1}, \ldots, p_{n_{1}^{\prime}}^{\prime \prime}\right) \rightarrow q \\
\vdots \\
\sigma_{m}\left(p_{1}^{m}, \ldots, p_{n_{m}}^{m}, p, p_{1}^{\prime m}, \ldots, p_{n_{m}^{\prime}}^{\prime \prime}\right) \rightarrow q
\end{array}\right\}
$$

Sure requirements

$$
p \in \mathfrak{s R e q}(q)
$$

Potential Requirements

$$
\operatorname{meq}(q)=\{p\} \cup\left\{p_{y}^{x}, p_{y}^{\prime x}\right.
$$

Cleanup: hunting for spuriousness

Sure and Potential requirements

Let $p_{y}^{x}, p, q \in Q, \sigma_{1}, \ldots, \sigma_{m} \in \Sigma$, and

$$
\mathfrak{R u l}(q)=\left\{\begin{array}{c}
\sigma_{1}\left(p_{1}^{1}, \ldots, p_{n_{1}}^{1}, p, p_{1}^{\prime 1}, \ldots, p_{n_{1}^{\prime}}^{\prime 1}\right) \rightarrow q \\
\vdots \\
\sigma_{m}\left(p_{1}^{m}, \ldots, p_{n_{m}}^{m}, p, p_{1}^{\prime m}, \ldots, p_{n_{m}^{\prime}}^{\prime \prime}\right) \rightarrow q
\end{array}\right\}
$$

Sure requirements

$$
p \in \mathfrak{s R e q}(q)
$$

Potential Requirements

$$
\mathfrak{p R e q}(q)=\{p\} \cup\left\{p_{y}^{x}, p_{y}^{\prime x} \mid x, y \in \ldots\right\}
$$

Cleanup: hunting for spuriousness

Sure and Potential requirements

Let $p_{y}^{x}, p, q \in Q, \sigma_{1}, \ldots, \sigma_{m} \in \Sigma$, and

$$
\mathfrak{R u l}(q)=\left\{\begin{array}{c}
\sigma_{1}\left(p_{1}^{1}, \ldots, p_{n_{1}}^{1}, p, p_{1}^{\prime 1}, \ldots, p_{n_{1}^{\prime}}^{\prime 1}\right) \rightarrow q \\
\vdots \\
\sigma_{m}\left(p_{1}^{m}, \ldots, p_{n_{m}}^{m}, p, p_{1}^{\prime m}, \ldots, p_{n_{m}^{\prime}}^{\prime \prime}\right) \rightarrow q
\end{array}\right\}
$$

Sure requirements

$$
p \in \mathfrak{s R e q}(q)
$$

Potential Requirements

$$
\mathfrak{p} \mathfrak{R e q}(q)=\{p\} \cup\left\{p_{y}^{x}, p_{y}^{\prime x} \mid x, y \in \ldots\right\}
$$

Cleanup: hunting for spuriousness

Sure and Potential requirements

Let $p_{y}^{x}, p, q \in Q, \sigma_{1}, \ldots, \sigma_{m} \in \Sigma$, and

$$
\mathfrak{R u l}(q)=\left\{\begin{array}{c}
\sigma_{1}\left(p_{1}^{1}, \ldots, p_{n_{1}}^{1}, p, p_{1}^{\prime 1}, \ldots, p_{n_{1}^{\prime}}^{\prime 1}\right) \rightarrow q \\
\vdots \\
\sigma_{m}\left(p_{1}^{m}, \ldots, p_{n_{m}}^{m}, p, p_{1}^{\prime m}, \ldots, p_{n_{m}^{\prime}}^{\prime m}\right) \rightarrow q
\end{array}\right\}
$$

Sure requirements

$$
\mathfrak{s \Re e q}(q) \stackrel{\text { def }}{=} \bigcap_{\substack{r \in \mathfrak{R u l}(q) \\ q \notin \mathfrak{A n t}(r)}} \mathfrak{A n t}(r),
$$

Potential Requirements

$$
\mathfrak{p R e q}(q) \stackrel{\text { def }}{=} \bigcup_{r \in \mathfrak{R u l}(q)} \mathfrak{A n t}(r) .
$$

Cleanup: hunting for spuriousness

Needs and friends

$$
\begin{aligned}
& \mathfrak{F r n d}(q)=\text { "transitive closure of } \mathfrak{p ~} \mathfrak{R e q}(q) " . \\
& \mathfrak{N e e d}(q)=\text { "transitive closure of } \mathfrak{s R e q}(q) " .
\end{aligned}
$$

Definition (Friend states)

$\mathfrak{F r n d}(q)$: the smallest subset of Q satisfying
(1) $\mathfrak{p R e q}(q) \subseteq \mathfrak{F r n d}(q)$
(2) if $p \in \mathfrak{F r n d}(q)$ then $\mathfrak{p} \mathfrak{R e q}(p) \subseteq \mathfrak{F r n d}(q)$

Definition (Needs)

$\mathfrak{N e e d}(q)$: smallest subset of Q satisfying
(1) $\operatorname{sReq}(q) \subseteq \mathfrak{N e v d}(q)$
(2) if $p \in \mathfrak{N e e d}(q)$ then $\mathfrak{s k e q}(p) \subseteq \mathfrak{N e e d}(q)$

Cleanup: hunting for spuriousness

Needs and friends

"Only friends of q appear under q"

Lemma ("Rely on your Friends" principle)
Let ρ a run: $\forall \alpha, \beta \in \mathcal{P o s}(t): \beta \triangleleft \alpha \Longrightarrow \rho(\beta) \in \mathfrak{F r n d}(\rho(\alpha))$.
"Every need of q appears under q"

Lemma (Needs)
 Let ρ a run such that $\rho(\beta)=q$. For any $p \in \mathfrak{N e c d}(q)$, there exists
 a position $\alpha_{p} \triangleleft \beta$ such that $\rho\left(\alpha_{p}\right)=p$.

