
Information Processing Letters 118 (2017) 6–9
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

The emptiness problem for tree automata with at least one 

global disequality constraint is NP-hard

P.-C. Héam a,∗, V. Hugot b, O. Kouchnarenko a

a FEMTO-ST – CNRS – Univ. Bourgogne Franche-Comte, France
b LIFL – INRIA, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 July 2014
Received in revised form 3 June 2016
Accepted 12 September 2016
Available online 14 September 2016
Communicated by A. Muscholl

Keywords:
Formal languages
Tree automata
Algorithms

The model of tree automata with global equality and disequality constraints was introduced 
in 2007 by Filiot, Talbot and Tison, and extended in various ways since then. In this paper 
we show that if there is at least one disequality constraint, the emptiness problem is NP-
hard.
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1. Introduction

Tree automata are a pervasive tool of contemporary 
computer science, with applications running the gamut 
from XML processing [12] to program verification [4,13,11]. 
Since their original introduction, they have spawned an 
ever-growing family of variants, each with its own charac-
teristics of expressiveness and decision complexity. Among 
them is the family of tree automata with equality and dis-
equality constraints, providing several means for comparing 
subtrees. Examples of such automata are the original class 
introduced in [14], their restriction to constraints between 
brothers [3], and visibly tree automata with memory and 
constraints [6]. In this paper we focus on a recently intro-
duced variant: tree automata with global equality and dise-
quality constraints [8,9], later extended [1,2]. For this class 
of automata, the universality problem is undecidable [9], 
while membership is NP-complete [9], and emptiness is 
decidable [1,2]. Several complexity results for subclasses 
were pointed out in the literature: the membership prob-
lem remains NP-complete for rigid tree automata [13] but 
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it is polynomial for tree automata with a fixed number 
of equality constraints and no disequality constraints [11]. 
The emptiness problem is EXPTIME-complete if there are 
only equality constraints [9], in NEXPTIME if there are only 
irreflexive disequality constraints [9], and in 3-EXPTIME if 
there are only reflexive disequality constraints [7]. The lat-
ter, closely related to key constraints for XML documents, 
disallowed in [8,9], were introduced in [1] – we use such 
constraints in this paper. However, emptiness is decidable 
in polynomial-time for rigid tree automata [13].

It is known that the emptiness problem is NP-hard 
for tree automata with global disequality constraints, by 
reduction of emptiness for DAG1 automata [5]: cf. [15, 
Thm. 4.1]. Those automata run on DAG representations of 
terms, such that identical subterms must be rooted in the 
same node of the DAG. Therefore any subterms evaluated 
in different states must be rooted at different positions in 
the DAG, and thus must be different. The reduction from 
DAG automata to tree automata with global disequality 
constraints is easy: the rules are unchanged, and it suf-
fices to add disequality constraints between every couple 
of distinct states.

1 Directed acyclic ordered graphs with maximal sharing property.
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Whereas that reduction requires an arbitrary number of 
disequality constraints, in this paper we show that a single 
(reflexive) disequality constraint is sufficient: the empti-
ness problem is NP-hard for tree automata with global 
equality and disequality constraints if there is at least one 
disequality constraint.

2. Formal background

A ranked alphabet is a finite set F of symbols equipped 
with an arity function arity from F into N. Symbols of ar-
ity 0 are called constants. The set of terms on F , denoted 
T (F) is inductively defined as the smallest set satisfy-
ing: for every t ∈ F such that arity(t) = 0, t ∈ T (F), if 
t1, . . . , tn are in T (F) and if f ∈ F has arity n > 0, then 
f (t1, . . . , tn) ∈ T (F). The set of positions of a term t , de-
noted Pos(t), is the subset of N∗ (finite words over N) 
inductively defined by: if arity(t) = 0, then Pos(t) = {ε}; 
if t = f (t1, . . . , tn), where n > 0 is the arity of f , then 
Pos(t) = {ε} ∪{i ·αi | αi ∈ Pos(ti)}, where · denotes the con-
catenation of positions. A term t induces a function (also 
denoted t) from Pos(t) into F , where t(α) is the symbol of 
F occurring in t at the position α. The subterm of a term t
at position α ∈ Pos(t) is the term t|α such that Pos(t|α) =
{β | α ·β ∈ Pos(t)} and for all β ∈ Pos(t|α), t|α(β) = t(α ·β). 
For any pair of terms t and t′ , any α ∈ Pos(t), the term 
t[t′]α is the term obtained by substituting in t the subterm 
rooted at position α by t′ . Let X be an infinite countable 
set of variables such that X ∩F = ∅. A context C is a term 
in T (F ∪X ) (variables are constants) where each variable 
occurs at most once; it is denoted C[X1, . . . , Xn] if the oc-
curring variables are X1, . . . , Xn . If t1, . . . , tn are in T (F), 
C[t1, . . . , tn] is the term obtained from C by substituting 
each Xi by ti . The depth of a term t is the maximal length 
of the words in Pos(t).

