SAT Solvers for Queries over Tree Automata with Constraints

Pierre-Cyrille Héam, Vincent Hugot, Olga Kouchnarenko

{pcheam,okouchnarenko}@lifc.univ-fcomte.fr,

vhugot@edu.univ-fcomte.fr

Université de Franche-Comté LIFC-INRIA/CASSIS

April 8, 2010

Motivating XML example

・ロ・・ (日・・ (日・・ (日・

2

- Motivating XML example
- **2** Introduction of notions:
 - Tree Automata
 - TAGEDs
 - SAT problem

• • = • • = •

- Motivating XML example
- **2** Introduction of notions:
 - Tree Automata
 - TAGEDs
 - SAT problem
- Main contribution:
 - SAT encoding for TAGED Uniform Membership Problem

医下子 医

- Motivating XML example
- **2** Introduction of notions:
 - Tree Automata
 - TAGEDs
 - SAT problem
- Main contribution: SAT encoding for TAGED Uniform Membership Problem
- **Some experimental results:**
 - Natural optimisations
 - The prototype
 - Onversion to CNF

4 3 5 4 3

- Motivating XML example
- **2** Introduction of notions:
 - Tree Automata
 - TAGEDs
 - SAT problem
- Main contribution:

SAT encoding for TAGED Uniform Membership Problem

- Some experimental results:
 - Natural optimisations
 - The prototype
 - Conversion to CNF

Onclusion.

A small example Laboratory toy example

```
<university>
  <team>
    <member> Scotty </member>
    <member> Spock </member>
    <member> Uhura </member>
    <laboratory> Enterprise </laboratory>
  </team>
  <team>
    <member> McCoy </member>
    <member> Spock </member>
    <laboratory> Enterprise </laboratory>
  </team>
</university>
```

Objective: check that all teams belong to the same laboratory and no researcher is affected to two different teams.

A small example Laboratory toy example

```
<university>
  <team>
    <member> Scotty </member>
    <member> Spock </member>
    <member> Uhura </member>
    <laboratory> Enterprise </laboratory>
  </team>
  <team>
    <member> McCoy </member>
    <member> Spock </member>
    <laboratory> Enterprise </laboratory>
  </team>
</university>
```

Objective: check that all teams belong to the same laboratory and no researcher is affected to two different teams.

A small example Laboratory toy example

```
<university>
  <team>
    <member> Scotty </member>
    <member> Spock </member>
    <member> Uhura </member>
    <laboratory> Enterprise </laboratory>
  </team>
  <team>
    <member> McCoy </member>
    <member> Spock </member>
    <laboratory> Enterprise </laboratory>
  </team>
</university>
```

Objective: check that all teams belong to the same laboratory and no researcher is affected to two different teams.

Tree automata Definition through an example

Tree automaton for True propositional formulæ

$$\begin{split} \mathcal{A} \stackrel{\text{def}}{=} & \left(\Sigma = \left\{ \, \wedge, \vee/_2, \neg/_1, 0, 1/_0 \, \right\}, \ Q = \left\{ \, q_0, q_1 \, \right\}, F = \left\{ \, q_1 \, \right\}, \Delta \right) \\ & \Delta = \left\{ b \to q_b, \\ & \wedge (q_b, q_{b'}) \to q_{b \wedge b'}, \\ & \vee (q_b, q_{b'}) \to q_{b \vee b'}, \\ & \neg (q_b) \to q_{\neg b} \\ & \mid \ b, b' \in 0, 1 \right\} \end{split}$$

• • = • • =

Tree automata Definition through an example

< ∃ > <

Tree automata Definition through an example

$0 o q_0, 1 o q_1 \in \Delta$

* 3 > < 3</p>

Tree automata Definition through an example

Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

Tree automata Definition through an example

Tree automata Definition through an example

Tree automata Definition through an example

Definition: run of \mathcal{A} on a term $t \in \mathcal{T}(\Sigma)$

A run ρ is a mapping from $\mathcal{P}os(t)$ to Q compatible with the transition rules.

∃ >

Tree automata Definition through an example

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Introduced in Emmanuel Filiot's PhD thesis on XML query languages. See [Filiot et al., 2008].