Cleanup: hunting for spuriousness

 Needs and friends"Only friends of q appear under q"
Lemma ("Rely on your Friends" principle)
Let ρ a run: $\forall \alpha, \beta \in \mathcal{P o s}(t): \beta \triangleleft \alpha \Longrightarrow \rho(\beta) \in \mathfrak{F r n d}(\rho(\alpha))$.
"Every need of q appears under q"

Lemma (Needs)

Let ρ a run such that $\rho(\beta)=q$. For any $p \in \mathfrak{N e v d}(q)$, there exists a position $\alpha_{p} \triangleleft \beta$ such that $\rho\left(\alpha_{p}\right)=p$.

Cleanup: hunting for spuriousness

 Useless states"Only friends of a final state are useful"

Theorem (Removal of useless states)

Let $\mathcal{A}=(\Sigma, Q, F, \Delta)$ be a tree automaton. Then

$$
\mathcal{L} n g(\mathcal{A})=\mathcal{L} n g\left(\mathcal{A}^{\prime}\right) \text { with } \mathcal{A}^{\prime} \stackrel{\text { def }}{=} \mathfrak{R s t}\left(\mathcal{A}, F \cup \bigcup_{q_{f} \in F} \mathfrak{F r n o}\left(q_{f}\right)\right) .
$$

Furthermore, the accepting runs are the same for \mathcal{A} and \mathcal{A}^{\prime}.

Proof idea
Every accepting run is rooted in a final state. Therefore they cannot use any state not in $F \cup \bigcup_{q_{f} \in F} \mathfrak{F r n d}\left(q_{f}\right)$.

Cleanup: hunting for spuriousness

 Useless states
"Only friends of a final state are useful"

Theorem (Removal of useless states)

Let $\mathcal{A}=(\Sigma, Q, F, \Delta)$ be a tree automaton. Then

$$
\mathcal{L} n g(\mathcal{A})=\mathcal{L} n g\left(\mathcal{A}^{\prime}\right) \text { with } \mathcal{A}^{\prime} \stackrel{\text { def }}{=} \mathfrak{R s t}\left(\mathcal{A}, F \cup \bigcup_{q_{f} \in F} \mathfrak{F r n o}\left(q_{f}\right)\right) .
$$

Furthermore, the accepting runs are the same for \mathcal{A} and \mathcal{A}^{\prime}.

Proof idea

Every accepting run is rooted in a final state. Therefore they cannot use any state not in $F \cup \bigcup_{q_{f} \in F} \mathfrak{F r n d}\left(q_{f}\right)$.

Cleanup: hunting for spuriousness

Σ-spurious states

Definition (Support of a state)

Support of q : the set of all symbols of Σ in which a term which evaluates to q may be rooted.

$$
\mathfrak{S u p}(q) \stackrel{\text { def }}{=}\{f \in \Sigma \mid \exists f(\ldots) \rightarrow q \in \Delta\}
$$

Definition (Σ-spurious state)
A state $q \in Q$ is a Σ-spurious state if there exists $p, p^{\prime} \in \mathfrak{N e e d}(q)$ such that $p=\mathcal{A} p^{\prime}$ and $\mathfrak{S u p}(p) \cap \mathfrak{S u p}\left(p^{\prime}\right)=\varnothing$.

Lemma (Removal of \sum-spurious states)
Let \mathcal{A} be a TAGED, $S \subseteq Q$ the set of all its \sum-spurious states, and $\mathcal{A}^{\prime}=\mathfrak{R s t}(\mathcal{A}, Q \backslash S)$. Then $\operatorname{Lng}(\mathcal{A})=\operatorname{Lng}\left(\mathcal{A}^{\prime}\right)$

Cleanup: hunting for spuriousness

\sum-spurious states

Definition (Support of a state)

Support of q : the set of all symbols of Σ in which a term which evaluates to q may be rooted.

$$
\mathfrak{S u p}(q) \stackrel{\text { def }}{=}\{f \in \Sigma \mid \exists f(\ldots) \rightarrow q \in \Delta\}
$$

Definition (Σ-spurious state)

A state $q \in Q$ is a \sum-spurious state if there exists $p, p^{\prime} \in \mathfrak{N e v o}(q)$ such that $p=\mathcal{A} p^{\prime}$ and $\mathfrak{S u p}(p) \cap \mathfrak{S u p}\left(p^{\prime}\right)=\varnothing$.