A tree automaton on a ranked alphabet F is a tuple A =
(Q , �, F ), where Q is a finite set of states, F ⊆ Q is the 
set of final states and � is a finite set of rules of the form 
f (q1, . . . , qn) → q, where f ∈ F has arity n and the qi ’s 
and q are in Q . A tree automaton A = (Q , �, F ) induces a 
relation on T (F ∪ Q ) (where elements of Q are constant), 
denoted →A or just →, defined by t →A t′ if there exists 
a transition f (q1, . . . , qn) → q ∈ � and α ∈ Pos(t) such that 
t′ = t[q]α , t(α) = f and for every 1 ≤ i ≤ n, t(α · i) = qi . The 
reflexive transitive closure of →A is denoted →∗

A . A term 
t ∈ T (F) is accepted by A if there exists q ∈ F , such that 
t →∗

A q. A run ρ in A for a term t ∈ T (F) is a function 
from Pos(t) into Q such that if α ∈ Pos(t) and t(α) has 
arity n, then t(α)(ρ(α ·1), . . . , ρ(α ·n)) → ρ(α) is in �. An 
accepting run is a run satisfying ρ(ε) ∈ F . It can be checked 
that a term t is accepted by A iff there exists an accepting 
run ρ for t and, more generally, that t →∗

A q if there exists 
a run ρ for t in A such that ρ(ε) = q. The set of the terms 
accepted by A is denoted L(A).

A tree automaton with global equality and disequality 
constraints (TAG∧ for short, following the notations of [2]) 
on a ranked alphabet F is a tuple (A, R1, R2), where 
A = (Q , �, F ) is a tree automaton on F and R1, R2 are 
binary relations over Q . The relation R1 is called the set 
of equality constraints and the relation R2 the set of dis-
equality constraints. A term t is accepted by (A, R1, R2)
if there exists an accepting run ρ for t in A such that: 
if (ρ(α), ρ(β)) ∈ R1, then t|α = t|β , and if α �= β and 
(ρ(α), ρ(β)) ∈ R2, then t|α �= t|β . The set of the terms ac-
cepted by (A, R1, R2) is denoted L((A, R1, R2)).

For a ranked alphabet F , let TAG∧(k′ ,k) denote the class 
(A, R1, R2) of TAG∧ , where A is a tree automaton over F , 
|R1| ≤ k′ and |R2| ≤ k.

3. TAG∧ and the Hamiltonian path problem

The paper focuses on proving the following theorem.

Theorem 1. The emptiness problem for TAG∧(0,1) is NP-hard.

The proof of Theorem 1 is a reduction from the Hamil-
tonian Path Problem defined below.

Hamiltonian Path Problem
Input: a directed finite graph G = (V , E), with 
|V | ≥ 1;
Output: 1 if there exists a path in G visiting each 
element of V exactly once, 0 otherwise.

The Hamiltonian Path Problem is known to be NP-
complete [10]. A path in a non-empty directed graph vis-
iting each vertex exactly once is called a Hamiltonian path. 
Before proving Theorem 1, let us mention the following 
direct important consequence, which is the main result of 
the paper.

Corollary 2. For every fixed k ≥ 1, and every fixed k′ ≥ 0, the 
emptiness problem for TAG∧(k′ ,k) is NP-hard.

We have divided the proof of Theorem 1 into a se-
quence of lemmas, that can be sketched as follows. Firstly, 
we show that in a directed graph G with n vertices (with 
n ≥ 1), the number mG of paths of length n − 1 can be 
computed in time polynomial in n (Lemma 4). Secondly, 
we show how to construct in time polynomial in log(mG)

a tree automaton AmG accepting a single term having ex-
actly mG leaves (Lemma 5). Next, we build an automaton 
accepting encodings of paths of length n − 1 in the graph 
that are not Hamiltonian paths: at least one vertex is vis-
ited twice (Lemma 7). Combining these two constructions, 
one obtains a tree automaton that accepts terms encoding 
the multisets of cardinality mG whose elements are encod-
ings of non-Hamiltonian paths of G of length n −1. Adding 
a global disequality constraint allows us to obtain a TAG∧
that accepts terms encoding the sets (rather than multi-
sets) of cardinality mG whose elements are encodings of 
non-Hamiltonian paths of G of length n − 1. By a direct 
cardinality argument, this TAG∧ accepts at least one term 
iff there is no Hamiltonian path in G (Lemma 8).