- A TAGED is a tuple $\mathcal{A}=(\Sigma, Q, \mathcal{F}, \Delta, =_{\!\!\mathcal{A}}, \neq_{\!\!\mathcal{A}})$, where
 - (Σ, Q, F, Δ) is a tree automaton
 - =_A is a reflexive symmetric binary relation on a subset of Q
 - ≠_A is an irreflexive and symmetric binary relation on Q. Note that in our work, we have dealt with a slightly more general case, where ≠_A is not necessarily irreflexive.

A TAGED \mathcal{A} is said to be *positive* if $\neq_{\mathcal{A}}$ is empty and *negative* if $=_{\mathcal{A}}$ is empty.

Runs must be compatible with equality and disequality constraints.

・回り イラト イラト

TAGEDS Compatibility with global constraints

Le ρ be a run of the TAGED \mathcal{A} on a tree t:

Compatibility with the equality constraint $=_{\mathcal{A}}$

$$orall lpha,eta\in \mathcal{P}\!\mathit{os}(t):
ho(lpha)=_{\!\!\mathcal{A}}
ho(eta)\implies \left.t
ight|_{lpha}=\left.t
ight|_{eta}.$$

Compatibility with the disequality constraint $\neq_{\mathcal{A}}$ (irreflexive)

$$\forall \alpha, \beta \in \mathcal{P}\!\mathit{os}(t) : \rho(\alpha) \neq_{\!\!\mathcal{A}} \rho(\beta) \implies t|_{\alpha} \neq t|_{\beta}.$$

Compatibility with the disequality constraint $\neq_{\mathcal{A}}$ (non irreflexive)

$$\forall \alpha, \beta \in \mathcal{P}\!\textit{os}(t) : \alpha \neq \beta \land \rho(\alpha) \neq_{\mathcal{A}} \rho(\beta) \implies t|_{\alpha} \neq t|_{\beta}.$$

< ロ > < 同 > < 三 > < 三 >

TAGEDS A non-regular language accepted by TAGEDs

TAGED for $\{ f(t,t) \mid f \in \Sigma, t \in \mathcal{T}(\Sigma) \}$

$$\mathcal{A} \stackrel{\text{def}}{=} \left(\Sigma = \left\{ a, f \right\}, \ Q = \left\{ q, \hat{q}, q_f \right\}, \ F = \left\{ q_f \right\},$$
$$\Delta, \ \hat{q} =_{\mathcal{A}} \hat{q} \right),$$
where $\Delta \stackrel{\text{def}}{=} \left\{ f(\hat{q}, \hat{q}) \rightarrow q_f, \ f(q, q) \rightarrow q, \ f(q, q) \rightarrow \hat{q}, \\ a \rightarrow q, \ a \rightarrow \hat{q}, \right\}$

TAGEDS A non-regular language accepted by TAGEDs

TAGED for $\{f(t,t) \mid f \in \Sigma, t \in \mathcal{T}(\Sigma)\}$

$$\mathcal{A} \stackrel{\text{def}}{=} \left(\Sigma = \left\{ a, f \right\}, \ Q = \left\{ q, \hat{q}, q_f \right\}, \ F = \left\{ q_f \right\},$$
$$\Delta, \ \hat{q} =_{\mathcal{A}} \hat{q} \right),$$
where $\Delta \stackrel{\text{def}}{=} \left\{ f(\hat{q}, \hat{q}) \rightarrow q_f, \ f(q, q) \rightarrow q, \ f(q, q) \rightarrow \hat{q}, \\ a \rightarrow q, \ a \rightarrow \hat{q}, \right\}$

TAGEDS A non-regular language accepted by TAGEDs

TAGED for $\{f(t,t) \mid f \in \Sigma, t \in \mathcal{T}(\Sigma)\}$

$$\mathcal{A} \stackrel{\text{def}}{=} \left(\Sigma = \left\{ a, f \right\}, \ Q = \left\{ q, \hat{q}, q_f \right\}, \ F = \left\{ q_f \right\},$$
$$\Delta, \ \hat{q} =_{\mathcal{A}} \hat{q} \right),$$
where $\Delta \stackrel{\text{def}}{=} \left\{ f(\hat{q}, \hat{q}) \rightarrow q_f, \ f(q, q) \rightarrow q, \ f(q, q) \rightarrow \hat{q}, \\ a \rightarrow q, \ a \rightarrow \hat{q}, \right\}$