Lemma (Removal of Σ-spurious states)
Let \mathcal{A} be a TAGED, $S \subseteq Q$ the set of all its \sum-spurious states, and
$\mathcal{A}^{\prime}=\mathfrak{R s t}(\mathcal{A}, Q \backslash S)$. Then $\operatorname{L} n g(\mathcal{A})=\mathcal{L} n g\left(\mathcal{A}^{\prime}\right)$

Cleanup: hunting for spuriousness

\sum-spurious states

Definition (Σ-spurious state)

A state $q \in Q$ is a \sum-spurious state if there exists $p, p^{\prime} \in \mathfrak{N e e d}(q)$ such that $p={ }_{\mathcal{A}} p^{\prime}$ and $\mathfrak{S u p}(p) \cap \mathfrak{S u p}\left(p^{\prime}\right)=\varnothing$.

Lemma (Removal of \sum-spurious states)

Let \mathcal{A} be a TAGED, $S \subseteq Q$ the set of all its \sum-spurious states, and $\mathcal{A}^{\prime}=\mathfrak{R s t}(\mathcal{A}, Q \backslash S)$. Then $\mathcal{L} n g(\mathcal{A})=\mathcal{L} n g\left(\mathcal{A}^{\prime}\right)$.

Proof idea
If q appears in an accepting run, then so must p and p^{\prime}. But they cannot satisfy the equality (rooted in different symbols). Absurd So q cannot appear in any accepting run

Cleanup: hunting for spuriousness

Σ-spurious states

Definition (Σ-spurious state)

A state $q \in Q$ is a \sum-spurious state if there exists $p, p^{\prime} \in \mathfrak{N e e d}(q)$ such that $p=\mathcal{A} p^{\prime}$ and $\mathfrak{S u p}(p) \cap \mathfrak{S u p}\left(p^{\prime}\right)=\varnothing$.

Lemma (Removal of \sum-spurious states)

Let \mathcal{A} be a TAGED, $S \subseteq Q$ the set of all its \sum-spurious states, and $\mathcal{A}^{\prime}=\mathfrak{R s t}(\mathcal{A}, Q \backslash S)$. Then $\mathcal{L} n g(\mathcal{A})=\mathcal{L} n g\left(\mathcal{A}^{\prime}\right)$.

Proof idea

If q appears in an accepting run, then so must p and p^{\prime}. But they cannot satisfy the equality (rooted in different symbols). Absurd. So q cannot appear in any accepting run.

Cleanup: hunting for spuriousness
 Spurious states

Definition (Spurious states)

Let \mathcal{A} be a TAGED. A state $q \in Q$ is said to be a spurious state if there exists $p \in \mathfrak{N e e d}(q)$ such that $p=\mathcal{A} q$.

Proof idea

Sunnose q arpears in an accepting run at position β, then
$\exists \alpha_{p} \triangleleft \beta$ st. $\rho\left(\alpha_{p}\right)=p$. A strict subterm and its parent are equal
Absurd. So q does not appear.

Cleanup: hunting for spuriousness Spurious states

Definition (Spurious states)

Let \mathcal{A} be a TAGED. A state $q \in Q$ is said to be a spurious state if there exists $p \in \mathfrak{N e e d}(q)$ such that $p={ }_{\mathcal{A}} q$.

Lemma (Removal of spurious states)

Let \mathcal{A} be a TAGED, $S \subseteq Q$ the set of all its spurious states, and $\mathcal{A}^{\prime}=\mathfrak{R s t}(\mathcal{A}, Q \backslash S)$. Then $\mathcal{L} n g(\mathcal{A})=\mathcal{L} n g\left(\mathcal{A}^{\prime}\right)$.

Cleanup: hunting for spuriousness

 Spurious states
Definition (Spurious states)

Let \mathcal{A} be a TAGED. A state $q \in Q$ is said to be a spurious state if there exists $p \in \mathfrak{N e e d}(q)$ such that $p={ }_{\mathcal{A}} q$.

Lemma (Removal of spurious states)

Let \mathcal{A} be a TAGED, $S \subseteq Q$ the set of all its spurious states, and $\mathcal{A}^{\prime}=\mathfrak{R s t}(\mathcal{A}, Q \backslash S)$. Then $\mathcal{L} n g(\mathcal{A})=\mathcal{L} n g\left(\mathcal{A}^{\prime}\right)$.

Proof idea

Suppose q appears in an accepting run at position β, then $\exists \alpha_{p} \triangleleft \beta$ st. $\rho\left(\alpha_{p}\right)=p$. A strict subterm and its parent are equal. Absurd. So q does not appear.

