
The SAT encoding
Implementation and Experiments

SAT Solvers for Queries over

Tree Automata with Constraints

Pierre-Cyrille Héam, Vincent Hugot, Olga Kouchnarenko
{pcheam,okouchnarenko}@lifc.univ-fcomte.fr,

vhugot@edu.univ-fcomte.fr

Université de Franche-Comté
LIFC-INRIA/CASSIS

April 8, 2010

1/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Plan of the talk

1 Motivating XML example

2/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Plan of the talk

1 Motivating XML example

2 Introduction of notions:

1 Tree Automata
2 TAGEDs
3 SAT problem

2/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Plan of the talk

1 Motivating XML example

2 Introduction of notions:

1 Tree Automata
2 TAGEDs
3 SAT problem

3 Main contribution:

SAT encoding for TAGED Uniform Membership Problem

2/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Plan of the talk

1 Motivating XML example

2 Introduction of notions:

1 Tree Automata
2 TAGEDs
3 SAT problem

3 Main contribution:

SAT encoding for TAGED Uniform Membership Problem

4 Some experimental results:

1 Natural optimisations
2 The prototype
3 Conversion to CNF

2/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Plan of the talk

1 Motivating XML example

2 Introduction of notions:

1 Tree Automata
2 TAGEDs
3 SAT problem

3 Main contribution:

SAT encoding for TAGED Uniform Membership Problem

4 Some experimental results:

1 Natural optimisations
2 The prototype
3 Conversion to CNF

5 Conclusion.

2/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

A small example
Laboratory toy example

<university>

<team>

<member> Scotty </member>

<member> Spock </member>

<member> Uhura </member>

<laboratory> Enterprise </laboratory>

</team>

<team>

<member> McCoy </member>

<member> Spock </member>

<laboratory> Enterprise </laboratory>

</team>

</university>

Objective: check that all teams belong to the same laboratory and
no researcher is affected to two different teams.

3/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

A small example
Laboratory toy example

<university>

<team>

<member> Scotty </member>

<member> Spock </member>

<member> Uhura </member>

<laboratory> Enterprise </laboratory>

</team>

<team>

<member> McCoy </member>

<member> Spock </member>

<laboratory> Enterprise </laboratory>

</team>

</university>

Objective: check that all teams belong to the same laboratory

and no researcher is affected to two different teams.

3/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

A small example
Laboratory toy example

<university>

<team>

<member> Scotty </member>

<member> Spock </member>

<member> Uhura </member>

<laboratory> Enterprise </laboratory>

</team>

<team>

<member> McCoy </member>

<member> Spock </member>

<laboratory> Enterprise </laboratory>

</team>

</university>

Objective: check that all teams belong to the same laboratory

and no researcher is affected to two different teams.

3/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Tree automata
Definition through an example

Tree automaton for True propositional formulæ

A
def
=
(

Σ = {∧,∨/2,¬/1, 0, 1/0 } , Q = { q0, q1 } ,F = { q1 } ,∆
)

∆ = {b → qb,

∧ (qb, qb′)→ qb∧b′ ,

∨ (qb, qb′)→ qb∨b′ ,

¬(qb)→ q¬b

| b, b′ ∈ 0, 1}

4/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Tree automata
Definition through an example

∧

¬

∧

0 1

∨

0 ¬

0

5/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Tree automata
Definition through an example

0→ q0, 1→ q1 ∈ ∆

∧

¬

∧

0 1

∨

0 ¬

0

→∗A ∧

¬

∧

q0 q1

∨

q0 ¬

q0

5/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Tree automata
Definition through an example

∧(q0, q1)→ q0,¬(q0)→ q1 ∈ ∆

∧

¬

∧

0 1

∨

0 ¬

0

→∗A ∧

¬

∧

q0 q1

∨

q0 ¬

q0

→∗A ∧

¬

q0

∨

q0 q1

5/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Tree automata
Definition through an example

¬(q0)→ q1,∨(q0, q1)→ q1 ∈ ∆

∧

¬

∧

0 1

∨

0 ¬

0

→∗A ∧

¬

∧

q0 q1

∨

q0 ¬

q0

→∗A ∧

¬

q0

∨

q0 q1

→∗A ∧

q1 q1

5/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Tree automata
Definition through an example