TAGEDs A non-regular language accepted by TAGEDs

TAGED for $\{f(t,t) \mid f \in \Sigma, t \in \mathcal{T}(\Sigma)\}$

$$\mathcal{A} \stackrel{\text{def}}{=} \left(\Sigma = \left\{ a, f \right\}, \ Q = \left\{ q, \hat{q}, q_f \right\}, \ F = \left\{ q_f \right\},$$
$$\Delta, \ \hat{q} =_{\mathcal{A}} \hat{q} \right),$$
where $\Delta \stackrel{\text{def}}{=} \left\{ f(\hat{q}, \hat{q}) \rightarrow q_f, \ f(q, q) \rightarrow q, \ f(q, q) \rightarrow \hat{q}, \\ a \rightarrow q, \ a \rightarrow \hat{q}, \right\}$

TAGED membership ...through SAT solvers

Uniform Membership Problem

INPUT: A a TAGED and $t \in \mathcal{T}(\Sigma)$ a term. **OUTPUT:** Is t accepted by A?

• • = • • = •

TAGED membership ...through SAT solvers

Uniform Membership Problem

INPUT: A a TAGED and $t \in \mathcal{T}(\Sigma)$ a term. **OUTPUT:** Is t accepted by A?

Theorem [Filiot2008]

The Uniform Membership Problem for TAGEDs is NP-complete.

• • = • • = •

TAGED membership ...through SAT solvers

Uniform Membership Problem

INPUT: A a TAGED and $t \in T(\Sigma)$ a term. **OUTPUT:** Is t accepted by A?

Theorem [Filiot2008]

The Uniform Membership Problem for TAGEDs is NP-complete.

Possible practical approach

 $XML/... \Rightarrow TAGED$ membership

< 同 > < 三 > < 三 >

TAGED membership ...through SAT solvers

Uniform Membership Problem

INPUT: A a TAGED and $t \in \mathcal{T}(\Sigma)$ a term. **OUTPUT:** Is t accepted by A?

Theorem [Filiot2008]

The Uniform Membership Problem for TAGEDs is NP-complete.

Possible practical approach $XML/... \Rightarrow TAGED$ membership \Rightarrow SAT problem

・ 同 ト ・ ヨ ト ・ ヨ ト

TAGED membership ...through SAT solvers

Uniform Membership Problem

INPUT: A a TAGED and $t \in T(\Sigma)$ a term. **OUTPUT:** Is t accepted by A?

Theorem [Filiot2008]

The Uniform Membership Problem for TAGEDs is *NP*-complete.

Possible practical approach		
XML/	\Rightarrow TAGED membership	\Rightarrow SAT problem

• • = • • =

TAGED membership ...through SAT solvers

Uniform Membership Problem

INPUT: A a TAGED and $t \in \mathcal{T}(\Sigma)$ a term. **OUTPUT:** Is t accepted by A?

Theorem [Filiot2008]

The Uniform Membership Problem for TAGEDs is NP-complete.

Possible practical approach $XML/... \Rightarrow TAGED$ membership $\Rightarrow SAT$ problem \Rightarrow answer

- 4 回 ト 4 ヨ ト

The SAT Problem ... and applications

Definition: The SAT problem

Given a propositional formula, for instance

$$\varphi = X \lor (\neg X \land \neg Y) \text{ or } \psi = X \land (\neg X \land \neg Y),$$

is there a valuation such that the formula evaluates to true?

NP-complete

The SAT problem is the first known *NP*-complete decision problem (Cook, 1971).

In practice

There are very efficient heuristics implanted in modern SAT solvers.