Cleanup: hunting for spuriousness

 An example```
TAGED 'example 1' [64] = \{
 states \(=\# 7\{q 0, q 1, q 2, q 3, q 4, q 5, q 6\}\)
 final = \#1\{q6\}
 rules = \#16\{
a2()->q0, a2()->q2, a2()->q4, a3()->q3, a5()->q0, a5()->q2,
a5()->q4, f1(q5)->q5, f3(q1)->q5, g1(q1, q5)->q5, g3(q0, q0)->q5,
g3(q1, q5)->q5, g5(q1, q1)->q5, h2(q2, q3, q4)->q1,
h3(q0, q0, q1)->q6, h3(q2, q3, q4)->q1
 \}
 \(==r e l=\# 3\{(q 0, q 0),(q 3, q 4),(q 4, q 3)\}\)
\}
```

State $q_{1}$ is $\sum$-spurious, because it depends on $q_{3}$ and $q_{4}$ $\left(q_{3}, q_{4} \in \mathfrak{N e e d}\left(q_{1}\right)\right.$ and $\left.\operatorname{Sup}\left(q_{3}\right) \cap \mathfrak{S u p}\left(q_{4}\right)=\left\{a_{3}\right\} \cap\left\{a_{2}, a_{5}\right\}=\varnothing\right)$ Furthermore $q_{1} \in \mathfrak{N e e d}\left(q_{6}\right)$, so $q_{6}$ is unreachable, and $\operatorname{Lng}(\mathcal{A})=\varnothing$.

## Cleanup: hunting for spuriousness

 An example```
TAGED 'example 1' [64] = \{
    states \(=\# 7\{q 0, q 1, q 2, q 3, q 4, q 5, q 6\}\)
    final = \#1\{q6\}
    rules = \#16\{
a2()->q0, a2()->q2, a2()->q4, a3()->q3, a5()->q0, a5()->q2,
a5()->q4, f1(q5)->q5, f3(q1)->q5, g1(q1, q5)->q5, g3(q0, q0)->q5,
g3(q1, q5)->q5, g5(q1, q1)->q5, h2(q2, q3, q4)->q1,
h3(q0, q0, q1)->q6, h3(q2, q3, q4)->q1
    \}
    \(==r e l=\# 3\{(q 0, q 0),(q 3, q 4),(q 4, q 3)\}\)
\}
```

State q_{1} is \sum-spurious, because it depends on q_{3} and q_{4} $\left(q_{3}, q_{4} \in \mathfrak{N e e d}\left(q_{1}\right)\right.$ and $\left.\mathfrak{S u p}\left(q_{3}\right) \cap \mathfrak{S u p}\left(q_{4}\right)=\left\{a_{3}\right\} \cap\left\{a_{2}, a_{5}\right\}=\varnothing\right)$.
Furthermore $q_{1} \in \mathfrak{N e e d}\left(q_{6}\right)$, so q_{6} is unreachable, and $\mathcal{L} \operatorname{ng}(\mathcal{A})=\varnothing$.

Signature-Quotienting

Taking advantage of similarities between rules: postponing choice of symbols

Signature-Quotienting

Taking advantage of similarities between rules: postponing choice of symbols

$$
\mathfrak{R u l}\left(q_{\mathrm{char}}\right)=\left\{\begin{array}{l}
a \rightarrow q_{\mathrm{char}}, \ldots, z \rightarrow q_{\mathrm{char}} \\
0 \rightarrow q_{\mathrm{char}}, \ldots, 9 \rightarrow q_{\mathrm{char}} \\
A \rightarrow q_{\mathrm{char}}, \ldots, Z \rightarrow q_{\mathrm{char}}
\end{array}\right\}
$$

Signature-Quotienting

Taking advantage of similarities between rules: postponing choice of symbols

$$
\begin{aligned}
& \mathfrak{R u l}\left(q_{\mathrm{char}}\right)=\left\{\begin{array}{l}
a \rightarrow q_{\mathrm{char}}, \ldots, z \rightarrow q_{\mathrm{char}} \\
0 \rightarrow q_{\mathrm{char}}, \ldots, 9 \rightarrow q_{\mathrm{char}} \\
A \rightarrow q_{\mathrm{char}}, \ldots, z \rightarrow q_{\mathrm{char}}
\end{array}\right\} \\
& "\{a, \ldots, z, 0, \ldots, 9, A, \ldots, Z\} \rightarrow q_{\mathrm{char}} \in \Delta^{\prime \prime}
\end{aligned}
$$

Signature-Quotiented TAGED

Definition (Conservation of arity)

Let \approx^{s} an equivalence relation over Σ. It is arity-preserving if

$$
\forall f, g \in \Sigma: f \approx^{s} g \Longrightarrow \operatorname{arity}(f)=\operatorname{arity}(g)
$$

Definition (Signature-quotiented TAGED)

Let $\mathcal{A}=\left(\Sigma, Q, F, \Delta,=\mathcal{A}, \not \mathcal{A}_{\mathcal{A}}\right)$ be a TAGED. Then its signature-quotiented TAGED, or signature-TAGED for short, is the $\operatorname{TAGED} \mathcal{A}^{s}=\left(\Sigma^{s}, Q, F, \Delta^{s},==_{\mathcal{A}}, \neq \mathcal{A}\right)$, where

$$
\Sigma^{s} \stackrel{\text { def }}{=} \Sigma / \approx^{s}
$$

$$
\Delta^{s} \stackrel{\text { def }}{=}\left\{[\sigma]\left(p_{1}, \ldots, p_{n}\right) \rightarrow q \mid \sigma\left(p_{1}, \ldots, p_{n}\right) \rightarrow q \in \Delta\right\}
$$

Signature-Quotiented TAGED

Approximation

Theorem (Signature-TAGED as over-approximation)
 Let \mathcal{A} be a positive TAGED and \mathcal{A}^{s} its signature-TAGED. Then $\operatorname{L} n g\left(\mathcal{A}^{s}\right)=\varnothing \Longrightarrow \operatorname{L} n g(\mathcal{A})=\varnothing$.

