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Abstract. Tree Walking Automata (TWA) have lately received renewed
interest thanks to their tight connection to XML. This paper introduces
the notion of tree overloops, which is closely related to tree loops, and
investigates the use of both for the following common operations on TWA:
testing membership, transformation into a Bottom-Up Tree Automaton
(BUTA), and testing emptiness. Notably, we argue that transformation
into a BUTA is slightly less straightforward than was assumed, show
that using overloops yields much smaller BUTA in the deterministic case,
and provide a polynomial over-approximation of this construction which
detects emptiness with surprising accuracy against randomly generated
TWA.
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1 Introduction

Tree Walking Automata (TWA for short) are a well-established sequential model
for recognising tree languages which was introduced in 1969 by Aho and Ullman
[1]. While they originally received far less attention than the better known
branching model of tree automata, they have been steadily gathering interest in
the last few years. Notably, important questions which had remained open for
decades have recently been closed. This renewed interest is owed in great part
to the ever-growing popularity of XML, with which they and their variants are
tightly connected, in particular through Core XPath [6] and streaming [13].

In this context, it becomes helpful to have reasonably efficient algorithms for
essential operations on TWA such as deciding membership and emptiness, as well
as transformation into a BUTA. Until now, research has been mainly focused
on closing fundamental open problems concerning the expressiveness of TWA
[5,2,4]. While algorithms for the above operations are known, they appear in
print mostly as proof sketches, and there has been no focus on finding tighter
complexity bounds. In contrast, this paper provides explicit algorithms for these
tasks and deals with complexity issues. The common thread of our contributions

* This author is supported by the project ANR 2010 BLAN 0202 02 FREC.
** This author is supported by the French DGA (Direction Générale de I’Armement).



is the notion of tree loop, which is pervasive to the algorithms we give. This
notion may be related to Knuth’s construction for testing circularity of attribute
grammars [11]. The contributions are organised as follows:

o Section 2 gives a thorough introduction to tree loops — which are more or less
folklore — and introduces a new notion of tree overloop. Simple algorithms
for testing membership follow naturally from this work. To the best of our
knowledge, no such algorithm exists in the literature.

o Section 3 treats the transformation from TWA to BUTA, based on the proof
sketches in [3] and [12, p143]. Two variants are given: one using loops and one
using overloops. The latter yields slightly smaller automata in general. Then
we show that, in the deterministic case, the overloops-based construction
admits a much smaller upper bound on the number of generated states.

¢ The emptiness problem is known to be EXPTIME-complete for TWA, and is
traditionally tested by first transforming the TWA into a BUTA. Section 4
provides a polynomial algorithm which computes an “over-approximation”
of this BUTA, and thus can — with luck — decide emptiness positively. This
approach is tested against randomly generated TWA, and turns out to be
astonishingly accurate. Should it prove inefficient against some families of
TWA, then the approximation can be refined as much as needed.

Notations. Let R C Q? be a binary relation on a set Q; we denote by RT
and R* its transitive and reflexive-transitive closure, respectively. The notation
[, m] denotes the integer interval [n,m] N Z.

We denote by N* the set of words over N; if v,w € N*, then v.w stands
for the concatenation of the words v and w. A ranked alphabet is a finite set
of symbols, equipped with an arity function arity : 3 — N. The subset of
symbols of X with arity k is denoted by X%. The set 7(X) of trees over X
is defined inductively as the smallest set such that Xy C T(X) and, if £ > 1,
fe X and uy,...,ux € T(X), then f(uy,...,ux) € T(X). Ift € T(X) is a
tree, then the set of positions (or nodes) Pos(t) C N* is defined inductively by
Pos(t) = {e} if t is a constant — that is to say, t € X — and Pos(f(u1,...,un)) =
{e}U{k.ar | k € [0,n —1] and ay € Pos(ugt1) } otherwise, where n is the arity
of f. We see a tree t as a function ¢ : Pos(t) — X which maps a position to the
symbol at that position in ¢. In this paper we consider only binary trees, that
is to say we assume that k ¢ {0,2} — X} = &. Positions are equipped with
a non-strict (resp. strict) partial order < (resp. <), such that o < g iff g is a
prefix of « (resp. a <9 8 and a # 3). The size of a tree t is denoted by ||t|| and
defined by ||| = |Pos(t)|.