∧(q1, q1)→ q1 ∈ ∆

∧

¬

∧

0 1

∨

0 ¬

0

→∗A ∧

¬

∧

q0 q1

∨

q0 ¬

q0

→∗A ∧

¬

q0

∨

q0 q1

→∗A ∧

q1 q1

→A q1

5/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Tree automata
Definition through an example

∧

¬

∧

0 1

∨

0 ¬

0

→∗A ∧

¬

∧

q0 q1

∨

q0 ¬

q0

→∗A ∧

¬

q0

∨

q0 q1

→∗A ∧

q1 q1

→A q1

Definition: run of A on a term t ∈ T (Σ)

A run ρ is a mapping from Pos(t) to Q compatible with the
transition rules.

5/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Tree automata
Definition through an example

∧

¬

∧

0 1

∨

0 ¬

0

→∗A ∧

¬

∧

q0 q1

∨

q0 ¬

q0

→∗A ∧

¬

q0

∨

q0 q1

→∗A ∧

q1 q1

→A q1

ρ = ε ∧q1

1 ¬q1

11 ∧q0

111 0q0 112 1q1

2 ∨q1

21 0q0 22 ¬q1

221 0q0

5/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

TAGEDs
Tree Automata With Global Equality and Disequality Constraints

Introduced in Emmanuel Filiot’s PhD thesis on XML query
languages. See [Filiot et al., 2008].

A TAGED is a tuple A = (Σ,Q,F ,∆,=A, 6=A), where

(Σ,Q,F ,∆) is a tree automaton

=A is a reflexive symmetric binary relation on a subset of Q

6=A is an irreflexive and symmetric binary relation on Q. Note
that in our work, we have dealt with a slightly more general
case, where 6=A is not necessarily irreflexive.

A TAGED A is said to be positive if 6=A is empty and negative if =A
is empty.

Runs must be compatible with equality and disequality constraints.

6/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

TAGEDs
Compatibility with global constraints

Le ρ be a run of the TAGED A on a tree t:

Compatibility with the equality constraint =A

∀α, β ∈ Pos(t) : ρ(α) =A ρ(β) =⇒ t|α = t|β .

Compatibility with the disequality constraint 6=A (irreflexive)

∀α, β ∈ Pos(t) : ρ(α) 6=A ρ(β) =⇒ t|α 6= t|β .

Compatibility with the disequality constraint 6=A (non irreflexive)

∀α, β ∈ Pos(t) : α 6= β ∧ ρ(α) 6=A ρ(β) =⇒ t|α 6= t|β .