Definition (Signature-identity relation)

We define the signature-identity relation (denoted \equiv^{s}), such that

$$
f \equiv^{5} g \Longleftrightarrow \operatorname{sigs}(f)=\operatorname{sigs}(g),
$$

Theorem (Friendly quotient)
Let \mathcal{A} be a positive TAGED and \mathcal{A}^{s} s its signature-TAGED, using \equiv^{s}
\square

Signature-Quotiented TAGED

Theorem (Signature-TAGED as over-approximation)

Let \mathcal{A} be a positive TAGED and \mathcal{A}^{s} its signature-TAGED. Then $\operatorname{L} n g\left(\mathcal{A}^{s}\right)=\varnothing \Longrightarrow \operatorname{L} n g(\mathcal{A})=\varnothing$.

Definition (Signature-identity relation)

We define the signature-identity relation (denoted \equiv^{s}), such that:

$$
f \equiv^{s} g \Longleftrightarrow \operatorname{sigs}(f)=\operatorname{sigs}(g)
$$

where $\operatorname{sigs}(\sigma) \stackrel{\text { def }}{=}\left\{\left(p_{1}, \ldots, p_{n}, q\right) \mid \sigma\left(p_{1}, \ldots, p_{n}\right) \rightarrow q \in \Delta\right\}$.
Theorem (Friendly quotient)
Let \mathcal{A} be a positive TAGED and \mathcal{A}^{s} s its signature-TAGED, using \equiv^{s}
instead of \approx^{s}. Then $\mathcal{L} n g\left(\mathcal{A}_{\underline{\underline{s}}_{s}^{s}}\right)=\varnothing \Longleftrightarrow \mathcal{L} n g(\mathcal{A})=\varnothing$.

Signature-Quotiented TAGED

Theorem (Signature-TAGED as over-approximation)

Let \mathcal{A} be a positive TAGED and \mathcal{A}^{s} its signature-TAGED. Then $\operatorname{L} n g\left(\mathcal{A}^{s}\right)=\varnothing \Longrightarrow \operatorname{L} n g(\mathcal{A})=\varnothing$.

Definition (Signature-identity relation)

We define the signature-identity relation (denoted \equiv^{s}), such that:

$$
f \equiv^{s} g \Longleftrightarrow \operatorname{sigs}(f)=\operatorname{sigs}(g)
$$

where $\operatorname{sigs}(\sigma) \stackrel{\text { def }}{=}\left\{\left(p_{1}, \ldots, p_{n}, q\right) \mid \sigma\left(p_{1}, \ldots, p_{n}\right) \rightarrow q \in \Delta\right\}$.

Theorem (Friendly quotient)

Let \mathcal{A} be a positive TAGED and $\mathcal{A}^{s} s$ its signature-TAGED, using \equiv^{s} instead of \approx^{s}. Then $\mathcal{L} n g\left(\mathcal{A}_{\underline{\equiv s}}^{s}\right)=\varnothing \Longleftrightarrow \mathcal{L} n g(\mathcal{A})=\varnothing$.

Signature-Quotiented TAGED
 Example (with an approximation relation)

```
TAGED 'restricted’ [58] = \{
    states = \#6\{q0, q1, q2, q3, q4, q5\}
    final = \#2\{q1, q5\}
    rules = \#16\{
        a1()->q0, a1()->q3, a3()->q2, a3()->q4, a4()->q0,
        a4()->q4, a5()->q2, a5()->q3, f1(q1)->q5, f5(q1)->q5,
        g1(q1, q5)->q5, g3(q0, q5)->q5, g5(q0, q5)->q5,
        g5(q1, q5)->q5, h3(q2, q3, q4)->q1, h4(q2, q3, q4)->q1
\}\}
```

Classes = \#\{<g5 g3 gl>; <h4 h3>; <a5 a4 a3 al>; <f5 f1>\}\#
TAGED 'sig-quotient' [34] = \{
states $=\# 6\{q 0, ~ q 1, ~ q 2, ~ q 3, ~ q 4, ~ q 5\} ~$
final = \#2\{q1, q5\}
rules = \#8\{
a4()->q0, a4()->q2, a4()->q3, a4()->q4,
f5(q1) ->q5, g5(q0, q5) ->q5, g5(q1, q5) ->q5,
h4(q2, q3, q4)->q1

Signature-Quotiented TAGED

Example (with an approximation relation)

```
TAGED 'restricted' [58] = \{
    states = \#6\{q0, q1, q2, q3, q4, q5\}
    final = \#2\{q1, q5\}
    rules = \#16\{
        a1()->q0, a1()->q3, a3()->q2, a3()->q4, a4()->q0,
    a4()->q4, a5()->q2, a5()->q3, f1(q1)->q5, f5(q1)->q5,
    g1(q1, q5)->q5, g3(q0, q5)->q5, g5(q0, q5)->q5,
        g5(q1, q5)->q5, h3(q2, q3, q4)->q1, h4(q2, q3, q4)->q1
\}\}
```

Classes = \#\{<g5 g3 gl>; <h4 h3>; <a5 a4 a3 al>; <f5 f1>\}\#
TAGED 'sig-quotient' [34] = \{
states $=\# 6\{q 0, ~ q 1, ~ q 2, ~ q 3, ~ q 4, ~ q 5\}$
final = \#2\{q1, q5\}
rules = \#8\{
a4()->q0, a4()->q2, a4()->q3, a4()->q4,
f5(q1)->q5, g5(q0, q5)->q5, g5(q1, q5)->q5,
h4(q2, q3, q4)->q1
\}\}

Parenting Relations

Building successful and easy runs for cheap
(1) Emptiness is easy for diagonal positive TAGEDs
(2) Partial adaptation to non-diagonal cases
(3) Previous tactics useful for (sometimes) proving emptiness.
(9) This one useful for (sometimes) proving non-emptiness.