・ 同 ト ・ ヨ ト ・ ヨ ト

Implementation and Experiments

11/26

Vincent HUGOT SAT Solvers for Queries over Tree Automata with Constraints

The SAT encoding Choice of variables and Θ_{\rightarrow}

Variables: X_q^{α}

A run is a mapping from $\mathcal{P}os(t)$ to Q. So we take variables of the form X_a^{α} , meaning:

$$\forall \alpha \in \mathcal{P}os(t), q \in Q : X_q^{\alpha} \iff \rho(\alpha) = q$$

• • = • • =

The SAT encoding Choice of variables and Θ_{\rightarrow}

Variables: X_a^{α}

A run is a mapping from $\mathcal{P}os(t)$ to Q. So we take variables of the form X_q^{α} , meaning:

$$\forall \alpha \in \mathcal{P}os(t), q \in Q : X_q^{lpha} \iff
ho(lpha) = q$$

Partial function constraint Θ_{\rightarrow} : " ρ is a function"

$$\Theta_{\Rightarrow} \stackrel{\text{def}}{=} \bigwedge_{\substack{\alpha \in \mathcal{P}os(t) \\ q \in Q}} \left[X_q^{\alpha} \implies \bigwedge_{\substack{p \in Q \\ p \neq q}} \neg X_p^{\alpha} \right]$$

The SAT encoding Rule application and compatibility: $\Psi^{\alpha}(r)$ and $\Phi^{\varepsilon}(t)$

Rule application constraint $\Psi^{\alpha}(r)$

We define, for any $\alpha \in \mathcal{P}os(t)$, and any transition rule $f(q_1, \ldots, q_n) \rightarrow q \in \Delta$,

$$\Psi^{lpha}(f(q_1,\ldots,q_n)
ightarrow q) \stackrel{ ext{def}}{=} X^{lpha}_q \wedge \bigwedge_{k=1}^n X^{lpha.k}_{q_k}.$$

- 4 同 2 4 日 2 4 日 2

The SAT encoding Rule application and compatibility: $\Psi^{\alpha}(r)$ and $\Phi^{\varepsilon}(t)$

Rule application constraint $\Psi^{\alpha}(r)$

We define, for any $\alpha \in \mathcal{P}os(t)$, and any transition rule $f(q_1, \ldots, q_n) \rightarrow q \in \Delta$,

$$\Psi^{\alpha}(f(q_1,\ldots,q_n)\to q)\stackrel{\text{def}}{=} X^{\alpha}_q\wedge\bigwedge_{k=1}^n X^{\alpha.k}_{q_k}.$$

Rules compatibility constraint $\Phi^{\varepsilon}(t)$

$$\Phi^{\varepsilon}(t) \stackrel{\text{def}}{=} \bigwedge_{\alpha \in \mathcal{P}os(t)} \left[\bigvee_{r \in \Delta_{t(\alpha)}} \Psi^{\alpha}(r) \right]$$

where $\Delta_f = \{ f(\ldots) \rightarrow \cdots \in \Delta \}.$

イロト イポト イヨト イヨト

э

The SAT encoding Connecting to TAGEDS: Θ_{rac}

Accepting run for tree automata

We have coded runs for tree automata: one more constraint: $\bigvee_{q\in F} X_q^{\varepsilon}$ makes sure we end up in a final state.

The SAT encoding Connecting to TAGEDs: Θ_{rac}

Accepting run for tree automata

We have coded runs for tree automata: one more constraint: $\bigvee_{q \in F} X_q^{\varepsilon}$ makes sure we end up in a final state.

New variables: T_u^q

We need new variables to link subterms and states: T_u^q denotes "the subterm u evaluates to q", for any $u \leq t$ and $q \in Q$.

• • = • • = •

The SAT encoding Connecting to TAGEDS: Θ_{rest}

Accepting run for tree automata

We have coded runs for tree automata: one more constraint: $\bigvee_{q\in F} X_q^{\varepsilon}$ makes sure we end up in a final state.

New variables: T_u^q

We need new variables to link subterms and states: T_u^q denotes "the subterm *u* evaluates to *q*", for any $u \leq t$ and $q \in Q$.