7/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

TAGEDs
A non-regular language accepted by TAGEDs

TAGED for { f (t, t) | f ∈ Σ, t ∈ T (Σ) }

A
def
= (Σ = { a, f } , Q = { q, q̂, qf } , F = { qf } ,

∆, q̂ =A q̂),

where ∆
def
= {f (q̂, q̂)→ qf , f (q, q)→ q, f (q, q)→ q̂,

a→ q, a→ q̂, }

f

f

a a

f

a a

8/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

TAGEDs
A non-regular language accepted by TAGEDs

TAGED for { f (t, t) | f ∈ Σ, t ∈ T (Σ) }

A
def
= (Σ = { a, f } , Q = { q, q̂, qf } , F = { qf } ,

∆, q̂ =A q̂),

where ∆
def
= {f (q̂, q̂)→ qf , f (q, q)→ q, f (q, q)→ q̂,

a→ q, a→ q̂, }

f

f

a a

f

a a

→∗A fqf

fq̂

aq aq

fq̂

aq aq

8/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

TAGEDs
A non-regular language accepted by TAGEDs

TAGED for { f (t, t) | f ∈ Σ, t ∈ T (Σ) }

A
def
= (Σ = { a, f } , Q = { q, q̂, qf } , F = { qf } ,

∆, q̂ =A q̂),

where ∆
def
= {f (q̂, q̂)→ qf , f (q, q)→ q, f (q, q)→ q̂,

a→ q, a→ q̂, }

f

f

a a

f

a a

→∗A fqf

fq̂

aq aq

fq̂

aq aq

vs. f

f

a a

a

8/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

TAGEDs
A non-regular language accepted by TAGEDs

TAGED for { f (t, t) | f ∈ Σ, t ∈ T (Σ) }

A
def
= (Σ = { a, f } , Q = { q, q̂, qf } , F = { qf } ,

∆, q̂ =A q̂),

where ∆
def
= {f (q̂, q̂)→ qf , f (q, q)→ q, f (q, q)→ q̂,

a→ q, a→ q̂, }

f

f

a a

f

a a

→∗A fqf

fq̂

aq aq

fq̂

aq aq

vs. f

f

a a

a

→∗A fqf

fq̂

aq aq

aq̂

8/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

TAGED membership
. . . through SAT solvers

Uniform Membership Problem

INPUT: A a TAGED and t ∈ T (Σ) a term.
OUTPUT: Is t accepted by A?

9/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

TAGED membership
. . . through SAT solvers

Uniform Membership Problem

INPUT: A a TAGED and t ∈ T (Σ) a term.
OUTPUT: Is t accepted by A?

Theorem [Filiot2008]

The Uniform Membership Problem for TAGEDs is NP-complete.

9/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

TAGED membership
. . . through SAT solvers

Uniform Membership Problem

INPUT: A a TAGED and t ∈ T (Σ) a term.
OUTPUT: Is t accepted by A?

Theorem [Filiot2008]

The Uniform Membership Problem for TAGEDs is NP-complete.

Possible practical approach

XML/. . . ⇒ TAGED membership

9/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

TAGED membership
. . . through SAT solvers

Uniform Membership Problem

INPUT: A a TAGED and t ∈ T (Σ) a term.
OUTPUT: Is t accepted by A?

Theorem [Filiot2008]

The Uniform Membership Problem for TAGEDs is NP-complete.

Possible practical approach

XML/. . . ⇒ TAGED membership ⇒ SAT problem

9/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

TAGED membership
. . . through SAT solvers

Uniform Membership Problem

INPUT: A a TAGED and t ∈ T (Σ) a term.
OUTPUT: Is t accepted by A?

Theorem [Filiot2008]

The Uniform Membership Problem for TAGEDs is NP-complete.

Possible practical approach

XML/. . . ⇒ TAGED membership ⇒ SAT problem

9/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

TAGED membership
. . . through SAT solvers

Uniform Membership Problem

INPUT: A a TAGED and t ∈ T (Σ) a term.
OUTPUT: Is t accepted by A?

Theorem [Filiot2008]

The Uniform Membership Problem for TAGEDs is NP-complete.

Possible practical approach

XML/. . . ⇒ TAGED membership ⇒ SAT problem ⇒ answer

9/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The SAT Problem
. . . and applications

Definition: The SAT problem

Given a propositional formula, for instance

ϕ = X ∨ (¬X ∧ ¬Y) or ψ = X ∧ (¬X ∧ ¬Y),

is there a valuation such that the formula evaluates to true?

NP-complete

The SAT problem is the first known NP-complete decision problem
(Cook, 1971).

In practice

There are very efficient heuristics implanted in modern SAT solvers.

10/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Plan

1 The SAT encoding

2 Implementation and Experiments

11/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The SAT encoding
Choice of variables and Θ9

Variables: Xαq

A run is a mapping from Pos(t) to Q. So we take variables of the
form Xαq , meaning:

∀α ∈ Pos(t), q ∈ Q : Xαq ⇐⇒ ρ(α) = q

12/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The SAT encoding
Choice of variables and Θ9

Variables: Xαq

A run is a mapping from Pos(t) to Q. So we take variables of the
form Xαq , meaning:

∀α ∈ Pos(t), q ∈ Q : Xαq ⇐⇒ ρ(α) = q

Partial function constraint Θ9: “ρ is a function”

Θ9

def
=

∧

α∈Pos(t)
q∈Q






Xαq =⇒

∧

p∈Q
p 6=q

¬Xαp







12/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The SAT encoding
Rule application and compatibility: Ψα(r) and Φε(t)

Rule application constraint Ψα(r)

We define, for any α ∈ Pos(t), and any transition rule
f (q1, . . . , qn)→ q ∈ ∆,

Ψα
(

f (q1, . . . , qn)→ q
) def

= Xαq ∧
n
∧

k=1

Xα.kqk
.