The parent function p(-) : Pos(t) \ {e} — Pos(t) maps any (non-root) child
node a.k (where k € {0,1}) to its father a. We denote by t|, the subtree of ¢
under «. The reader is assumed to be well-acquainted with the bottom-up variety
of branching tree automata (see for instance [7]). A Tree-Walking Automaton
(TWA) is a tuple A = (X, Q, I, F, A) where (@ is a finite set of states, X' a ranked
alphabet, I C () is the set of initial states, FF C () the subset of final — or



accepting — states, and
AC IUxQx{x0,1} x {1,0,//,\}xQ

T : types M : moves

is the set of transitions. In this paper the tuple (¥, @, I, F, A) will be assumed
whenever we speak of a TWA A. Each node «a of a tree t has a type in T,
denoted by f, such that ge = x (root), §(8.0) = 0 (left son), §(8.1) = 1 (right
son). As we will seldom deal with the root in practice, we define for short the
sons S ={0,1} C T. We will also put in relation types and moves through
the function x(-) : S — {/,\/} such that x(0) =, and x(1) =,. For our
convenience, we will take the special notation (f,p,7 — p,q) for the tuple
(f,p,7T,1,q) € A. Using this notation, some of the parameters can be replaced
by sets, with the obvious meaning that we consider the set of all transitions
thus described. For instance (X9, p, T — O, q) = {(0,p,7,0,q) | 0 € X, 7 € T }.
Note that all the transitions from (X, Q,T — { ./, \/},Q) U (X, Q,*x — 1,Q)
are invalid.

A configuration of A on a tree t is a pair ¢ = (3, q) € Pos(t) x Q; it is initial
if ¢ € {e} x I and final (or accepting) if ¢ € {e} x F. It is a successor of a
configuration (a,p) if (¢t (a),p, o = w,q) € A, where p is 1 if 8 = p(a), O if
B =a,/if f=a0and \if § = a.1l. We write ¢; -4 ¢ (or simply ¢; — co
whenever A is clear from the context) if the configuration cs is a successor
of ¢1. A run is a (not necessarily finite) sequence of successive configurations
c1 = Cy —» ...Cp — .... A run is accepting (or successful) if it starts with an
initial configuration and reaches a final configuration. A tree t is accepted or
recognised by A if there exists an accepting run of A on t. The set of all accepted
trees is the language of A, denoted by Lng (A).

Ezample: Let X be a TWA such that Xy = {a,b,c} and Xy = { f,g,h},
Q= {q£7Qu }7 I = {QZ}a F= {Qu}a and A = <a7(ﬂv{*70} _>07Qu>U<Z7Qu7 0 —
T qu)U( X, qe, {*, 0} — ./, qu). Then X accepts exactly all trees whose left-most
leaf is labelled by a. We shall use this (trivial) example throughout the paper.

2 Loops, Overloops and the Membership Problem

The notion of loop turned out to be very useful to deal with TWA. Informally,
loops arise naturally as a generalisation of the definition of an accepting run,
where the automaton enters the root in a given initial state p;,, moves along the
tree, and then comes back to the root in a certain final state po,.¢. In practice,
the details of the moves which form the loop itself are largely irrelevant and are
discarded: the most useful information is the pair of states (pin, Pout)-

Definition 1 (Tree Loops). Let A be a TWA, ¢ a tree and o € Pos(t). A pair of
states (p,q) € @* is a loop of A on the subtree t|, if there exist n > 0 and a run
(a,p), (B1,81), - (Bns Sn), (@, q) such that for all k € [1,n], Br < «. Such a run
is a looping run, and we say that it forms the loop (p, q).