Lemma 3, below, is immediately obtained by a cardinal-
ity argument.

Lemma 3. In a directed graph G with n vertices, with n ≥ 1, 
there exists a Hamiltonian path iff there is a path of length n − 1
that does not visit the same vertex twice.
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Lemma 4. Let G = (V , E) be a non-empty directed graph. One 
can compute mG in time polynomial in the size of G.

Proof. Let us denote by mG,k,u,v , for any k ≥ 0, any u ∈ V
and any v ∈ V , the number of paths of length k from 
u to v in G . One has mG,k+1,u,v = ∑

(u,u′)∈E mG,k,u′,v , 
and mG,0,u,v = 1 if u = v and mG,0,u,v = 0 otherwise. 
Therefore, every mG,k,u,v , for k < |V |, can be computed 
recursively in time polynomial in |V |. Note that mG =∑

u,v∈V mG,|V |−1,u,v , concluding the proof. �
Note that mG ≤ |V ||V | .
Let F1 = { f , g, A}, where f has arity 2, g arity 3, and 

A is a constant. The following construction aims to build 
in time polynomial in log(m) a tree automaton accepting a 
unique term having exactly m leaves.

Let m be a strictly positive integer and let β1 . . . βk be 
the binary representation of m (β1 = 1 and βi ∈ {0, 1}).

Let Am = (Q 1, �1, F1) be the tree automaton over 
F1, where Q 1 = {qi | 1 ≤ i ≤ k}, F1 = {qk} and �1 =
{A → q1} ∪ { f (qi, qi) → qi+1 | 1 ≤ i ≤ k − 1 and βi+1 =
0} ∪ {g(qi, qi, q1) → qi+1 | 1 ≤ i ≤ k − 1 and βi+1 = 1}.

Lemma 5. The tree automaton Am can be computed in time 
polynomial in k. Moreover, L(Am) is reduced to a single term 
having exactly m leaves, all labeled by A.

Proof. The automaton Am has k states and �1 is built di-
rectly by reading the βi ’s. Therefore Am can be computed 
in time polynomial in k.

The proof is by induction on k. If k = 1, then m = 1 = β1
(since m �= 0). In this case Q 1 = F1 = {q1} and �1 = {A →
q1}; therefore L(A1) = {A} and the lemma result holds.

Now assume that the lemma is true for a fixed k ≥ 1. 
Let 2k ≤ m < 2k+1 and set m = β1 . . . βkβk+1, the binary 
representation of m. Two cases may arise:

• βk+1 = 0: In this case, by construction, the terms 
accepted by Am are exactly the terms of the form 
f (t1, t2), with t1 →∗

Am
qk and t2 →∗

Am
qk . They cor-

respond to the terms f (t1, t2), with t1, t2 ∈ L(Am
2
). By 

induction hypothesis, L(Am
2
) is a singleton containing 

a unique term with m
2 leaves, all labeled by A. It fol-

lows that L(Am) accepts a unique term with 2 · m
2 = m

leaves, all labeled by A.
• βk+1 = 1: Similarly, the terms accepted by Am are ex-

actly the terms of the form g(t1, t2, A), with t1, t2 ∈
L(Am−1

2
). By induction, it follows that L(Am) accepts 

a unique term with 1 + 2 · m−1
2 = m leaves, all labeled

by A.

Therefore, the lemma result holds also for k + 1, which 
concludes the proof. �

Since, by Lemma 4, mG can be computed in time poly-
nomial in |V |, then, using Lemma 5, the construction of 
AmG can be done in time polynomial in |V |, proving the 
following lemma.
Lemma 6. Let G be a non-empty directed graph satisfying 
mG �= 0. The tree automaton AmG can be computed in polyno-
mial time in the size of G.

The next construction is dedicated to a tree automa-
ton P(2)

G accepting terms encoding sequences of vertices 
of G of length |V |. More formally, let G = (V , E) be a non-
empty directed graph and let n = |V |. Let F2 = {⊥} ∪ {Av |
v ∈ V }, where ⊥ is a constant and the Av ’s are of arity 1. 
Let P(2)

G = (Q 2, �2, F2) be the tree automaton over F2, 
where Q 2 = {q0, . . . , qn}, F2 = {qn}, and

�2 = {⊥ → q0}
∪ {Av(qi) → qi+1 | v ∈ V and 0 ≤ i ≤ n − 1}.

The automaton P(2)
G accepts the set of terms of the form 

Av1 (. . . Avn (⊥) . . .) of depth n over F2.