α fq

α.1 xq1 α.2 xq2 α.k xqk α.n xqn

13/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The SAT encoding
Rule application and compatibility: Ψα(r) and Φε(t)

Rule application constraint Ψα(r)

We define, for any α ∈ Pos(t), and any transition rule
f (q1, . . . , qn)→ q ∈ ∆,

Ψα
(

f (q1, . . . , qn)→ q
) def

= Xαq ∧
n
∧

k=1

Xα.kqk
.

Rules compatibility constraint Φε(t)

Φε(t)
def
=

∧

α∈Pos(t)

[

∨

r∈∆t(α)

Ψα(r)

]

where ∆f = { f (. . .)→ · · · ∈ ∆ }.

13/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The SAT encoding
Connecting to TAGEDs: Θ⇆

Accepting run for tree automata

We have coded runs for tree automata: one more constraint:
∨

q∈F X εq makes sure we end up in a final state.

14/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The SAT encoding
Connecting to TAGEDs: Θ⇆

Accepting run for tree automata

We have coded runs for tree automata: one more constraint:
∨

q∈F X εq makes sure we end up in a final state.

New variables: T q
u

We need new variables to link subterms and states: T q
u denotes

“the subterm u evaluates to q”, for any u E t and q ∈ Q.

14/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The SAT encoding
Connecting to TAGEDs: Θ⇆

Accepting run for tree automata

We have coded runs for tree automata: one more constraint:
∨

q∈F X εq makes sure we end up in a final state.

New variables: T q
u

We need new variables to link subterms and states: T q
u denotes

“the subterm u evaluates to q”, for any u E t and q ∈ Q.

Structural glue: Θ⇆

Θ⇆
def
=

∧

α∈Pos(t)
q∈Q

[

Xαq =⇒ T q

t|α

]

.

14/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The SAT encoding
Compatibility with =A and 6=A

Compatibility with =A: Θ=A

Θ=A
def
=

∧

α∈Pos(t)
q∈Q






Xαq =⇒

∧

p∈Q
p=Aq

∧

uEt
u 6= t|α

¬T p
u







Compatibility with 6=A (p 6= q): Θ 6=A

Θ 6=A
def
=

∧

α∈Pos(t)
q∈Q









Xαq =⇒
∧

p∈Q
p 6=Aq
p 6=q

¬T p

t|α









15/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The SAT encoding
Compatibility with =A and 6=A

Compatibility with 6=A with structural glue Θ⇆

Θ 6=A ∧Θ⇆
def
=

∧

α∈Pos(t)
q∈Q









Xαq =⇒ T q

t|α
∧
∧

p∈Q
p 6=Aq
p 6=q

¬T p

t|α









The idea: a counterexample

Let t ∈ T (Σ), α, β ∈ Pos(t) and u = t|α = t|β. Suppose that ρ is
a run such that ρ(α) = p and ρ(β) = q with p 6=A q. Then we

have Xαp ,X
β
q ,

15/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The SAT encoding
Compatibility with =A and 6=A

Compatibility with 6=A with structural glue Θ⇆

Θ 6=A ∧Θ⇆
def
=

∧

α∈Pos(t)
q∈Q









Xαq =⇒ T q

t|α
∧
∧

p∈Q
p 6=Aq
p 6=q

¬T p

t|α









The idea: a counterexample

Let t ∈ T (Σ), α, β ∈ Pos(t) and u = t|α = t|β. Suppose that ρ is
a run such that ρ(α) = p and ρ(β) = q with p 6=A q. Then we

have Xαp ,X
β
q ,T

p

t|α
,¬T q

t|α
,

15/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The SAT encoding
Compatibility with =A and 6=A

Compatibility with 6=A with structural glue Θ⇆

Θ 6=A ∧Θ⇆
def
=

∧

α∈Pos(t)
q∈Q









Xαq =⇒ T q

t|α
∧
∧

p∈Q
p 6=Aq
p 6=q

¬T p

t|α









The idea: a counterexample

Let t ∈ T (Σ), α, β ∈ Pos(t) and u = t|α = t|β. Suppose that ρ is
a run such that ρ(α) = p and ρ(β) = q with p 6=A q. Then we

have Xαp ,X
β
q ,T

p

t|α
,¬T q

t|α
,T q

t|β
,¬T p

t|β
.