Structural glue: Θ_{a}

$$\Theta_{\leftrightarrows} \stackrel{\text{def}}{=} \bigwedge_{\substack{\alpha \in \mathcal{P}os(t) \\ q \in Q}} \left[X_q^{\alpha} \implies T_{t|_{\alpha}}^{q} \right].$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

The SAT encoding Compatibility with $=_{A}$ and \neq_{A}

Compatibility with $=_{\mathcal{A}}: \Theta_{=_{\mathcal{A}}}$

$$\Theta_{=_{\mathcal{A}}} \stackrel{\text{def}}{=} \bigwedge_{\substack{\alpha \in \mathcal{P}os(t) \\ q \in Q}} \left[X_q^{\alpha} \implies \bigwedge_{\substack{p \in Q \\ p =_{\mathcal{A}}q}} \bigwedge_{\substack{u \leq t \\ u \neq t|_{\alpha}}} \neg T_u^p \right]$$

Compatibility with $\neq_{\mathcal{A}} (p \neq q)$: $\Theta_{\neq_{\mathcal{A}}}$

$$\Theta_{\neq_{\mathcal{A}}} \stackrel{\text{def}}{=} \bigwedge_{\substack{\alpha \in \mathcal{P}os(t) \\ q \in Q}} \left[X_q^{\alpha} \implies \bigwedge_{\substack{p \in Q \\ p \neq_{\mathcal{A}}q \\ p \neq q}} \neg T_{t|_{\alpha}}^{p} \right]$$

通 ト イ ヨ ト イ ヨ ト

Compatibility with $\neq_{\mathcal{A}}$ with structural glue $\Theta_{\leftrightarrows}$

$$\Theta_{\neq_{\mathcal{A}}} \land \Theta_{\leftrightarrows} \stackrel{\text{def}}{=} \bigwedge_{\substack{\alpha \in \mathcal{P}os(t) \\ q \in Q}} \left[X_{q}^{\alpha} \implies T_{t|_{\alpha}}^{q} \land \bigwedge_{\substack{p \in Q \\ p \neq_{\mathcal{A}}q \\ p \neq q}} \neg T_{t|_{\alpha}}^{p} \right]$$

The idea: a counterexample

Let $t \in \mathcal{T}(\Sigma)$, $\alpha, \beta \in \mathcal{P}os(t)$ and $u = t|_{\alpha} = t|_{\beta}$. Suppose that ρ is a run such that $\rho(\alpha) = p$ and $\rho(\beta) = q$ with $p \neq_{\mathcal{A}} q$. Then we have $X_{\rho}^{\alpha}, X_{q}^{\beta}$,

Compatibility with $\neq_{\mathcal{A}}$ with structural glue $\Theta_{\leftrightarrows}$

$$\Theta_{\neq_{\mathcal{A}}} \land \Theta_{\leftrightarrows} \stackrel{\text{def}}{=} \bigwedge_{\substack{\alpha \in \mathcal{P}os(t) \\ q \in Q}} \left[X_{q}^{\alpha} \implies T_{t|_{\alpha}}^{q} \land \bigwedge_{\substack{p \in Q \\ p \neq_{\mathcal{A}}q \\ p \neq q}} \neg T_{t|_{\alpha}}^{p} \right]$$

The idea: a counterexample

Let $t \in \mathcal{T}(\Sigma)$, $\alpha, \beta \in \mathcal{P}os(t)$ and $u = t|_{\alpha} = t|_{\beta}$. Suppose that ρ is a run such that $\rho(\alpha) = p$ and $\rho(\beta) = q$ with $p \neq_{\mathcal{A}} q$. Then we have $X^{\alpha}_{p}, X^{\beta}_{q}, T^{p}_{t|_{\alpha}}, \neg T^{q}_{t|_{\alpha}}$,

Compatibility with $\neq_{\mathcal{A}}$ with structural glue $\Theta_{\leftrightarrows}$

$$\Theta_{\neq_{\mathcal{A}}} \land \Theta_{\leftrightarrows} \stackrel{\text{def}}{=} \bigwedge_{\substack{\alpha \in \mathcal{P}os(t) \\ q \in Q}} \left[X_{q}^{\alpha} \implies T_{t|_{\alpha}}^{q} \land \bigwedge_{\substack{p \in Q \\ p \neq_{\mathcal{A}}q \\ p \neq q}} \neg T_{t|_{\alpha}}^{p} \right]$$

The idea: a counterexample

Let $t \in \mathcal{T}(\Sigma)$, $\alpha, \beta \in \mathcal{P}os(t)$ and $u = t|_{\alpha} = t|_{\beta}$. Suppose that ρ is a run such that $\rho(\alpha) = p$ and $\rho(\beta) = q$ with $p \neq_{\mathcal{A}} q$. Then we have $X^{\alpha}_{p}, X^{\beta}_{q}, T^{p}_{t|_{\alpha}}, \neg T^{q}_{t|_{\beta}}, \neg T^{p}_{t|_{\beta}}$.