Ezxample: The looping run (0, ¢¢), (0.0, ge), (0.0, qy), (0,¢,) of X on the subtree
g(f(a,b),c)|, = f(a,b) forms the loop (qr, qu).



Data: A TWA A= (2,Q, 1, F,A)
Result: A BUTA B such that £ng (B) = Lng(.A)

initialise States and Rules to @
foreach a € Yy, 7 € T do
|_ let P = (a,7,H;"); add a — P to Rules and P to States

repeat

foreach f € Y5, 7€ T do

add every f(Py, P;) — P to Rules and P to States

where PU,P1 € States such that Py = (0‘0, 0,50) and P; = (0’1, 1,51)
and P = (f,7,(H};US)"), with

= | {fip,m = x(0),pe) € A and
S—{(p,q) 36 €5, (po, g0) € 5o (00,q0,0 — 1,q) € A

until Rules remains unchanged
return B = (¥, States, { (0, %, L) € States | LN (I x F) # @}, Rules)

Algorithm 1: Tranformation into BUTA, with loops

Data: An escaped TWA A= (X, Q, I, F, A) (see Def. 13)
Result: A BUTA B such that £ng (B) = Lng (A)

initialise States and Rules to @
foreach a € Yy, 7 € T do
| let P = (7,Uz[H7"]); add @ — P to Rules and P to States

repeat

foreach f € Y5, 7€ T do

add every f(Py, P;) — P to Rules and P to States

where Py, P; € States such that Py = (0,Sp) and P; = (1,S5;) and
P = (7,U}[(HF U S)*]), with

S:{(p7q9)'30687p0€Q

<f7p77— — X(9)7p9> €A
and (pe,qo) € Sp

until Rules remains unchanged
return B = (¥, States, { (x,0) € States | ON (I x {v'}) # @}, Rules)

Algorithm 2: Tranformation into BUTA, with overloops

Data: An escaped TWA A= (X, Q, I, F, A) (see Def. 13)
Result: Empty (only if £ng (A) = @) or Unknown

initialise Lo, L1, L4 to @; foreach a € Yo, 7 € Tdo L, + L, UU,[H"]
repeat
foreach f € Yy, 7€ Tdo L, <+ L, UU} [(U‘C} us)*

where S = { (p’ qe) <fap77— — X(@,po) cA }

and (pg,qo) € Lo
until Ly, L1, L, remain unchanged
return Empty if £, N (I x {vV'}) = &, else Unknown

396871)96@

Algorithm 3: Approximation for emptiness, with overloops




Notice that loops are not only defined on whole trees, but on subtrees as well with
the restriction that the automaton cannot leave the subtree during the looping
run. It is in fact this restriction which grants loops their usefulness. TWA, unlike
their branching cousins, whose runs are defined inductively, do not naturally lend
themselves to inductive reasoning; and yet, thanks to the above restriction, loops
are easily computed by induction. Thus loops and their variants can be thought
of as convenient devices which hide the sequential, stateful aspect of TWA runs
beneath a much more “user-friendly” layer of induction.

In the next few paragraphs we compute the loops of a TWA A on a subtree ¢.

Definition 2 (Kinds of Loops). Clearly for all p € Q, (p, p) is a loop; we call them
trivial loops. A looping run of A on t|, is simple if it reaches a exactly twice. It
is non-trivial if it reaches « at least twice. A loop is simple (resp. non-trivial) if
there exists a simple (resp. non-trivial) looping run forming it.

Ezample: The loop (qe, ¢u) in the above example is simple, because (0, ¢¢), (0.0, q¢),
(0.0, qu), (0, qu) only reaches av = 0 twice, on the first and last configuration. The
TWA X forms only trivial and simple loops, but suppose that we alter it so that
it also checks that the right-most leaf is a. During an accepting run it would go
down and left, back up to the root, down and right, and back up to the root again,
in a final state. Thus all accepting runs would be non-trivial and non-simple,
reaching the root exactly three times.