15/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The SAT encoding
Compatibility with =A and 6=A

Compatibility with 6=A with structural glue Θ⇆

Θ 6=A ∧Θ⇆
def
=

∧

α∈Pos(t)
q∈Q









Xαq =⇒ T q

t|α
∧
∧

p∈Q
p 6=Aq
p 6=q

¬T p

t|α









The idea: a counterexample

Let t ∈ T (Σ), α, β ∈ Pos(t) and u = t|α = t|β. Suppose that ρ is
a run such that ρ(α) = p and ρ(β) = q with p 6=A q. Then we

have Xαp ,X
β
q ,T

p

t|α
,¬T q

t|α
,T q

t|β
,¬T p

t|β
. Since u = t|α = t|β we

have T q
u ,¬T q

u ,T
p
u ,¬T p

u , hence the formula is not satisfiable.

15/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The SAT encoding
Compatibility with 6=A, non-irreflexive case: Ω6=A

Compatibility with 6=A (p 6= q): Θ 6=A

Θ 6=A
def
=

∧

α∈Pos(t)
q∈Q









Xαq =⇒
∧

p∈Q
p 6=Aq
p 6=q

¬T p

t|α









New variables: Sαu

We need new variables to link subterms and positions: Sαu encodes
the statement “the subterm u is rooted in α”.

Compatibility with 6=A (non-irreflexive; q 6=A q): Ω 6=A

Ω 6=A
def
=

∧

α∈Pos(t)

Sαt|α
∧

∧

α6=β∈Pos(t)
q 6=Aq

[

Xαq ∧ Xβq =⇒ ¬Sαt|β

]

16/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The SAT encoding
Completeness and soundness

Definition (SAT encoding of TAGED membership problem ∆A (t))

Let A = (Σ,∆,Q,F ,=A, 6=A) be a TAGED and t ∈ T (Σ); then we
define

∆A (t)
def
= Θ9 ∧ Φε(t) ∧

∨

q∈F

X εq ∧Θ=A ∧Θ 6=A ∧ Ω 6=A .

Theorem (TAGED membership, correctness and soundness)

There exists a successful run ρ of the TAGED A on a term t iff
∆A (t) is satisfiable. Moreover, if I |= ∆A (t), then for any
α ∈ Pos(t) we have ρ (α) = q ⇐⇒ I |= Xαq .

17/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Plan

1 The SAT encoding

2 Implementation and Experiments

18/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Possible optimisations
. . . from simple observations

The formulæ can be trimmed down: consider

Structural glue: Θ⇆

Θ⇆
def
=

∧

α∈Pos(t)
q∈Q

[

Xαq =⇒ T q

t|α

]

.

Not all couples (α, q) are necessary because not all states are
obtainable at any given position.

Definition (Possibly obtainable states at position α)

σ (α)
def
= { q ∈ Q/ ∃t(α)(. . .)→ q ∈ ∆ }

Given a position α, we only need to deal with q ∈ σ(α).

19/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Possible optimisations
. . . from simple observations

The formulæ can be trimmed down: consider

Structural glue: Θ⇆

Θ⇆
def
=

∧

α∈Pos(t)
q∈σ(α)

[

Xαq =⇒ T q

t|α

]

.

Not all couples (α, q) are necessary because not all states are
obtainable at any given position.

Definition (Possibly obtainable states at position α)

σ (α)
def
= { q ∈ Q/ ∃t(α)(. . .)→ q ∈ ∆ }

Given a position α, we only need to deal with q ∈ σ(α).

19/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The prototype
Intro/ Input format

Prototype (OCaml). Takes a TAGED and a term as input (syntax
close to the Tree Automata library Timbuk).