Compatibility with $\neq_{\mathcal{A}}$ with structural glue $\Theta_{\leftrightarrows}$

$$\Theta_{\neq_{\mathcal{A}}} \land \Theta_{\leftrightarrows} \stackrel{\text{def}}{=} \bigwedge_{\substack{\alpha \in \mathcal{P}os(t) \\ q \in Q}} \left[X_q^{\alpha} \implies T_{t|_{\alpha}}^{q} \land \bigwedge_{\substack{p \in Q \\ p \neq_{\mathcal{A}}q \\ p \neq q}} \neg T_{t|_{\alpha}}^{p} \right]$$

The idea: a counterexample

Let $t \in \mathcal{T}(\Sigma)$, $\alpha, \beta \in \mathcal{P}os(t)$ and $u = t|_{\alpha} = t|_{\beta}$. Suppose that ρ is a run such that $\rho(\alpha) = p$ and $\rho(\beta) = q$ with $p \neq_{\mathcal{A}} q$. Then we have $X_{\rho}^{\alpha}, X_{q}^{\beta}, T_{t|_{\alpha}}^{p}, \neg T_{t|_{\beta}}^{q}, \neg T_{t|_{\beta}}^{p}$. Since $u = t|_{\alpha} = t|_{\beta}$ we have $T_{u}^{q}, \neg T_{u}^{p}, T_{u}^{p}, \neg T_{u}^{p}$, hence the formula is not satisfiable.

・回り イラト イラト

The SAT encoding Compatibility with \neq_A , non-irreflexive case: Ω_{\neq_A}

Compatibility with $\neq_{\mathcal{A}} (p \neq q)$: $\Theta_{\neq_{\mathcal{A}}}$

$$\Theta_{\neq_{\mathcal{A}}} \stackrel{\text{def}}{=} \bigwedge_{\substack{\alpha \in \mathcal{P}os(t) \\ q \in Q}} \left[X_q^{\alpha} \implies \bigwedge_{\substack{p \in Q \\ p \neq_{\mathcal{A}}q}} \neg \mathcal{T}_{t|_{\alpha}}^{p} \right]$$

New variables: S_u^{α}

We need new variables to link subterms and positions: S_u^{α} encodes the statement "the subterm u is rooted in α ".

Compatibility with $\neq_{\mathcal{A}}$ (non-irreflexive; $q \neq_{\mathcal{A}} q$): $\Omega_{\neq_{\mathcal{A}}}$

$$\Omega_{\neq_{\mathcal{A}}} \stackrel{\mathsf{def}}{=} \bigwedge_{\alpha \in \mathcal{P}os(t)} S^{\alpha}_{t|_{\alpha}} \wedge \bigwedge_{\substack{\alpha \neq \beta \in \mathcal{P}os(t) \\ q \neq_{\mathcal{A}} q}} \left[X^{\alpha}_{q} \wedge X^{\beta}_{q} \implies \neg S^{\alpha}_{t|_{\beta}} \right]$$

The SAT encoding Completeness and soundness

Definition (SAT encoding of TAGED membership problem $\Delta_{\mathcal{A}}(t)$) Let $\mathcal{A} = (\Sigma, \Delta, Q, F, =_{\mathcal{A}}, \neq_{\mathcal{A}})$ be a TAGED and $t \in \mathcal{T}(\Sigma)$; then we define

$$\Delta_{\mathcal{A}}\left(t
ight)\stackrel{\mathsf{def}}{=}\Theta_{
earrow}\wedge\Phi^{arepsilon}(t)\wedge\bigvee_{q\in\mathcal{F}}X^{arepsilon}_{q}\wedge\Theta_{
eq_{\mathcal{A}}}\wedge\Theta_{
eq_{\mathcal{A}}}\wedge\Omega_{
eq_{\mathcal{A}}}.$$

Theorem (TAGED membership, correctness and soundness)

There exists a successful run ρ of the TAGED \mathcal{A} on a term t iff $\Delta_{\mathcal{A}}(t)$ is satisfiable. Moreover, if $I \models \Delta_{\mathcal{A}}(t)$, then for any $\alpha \in \mathcal{P}os(t)$ we have $\rho(\alpha) = q \iff I \models X_q^{\alpha}$.