Emptiness for diagonal positive TAGEDs

 Easy and linear
Definition (Diagonal positive TAGED)

A positive TAGED is diagonal if

$$
(=\mathcal{A}) \subseteq\{(q, q) \mid q \in Q\} .
$$

Theorem (Diagonal testing)

Let \mathcal{A} be a diagonal positive TAGED. Then

$$
\mathcal{L} n g(\mathcal{A})=\varnothing \Longleftrightarrow \mathcal{L} n g(\mathfrak{t a}(\mathcal{A}))=\varnothing .
$$

Proof idea

See beginning of proof of [Filiot et al., 2008, Theorem 1].

Parenting relations

Introductory example

```
TAGED 'Heam' [146] = \{
    alphab \(=\# 5\{a / 0, b / 0, c / 0, d / 0, f / 2\}\)
    states \(=\# 10\{q, q 1, q 2, q 3, q 4, q 5, q 6, q 7, q 8, q f\}\)
    final = \#1\{qf\}
    rules = \#39\{
    \(a()->q, a()->q 1, a()->q 2, b()->q, b()->q 1, b()->q 2\),
    \(c()->q, c()->q 1, c()->q 2, d()->q, d()->q 1, d()->q 2\),
    \(f(q, q)->q, f(q, q)->q 1, f(q, q)->q 2, f(q, q 1)->q 3\),
    \(f(q, q 1)->q 5, f(q, q 2)->q 4, f(q, q 2)->q 6, f(q, q 3)->q 3\),
    \(f(q, q 3)->q 5, f(q, q 4)->q 4, f(q, q 4)->q 6, f(q, q 6)->q 8\),
    \(f(q, q 7)->q 7, f(q, q f)->q f, f(q 1, q)->q 3, f(q 1, q)->q 5\),
    \(f(q 2, q)->q 4, f(q 2, q)->q 6, f(q 3, q)->q 3, f(q 3, q)->q 5\),
    \(f(q 4, q)->q 4, f(q 4, q)->q 6, f(q 5, q)->q 7, f(q 6, q)->q 8\),
    \(f(q 7, q 8)->q f, f(q 8, q 7)->q f, f(q f, q)->q f\)
    \}
    \(==r e l=\# 2\{(q 1, q 2),(q 2, q 1)\}\)
\}
```


Parenting relations

Introductory example

Parenting relations

Definition (Parenting relation)

Let \mathcal{A} be a positive TAGED, and $q_{f} \in F$ one of its final states. Then a relation on $Q \prec$ is a parenting relation of $\mathcal{A}\left(\right.$ for $\left.q_{f}\right)$ if it satisfies the four following properties:

- ($\boldsymbol{q}_{\boldsymbol{f}}$-domination):

The ordered set ($\left.\operatorname{dom}(\prec), \prec^{+}\right)$has a greatest element, which is q_{f}.

- (Transitionality)

- (Strictness)
is a strict partial order on its domain.
- (Aspuriousness) There are no two states $p, q \in \operatorname{dom}(\prec)$ such that $p \prec^{+} q$ and $p=A q$.

Parenting relations

Definition (Parenting relation)

Let \mathcal{A} be a positive TAGED, and $q_{f} \in F$ one of its final states. Then a relation on $Q \prec$ is a parenting relation of $\mathcal{A}\left(\right.$ for $\left.q_{f}\right)$ if it satisfies the four following properties:

- ($\boldsymbol{q}_{\boldsymbol{f}}$-domination):

The ordered set ($\left.\operatorname{dom}(\prec), \prec^{+}\right)$has a greatest element, which is q_{f}.

- (Transitionality):

$$
\forall q \in \operatorname{dom}(\prec): \exists r \in \mathfrak{R u l}(q) \text { st. } \mathfrak{A n t}(r)=\{p \mid p \prec q\}
$$

- (Strictness):
is a strict partial order on its domain.
- (Aspuriousness)

There are no two states $p, q \in \operatorname{dom}(\prec)$ such that $p \prec^{+} q$ and

Parenting relations

Definition (Parenting relation)

Let \mathcal{A} be a positive TAGED, and $q_{f} \in F$ one of its final states. Then a relation on $Q \prec$ is a parenting relation of $\mathcal{A}\left(\right.$ for $\left.q_{f}\right)$ if it satisfies the four following properties:

- ($\boldsymbol{q}_{\boldsymbol{f}}$-domination):

The ordered set ($\left.\operatorname{dom}(\prec), \prec^{+}\right)$has a greatest element, which is q_{f}.