(** TAGED Automaton for {f(x,x)} *)

Taged fxxA

Alphabet f a b

States q qq qf

Final qf

Rules

f qq qq : qf

f q q : q

f q q : qq

a:q a:qq

b:q b:qq

Equal

qq qq

Different

qq qf

f(f(a,a), f(a,a))

// in a_fxx

Figure: Input syntax of the tool20/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The prototype
Generated formula

21/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The prototype
CNF Conversion: the BAT

Definition: Conjunctive Normal Form

A formula is in Conjunctive Normal Form (CNF) if it is a
conjunction of disjunctions of literals and contains only ¬,∧ or ∨.

DIMACS CNF

ϕ = (X ∨ ¬Z) ∧ (Y ∨ Z ∨ ¬X).

c DIMACS CNF for ϕ
p cnf 3 2

1 -3 0

2 3 -1 0

Problem!

Our formula is not in CNF! We must convert it. The BAT solves it.

22/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The prototype
Results: Laboratory example

CNF solving time, Laboratory example

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 20 40 60 80 100

S
A
T

s
o
l
v
i
n
g

t
i
m
e

(
s
)

Number of elements

picoSAT
MiniSAT2

23/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

The prototype
Results: { f (t, t) | f ∈ Σ, t ∈ T (Σ) } example

CNF solving time, { f (t, t) | f ∈ Σ, t ∈ T (Σ) }

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 2000 4000 6000 8000 10000 12000 14000 16000

S
A
T

s
o
l
v
i
n
g

t
i
m
e

(
s
)

Size of term

picoSAT (accepted)
MiniSAT2(accepted)
picoSAT (rejected)
MiniSAT2(rejected)

24/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Conclusion, step by step

XML ⇒ TAGED ⇒ ∆A (t) ⇒ CNF ⇒ SAT solver ⇒ answer

25/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Conclusion, step by step

XML ⇒ TAGED ⇒ ∆A (t) ⇒ CNF ⇒ SAT solver ⇒ answer

Theoretical contribution

SAT encoding for the TAGED uniform membership problem. Natural
optimisations.

Complexity

The formula is quadratic in the size of the input, and so is the
generation time (worst case).

Implementation

Unoptimised OCaml prototype generating optimised ∆A (t) from
input TAGED A and term t.

25/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Conclusion, step by step

XML ⇒ TAGED ⇒ ∆A (t) ⇒ CNF ⇒ SAT solver ⇒ answer

Conversion to CNF

We use an existing tool, BAT [Manolios and Vroon, 2009], to
convert our formula to DIMACS CNF.

Caveats

For now, CNF conversion is the bottleneck of our experiments:

BAT is 4.5 times slower than formula generation on big
formulæ.

BAT crashed (stack overflow) on big formulæ

So we could not produce tests big enough to really push the SAT
solvers to their limits.

25/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Conclusion, step by step

XML ⇒ TAGED ⇒ ∆A (t) ⇒ CNF ⇒ SAT solver ⇒ answer

Tested SAT solvers

Solvers picoSAT and MiniSAT2 both display good performances,
MiniSAT2 seeming faster in general.

Results

Efficient (sub-second) SAT solving even in largest tested casesa

aOrder of magnitude: Term of 20 000 nodes, formula of 70 000 variables,
120 000 clauses and 250 000 literals (in CNF)

25/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Conclusion, step by step

XML ⇒ TAGED ⇒ ∆A (t) ⇒ CNF ⇒ SAT solver ⇒ answer

Conclusion

Overall, the current experimental limitations lie in the
computationally easier part of the problem, while its inherent
difficulty (NP-completeness) seems well overcome by the heuristics
of tested SAT solvers.

25/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding
Implementation and Experiments

Some references
[Comon et al., 2007, Filiot et al., 2008, Manolios and Vroon, 2009]

Comon, H., Dauchet, M., Gilleron, R., Löding, C.,
Jacquemard, F., Lugiez, D., Tison, S., and Tommasi, M.
(2007).
Tree automata techniques and applications.
release October, 12th 2007.

Filiot, E., Talbot, J.-M., and Tison, S. (2008).
Tree Automata with Global Constraints.
In 12th International Conference on Developments in
Language Theory (DLT), pages 314–326, Kyoto Japon.

Manolios, B. and Vroon, D. (2009).
Faster SAT Solving with Better CNF Generation.
Design, Automation and Test in Europe, DATE.

26/26 Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

	The SAT encoding
	Implementation and Experiments