• • = • • =

Possible optimisations ... from simple observations

The formulæ can be trimmed down: consider

Structural glue: $\Theta_{\leftrightarrows}$

$$\Theta_{\leftrightarrows} \stackrel{\text{def}}{=} \bigwedge_{\substack{\alpha \in \mathcal{P}os(t) \\ q \in Q}} \left[X_q^{\alpha} \implies T_{t|_{\alpha}}^{q} \right].$$

Not all couples (α, q) are necessary because not all states are obtainable at any given position.

Definition (Possibly obtainable states at position α)

$$\sigma(\alpha) \stackrel{\mathsf{def}}{=} \{ q \in Q / \exists t(\alpha)(\dots) \to q \in \Delta \} \}$$

Given a position α , we only need to deal with $q \in \sigma(\alpha)$.

- 4 回 5 - 4 三 5 - 4 三 5

Possible optimisations ... from simple observations

The formulæ can be trimmed down: consider

Structural glue: $\Theta_{\leftrightarrows}$

$$\Theta_{\leftrightarrows} \stackrel{\text{def}}{=} \bigwedge_{\substack{\alpha \in \mathcal{P}os(t) \\ q \in \sigma(\alpha)}} \left[X_q^{\alpha} \implies T_{t|_{\alpha}}^{q} \right].$$

Not all couples (α, q) are necessary because not all states are obtainable at any given position.

Definition (Possibly obtainable states at position α)

$$\sigma(\alpha) \stackrel{\mathsf{def}}{=} \{ q \in Q / \exists t(\alpha)(\dots) \to q \in \Delta \}$$

Given a position α , we only need to deal with $q \in \sigma(\alpha)$.

・回り イラト イラト

The prototype Intro/ Input format

Prototype (OCaml). Takes a TAGED and a term as input (syntax close to the Tree Automata library *Timbuk*).

```
(** TAGED Automaton for {f(x,x)} *)
 Taged fxxA
 Alphabet f a b
 States q qq qf
 Final of
 Rules
   f aq qq : qf
   faa :a
   fqq : qq
   a:q a:qq
   b:q b:qq
 Egual
   qq qq
 Different
   qq qf
```

f(f(a,a), f(a,a)) // in a_fxx

通 ト イ ヨ ト イ ヨ ト

The prototype Generated formula

Automaton: fxxA Alphabet: {f, q, qb} States: {qc, qc, qf} Final States: {qf} Transition Rules: { f(q, qq) \rightarrow qf, f(q, q) \rightarrow qq, $a \rightarrow$ qq, $b \rightarrow$ qq, b \rightarrow qq, { Global State Equality: {qq = qq} Global State Discutativ: {qq \neq qf} End Automaton.

Term as expression: $f\{f[a, a], f[a, a]\}$ Term as tree:

$$\begin{split} & \text{Membership formula} = [[(X_3^3 \lor X_{30}^3) \land ([X_2^5 \land X_3^3 \land X_4^3] \lor [(X_2^5 \land X_3^3 \land X_4^3] \lor [(X_2^5 \land X_3^3 \land X_{30}^4]) \land [(X_3^5 \land X_{30}^3) \land X_{30}^3] \lor [(X_3^3 \land X_{30}^3) \land X_{30}^3] \lor [(X_3^3 \land X_{30}^3) \land X_{30}^3] \land (X_{30}^3 \land X_{30}^3) \land (X_{30}^3 \land X_$$

→ < ∃→

The prototype CNF Conversion: the BAT

Definition: Conjunctive Normal Form

A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of disjunctions of literals and contains only \neg, \land or \lor .

DIMACS CNF

$$\varphi = (X \vee \neg Z) \land (Y \vee Z \vee \neg X).$$

c DIMACS CNF for φ p cnf 3 2 1 -3 0 2 3 -1 0

Problem!