- (Transitionality): $\forall q \in \operatorname{dom}(\prec): \exists r \in \mathfrak{R u l}(q)$ st. $\mathfrak{A n t}(r)=\{p \mid p \prec q\}$
- (Strictness):
\prec^{+}is a strict partial order on its domain.
- (Aspuriousness)

There are no two states $p, q \in \operatorname{dom}(\prec)$ such that $p \prec^{+} q$ and

Parenting relations

Definition (Parenting relation)

Let \mathcal{A} be a positive TAGED, and $q_{f} \in F$ one of its final states. Then a relation on $Q \prec$ is a parenting relation of $\mathcal{A}\left(\right.$ for $\left.q_{f}\right)$ if it satisfies the four following properties:

- ($\boldsymbol{q}_{\boldsymbol{f}}$-domination):

The ordered set $\left(\operatorname{dom}(\prec), \prec^{+}\right)$has a greatest element, which is q_{f}.

- (Transitionality): $\forall q \in \operatorname{dom}(\prec): \exists r \in \mathfrak{R u l}(q)$ st. $\mathfrak{A n t}(r)=\{p \mid p \prec q\}$
- (Strictness):
\prec^{+}is a strict partial order on its domain.
- (Aspuriousness):

There are no two states $p, q \in \operatorname{dom}(\prec)$ such that $p \prec^{+} q$ and $p=A q$.

Parenting relations

Definition (Restriction by states, projection)

Let $\mathcal{A}=\left(\Sigma, Q, F, \Delta,=_{\mathcal{A}}, \not \neq \mathcal{A}\right)$ be a TAGED, and let $S \subseteq Q$ be a set of states. We call restriction of \mathcal{A} to S and denote $\mathfrak{R s t}(\mathcal{A}, S)$ the $\operatorname{TAGED}\left(\Sigma, S, F \cap S, \Delta^{\prime},=_{\mathcal{A}} \cap S^{2}, \neq \mathcal{A} \cap S^{2}\right)$ where

$$
\Delta^{\prime} \stackrel{\text { def }}{=}\left\{f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta \mid\left\{q, q_{1}, \ldots, q_{n}\right\} \subseteq S\right\} .
$$

We also call projection of \mathcal{A} on S the TAGED

$$
\mathfrak{P r j}(\mathcal{A}, S) \stackrel{\text { def }}{=}\left(\Sigma, Q, S, \Delta,=_{\mathcal{A}}, \not \neq \mathcal{A}\right) .
$$

Definition (Automaton under a state)
Let \prec be a parenting relation of a TAGED \mathcal{A}, and $q \in \operatorname{dom}(\prec)$. We call automaton under the state q and denote $\mathfrak{U d r}(q, \prec)$, or simply \mathfrak{L} (or (q), the automaton

Parenting relations

Definition (Restriction by states, projection)

Let $\mathcal{A}=\left(\Sigma, Q, F, \Delta,=\mathcal{A}, \not \mathcal{F}_{\mathcal{A}}\right)$ be a TAGED, and let $S \subseteq Q$ be a set of states. We call restriction of \mathcal{A} to S and denote $\mathfrak{R s t}(\mathcal{A}, S)$ the TAGED $\left(\Sigma, S, F \cap S, \Delta^{\prime},=\mathcal{A} \cap S^{2}, \not \neq \mathcal{A}^{\mathcal{A}} S^{2}\right.$) where

$$
\Delta^{\prime} \stackrel{\text { def }}{=}\left\{f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta \mid\left\{q, q_{1}, \ldots, q_{n}\right\} \subseteq S\right\} .
$$

We also call projection of \mathcal{A} on S the TAGED

$$
\mathfrak{P r j}(\mathcal{A}, S) \stackrel{\text { def }}{=}(\Sigma, Q, S, \Delta,=\mathcal{A}, \neq \mathcal{A})
$$

Definition (Automaton under a state)

Let \prec be a parenting relation of a TAGED \mathcal{A}, and $q \in \operatorname{dom}(\prec)$. We call automaton under the state q and denote $\mathfrak{U} \mathfrak{d r}(q, \prec)$, or simply $\mathfrak{U} \mathfrak{d r}(q)$, the automaton

$$
\mathfrak{U d r}(q, \prec)=\mathfrak{P r j}\left(\mathfrak{R s t}\left(\mathcal{A},\left\{p \mid p \preccurlyeq^{+} q\right\}\right), q\right) .
$$

Parenting relations

Fruitful TAGEDs

Definition (Fruitful parenting relation)

Let \prec be a parenting relation of the positive TAGED \mathcal{A}, and $\left(\equiv_{\mathcal{A}}\right) \stackrel{\text { def }}{=}\left(=_{\mathcal{A}} \cap \operatorname{dom}(\prec)^{2}\right)^{*}$ We say that \prec is fruitful if

$$
\forall[q] \in \operatorname{dom}(\prec) / \equiv_{\mathcal{A}}, \operatorname{Card}([q])>1: \bigcap_{q \in[q]} \mathcal{L} \operatorname{ng}(\mathfrak{U} \mathfrak{d r}(q, \prec)) \neq \varnothing .
$$

Theorem (Fruitful positive TAGEDs)

Let \mathcal{A} be a positive TAGED. If there exists a fruitful parenting relation \prec for one of its final states q_{f}, then it is non-empty.