Now let P(3)
G be the tree automaton (Q 3, �3, Q 3 \ {q⊥})

over F2, with Q 3 = {q⊥} ∪ {qv | v ∈ V } and �3 = {⊥ →
q⊥} ∪ {Av(q⊥) → qv | v ∈ V } ∪ {Av(qw) → qv | (w, v) ∈ E}. 
By construction, the automaton P(3)

G accepts terms of the 
form Av1 (. . . Avk (⊥) . . .) where vk . . . v1 is a path in G
(possibly of length 0).

Let P(4)
G be the tree automaton (Q 4, �4, {qfinal}) over 

F2, where Q 4 = {qall, qfinal} ∪ {qv | v ∈ V } and �4 =
{⊥ → qall} ∪ {Av(qall) → qv , Av(qall) → qall | v ∈ V } ∪
{Av(qv) → qfinal, Aw(qv) → qv | v, w ∈ V } ∪ {Av(qfinal) →
qfinal | v ∈ V }. The automaton P(4)

G accepts the terms of the 
form Av1 (. . . Av�

(⊥) . . .) of arbitrary depth on F2 such that 
at least two Avi ’s are equal.

The tree automata P(2)
G , P(3)

G and P(4)
G can be con-

structed in time polynomial in the size of G . Therefore, 
using classical product of automata, one obtains the fol-
lowing result. The uniqueness of the final state can also 
be obtained in polynomial time using classical ε-transition 
removal.

Lemma 7. Let G = (V , E) be a non-empty directed graph. One 
can compute in time polynomial in |V |, a tree automaton PG

on F2 , with a unique final state, and accepting the terms of 
the form Av1(. . . Av |V |(⊥) . . .) such that v |V | . . . v1 is a non-
Hamiltonian path in G of length |V | − 1.

Let G = (V , E) be a non-empty directed graph satisfy-
ing mG �= 0. Without loss of generality, one can assume 
that the set of states of AmG = (Q 1, �1, {qk}) and PG =
(Q , �, {q f }) are disjoint except that q1 = q f . We consider 
the automaton DG = (Q 5, �5, F5) over (F1 ∪F2) \ {A} de-
fined by: Q 5 = Q ∪ Q 1, F5 = {qk} and �5 = (� ∪ �1) \
{A → q1}.

Lemma 8. Let G be a non-empty directed graph satisfying 
mG �= 0. The TAG∧ (DG , ∅, {(q1, q1)}) can be constructed in 
time polynomial in the size of G. Moreover, it accepts the empty 
language iff there exists a Hamiltonian path in G.

Proof. Using Lemma 5, the terms accepted by DG are 
those of the form C[t1, . . . , tmG ], where C[A, . . . , A] is the 
unique term accepted by AmG and each ti is accepted 
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by PG . By Lemmas 5 and 7, and the definition of DG , it 
follows that the construction can be done in polynomial 
time with respect to the size of G . With the disequality 
constraint, (DG , ∅, {(q1, q1)}) accepts an empty language 
iff |L(PG)| < mG . But, by Lemma 7 |L(PG)| is exactly the 
number of non-Hamiltonian paths in G of length |V | − 1. 
Since mG is the number of paths of length |V | − 1 in G , 
using Lemma 3, L((DG , ∅, {(q1, q1)})) = ∅ iff there exists a 
Hamiltonian path of length |V | − 1 in G . �

Assume that the Hamiltonian Path Problem restricted 
to non-empty directed graphs G such that mG �= 0 can be 
solved in polynomial time in the size of G . Then, given a 
non-empty directed graph G , one can first test (in poly-
nomial time by Lemma 4) whether mG �= 0. If mG = 0, 
then there is no Hamiltonian path in G . Otherwise, one 
can test in polynomial time in the size of G whether there 
is a Hamiltonian path in G . Since the Hamiltonian Path 
Problem is NP-complete [10], the Hamiltonian Path Prob-
lem restricted to non-empty directed graphs G such that 
mG �= 0 is NP-complete too. Therefore, Theorem 1 is a di-
rect consequence of Lemma 8.

4. Conclusion

In this paper we have proved that the emptiness prob-
lem for tree automata with global constraints is NP-hard 
if there is at least one disequality constraint. It is known 
that the emptiness problem for tree automata with global 
constraints with only irreflexive disequality constraints is 
in NEXPTIME [9], and that it is NP-hard – by reduction of 
emptiness for DAG automata [5]. If there are only reflexive 
disequality constraints, emptiness is known to be solvable 
in 3-EXPTIME [7]. The gap between these bounds is large 
and deserves to be refined.
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