Our formula is not in CNF! We must convert it. The BAT solves it.

SAT Solvers for Queries over Tree Automata with Constraints

The prototype Results: Laboratory example

CNF solving time, Laboratory example

Vincent HUGOT

SAT Solvers for Queries over Tree Automata with Constraints

The prototype Results: $\{f(t,t) \mid f \in \Sigma, t \in \mathcal{T}(\Sigma)\}$ example

CNF solving time, $\{\,f(t,t)\mid\;f\in\Sigma,t\in\mathcal{T}(\Sigma)\,\}$

24/26

Vincent HUGOT SAT Solvers for Queri

SAT Solvers for Queries over Tree Automata with Constraints

Conclusion, step by step

$\mathsf{XML} \Rightarrow \mathsf{TAGED} \Rightarrow \Delta_{\mathcal{A}}\left(t\right) \Rightarrow \mathsf{CNF} \Rightarrow \mathsf{SAT} \text{ solver} \Rightarrow \textit{answer}$

э

 $\mathsf{XML} \Rightarrow \mathsf{TAGED} \Rightarrow \Delta_{\mathcal{A}}(t) \Rightarrow \mathsf{CNF} \Rightarrow \mathsf{SAT} \text{ solver} \Rightarrow answer$

Theoretical contribution

SAT encoding for the TAGED uniform membership problem. Natural optimisations.

Complexity

The formula is quadratic in the size of the input, and so is the generation time (worst case).

Implementation

Unoptimised OCaml prototype generating optimised $\Delta_{\mathcal{A}}(t)$ from input TAGED \mathcal{A} and term t.

(日)

э

 $\mathsf{XML} \Rightarrow \mathsf{TAGED} \Rightarrow \Delta_{\mathcal{A}}\left(t\right) \Rightarrow \mathsf{CNF} \Rightarrow \mathsf{SAT} \text{ solver} \Rightarrow \textit{answer}$

Conversion to CNF

We use an existing tool, BAT [Manolios and Vroon, 2009], to convert our formula to DIMACS CNF.

Caveats

For now, CNF conversion is the bottleneck of our experiments:

- BAT is 4.5 times slower than formula generation on big formulæ.
- BAT crashed (stack overflow) on big formulæ

So we could not produce tests big enough to really push the SAT solvers to their limits.

< ロ > < 同 > < 三 > < 三 >

 $\mathsf{XML} \Rightarrow \mathsf{TAGED} \Rightarrow \Delta_{\mathcal{A}}\left(t\right) \Rightarrow \mathsf{CNF} \Rightarrow \mathsf{SAT} \text{ solver} \Rightarrow \textit{answer}$

Tested SAT solvers

Solvers picoSAT and MiniSAT2 both display good performances, MiniSAT2 seeming faster in general.

Results

Efficient (sub-second) SAT solving even in largest tested cases^a

^aOrder of magnitude: Term of 20 000 nodes, formula of 70 000 variables, 120 000 clauses and 250 000 literals (in CNF)

< 回 > < 三 > < 三 > -

$\mathsf{XML} \Rightarrow \mathsf{TAGED} \Rightarrow \Delta_{\mathcal{A}}\left(t\right) \Rightarrow \mathsf{CNF} \Rightarrow \mathsf{SAT} \text{ solver} \Rightarrow \textit{answer}$

Conclusion

Overall, the current experimental limitations lie in the computationally easier part of the problem, while its inherent difficulty (*NP*-completeness) seems well overcome by the heuristics of tested SAT solvers.

Some references [Comon et al., 2007, Filiot et al., 2008, Manolios and Vroon, 2009]

- Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., and Tommasi, M. (2007).
 Tree automata techniques and applications. release October, 12th 2007.
- Filiot, E., Talbot, J.-M., and Tison, S. (2008).
 Tree Automata with Global Constraints.
 In 12th International Conference on Developments in Language Theory (DLT), pages 314–326, Kyoto Japon.
- Manolios, B. and Vroon, D. (2009).
 Faster SAT Solving with Better CNF Generation.
 Design, Automation and Test in Europe, DATE.