Parenting relations

Characterising the core

Definition (Parenting core)

Let \prec be a parenting relation of a TAGED \mathcal{A}. We call core of $\prec-$ and often denote \lessdot^{+}- the relation

$$
\left(\digamma^{+}\right) \stackrel{\text { def }}{=}\left(\prec^{+}\right) \cap \operatorname{dom}(=\mathcal{A})^{2} .
$$

Definition (Flat and pseudo-flat parenting relations)
Let \prec be a parenting relation of a TAGED \mathcal{A}. It is called flat if its core \lessdot^{+}is empty, and pseudo-flat if

$$
\forall p, q, p^{\prime} \in Q: \quad p \lessdot^{+} q \Longrightarrow\left(p=\mathcal{A} p^{\prime} \Longrightarrow p=p^{\prime}\right) .
$$

Parenting relations

Building terms is easy

Theorem (flat and pseudo-flat tests)

Under the conditions and notations of theorem "fruitful TAGEDs", let $[q]$ such that $\operatorname{Card}([q])>1$, and let

$$
\mathcal{U}=\bigotimes_{q \in[q]} \mathfrak{U} \mathfrak{d r}(q, \prec) .
$$

Then the following statements hold:
(1) If \prec is flat then \mathcal{U} is a vanilla tree automaton or a diagonal positive TAGED with only one constraint, on its sole final state.
(2) If \prec is pseudo-flat then \mathcal{U} is a diagonal TAGED.

- Problem reduced to generation of parenting relations and emptiness of diagonal TAGEDs
- Will not detect non-emptiness in all cases

Parenting relations

Building terms is easy

Theorem (flat and pseudo-flat tests)

Under the conditions and notations of theorem "fruitful TAGEDs", let $[q]$ such that $\operatorname{Card}([q])>1$, and let

$$
\mathcal{U}=\bigotimes_{q \in[q]} \mathfrak{U} \mathfrak{d r}(q, \prec)
$$

Then the following statements hold:
(1) If \prec is flat then \mathcal{U} is a vanilla tree automaton or a diagonal positive TAGED with only one constraint, on its sole final state.
(2) If \prec is pseudo-flat then \mathcal{U} is a diagonal TAGED.

- Problem reduced to generation of parenting relations and emptiness of diagonal TAGEDs
- Will not detect non-emptiness in all cases
- The more relations tested, the better

Experiments: Generations 2 TA / 2 C

$\|\boldsymbol{Q}\|$	Run	Something	Nothing	Failure
4.	26.8%	73.2%	0.0%	0.0%
7.	43.6%	55.6%	0.8%	0.0%
10.	48.8%	50.8%	0.4%	0.0%
13.	49.2%	50.8%	0.0%	0.0%
16.	50.0%	50.0%	0.0%	0.0%
19.	42.4%	57.6%	0.0%	0.0%
22.	41.2%	58.4%	0.4%	0.0%
25.	34.8%	65.2%	0.0%	0.0%
28.	30.4%	69.6%	0.0%	0.0%
31.	36.4%	63.6%	0.0%	0.0%
34.	38.8%	61.2%	0.0%	0.0%
37.	35.6%	64.4%	0.0%	0.0%
40.	28.0%	72.0%	0.0%	0.0%

Experiments: Generations 4 TA / 3 C

Height Run Something Nothing Failure $\quad \prec$ results

6	0.4%	69.6%	28.8%	1.2%	2.8%
9	0.4%	69.2%	25.6%	4.8%	6.4%
12	0.0%	55.6%	36.4%	8.0%	9.2%
15	0.0%	61.2%	26.4%	12.4%	7.6%
18	0.0%	53.2%	30.0%	16.8%	6.4%
21	0.0%	50.8%	30.0%	19.2%	8.8%
24	0.0%	46.8%	35.6%	17.6%	7.2%
27	0.0%	49.2%	28.8%	22.0%	8.8%
27	0.0%	45.6%	31.2%	23.2%	5.6%
30	0.0%	45.2%	31.2%	23.6%	6.8%
31	0.0%	50.8%	25.2%	24.0%	6.0%
34	0.0%	50.8%	26.8%	22.4%	6.4%
37	0.0%	43.6%	26.8%	29.6%	7.2%

Conclusion

Main points of the internship
(1) Reduction and quick decisions:
(1) Cleanup
(2) Signature-quotienting
(3) Parenting relations
(2) Brutal algorithm
(3) Random generation of tree automata and TAGEDs
(9) OCaml implementation of the above ($\geqslant 2000$ LOC).

圊 Comon，H．，Dauchet，M．，Gilleron，R．，Löding，C．， Jacquemard，F．，Lugiez，D．，Tison，S．，and Tommasi，M． （2007）．
Tree Automata Techniques and Applications．
release October，12th 2007.
埥 Filiot，E．，Talbot，J．－M．，and Tison，S．（2008）．
Tree Automata with Global Constraints．
In 12th International Conference on Developments in
Language Theory（DLT），pages 314－326，Kyoto Japon．
围 Tabakov，D．and Vardi，M．（2005）．
Experimental evaluation of classical automata constructions．
In Logic for Programming，Artificial Intelligence，and
Reasoning，pages 396－411．Springer．