Fortunately, we only ever need to compute simple loops, as we can deduce the
rest from them thanks to the following lemma:

Lemma 3 (Loop Decomposition). If S C ? is the set of all simple loops of A on
a given subtree u = t|,, then S* is the set of all loops of A on u.

Proof. Every looping run is either trivial or non-trivial. All trivial loops are in
S* by reflexive closure. Furthermore, every non-trivial looping run can easily
be decomposed into one or more simple runs. Indeed, any non-trivial looping
run ¢ has the following general form, where 3% <1 « for all k,4, and the notation

]ke[[l,

[k m] designates the run obtained by concatenating the runs xq,...,x,,:

ke[1,m]
0= (a,p%), [(BY:57)s -+ By S )» (2, 0°)]

This can be seen as the composition of m simple looping runs ¢y, for k € [1,m],
where £, = (o, p*7 1), (BY,s%), ... ( fik,sﬁk), (a, p¥). Let us compute the loops
formed by the looping run ¢: for every k,l € [1,m], k < [, we can build a looping
run £y, gy, ..., ¢, and it follows that (p*~!, p') is a loop. Since only the states

p* appear at position «, ¢ forms no other loops. But we have

{ (P, p") | k€ [1,m] }+:{(pk_1,pl) | klel,m]:k<l} .

Note that each loop (p*~1,p*) is formed by /. Therefore the loops formed by
the non-trivial looping run ¢ are the transitive closure of the loops formed by the
simple looping runs of which it is composed. ]



Let us denote U7(u) the set of all loops of A on a subtree u, where 7 is the
type of the root of u. Concretely, if u is the whole tree, then 7 = x and, more
generally, if u is a subtree, say, u = t|_, then 7 = fa. Note that thanks to the
above-mentioned restriction in the definition of loops, the type of the subtree’s
root is the only information which is actually needed from the context.

Let a € Xy be a leaf of type 7. We compute the loops on a. By definition of
a looping run, A cannot move up; nor can it move down since leaves have no
children. So the only transitions which can be activated are OO-transitions. As we
are only interested in simple loops, we can only activate one of these transitions
once, thus creating runs of the form («,p) - (a, q), and the corresponding loops
(p, q). Let us have a general notation for this:

Definition 4 (Simple Here-Loops). H? Lo {(p,q) | (o,p,7 = O,q) € A}.

Thus the simple loops on a are H7. By Lemma 3 we have U07(a) = (H7)*. We now
deal with inner nodes. Let f € Y5, and u = f(ug,u;); again, 7 denotes the type
of the root of u. Clearly the elements of H? are loops on u, as above, but this
time .4 can move down as well. It cannot move up on the first move (that would
mean leaving the subtree), but it will obviously need to move up to rejoin the root
if it ever moves down. To clarify all that, let us reason on what the first move of
a simple looping run can be. It cannot be 1 and all simple loops whose first move
is O are already computed in H7. Say the first move is : then the run can do
whatever it wants in the left subtree ug, after which it has to move back up to
the root to complete the loop. Again, we only consider simple loops, so no move
can be made past this point, as the root has been reached twice already. Thus
the general form of such a run is (&, p), (0,po), (81,81),-- -, (Bn,sSn), (0,90), (€, 9),
with all 5 < 0. But by definition, this means that (pg,qe) is a loop on uy, ie.
(Po,qo) € BU%up). Needless to say, the same applies (with 1 instead of 0) if the
first move is \. It follows that to determine whether (p, ¢) forms a simple loop
on u, we need only check three things: 1. .4 can move down (left or right) from
state p into a state pg, 2. there is a loop (pg, qp) on this subtree and 3. in state
do, A can move up from this subtree and into the state ¢. Formally:

T _ T 30 eS: <f7p77-_>X((9)7p9>€A "
U(u) = (%f U { (p,9) ' Ypor go) € Oug) % (un(c), g, 0 — 1,q) € A }) '

Theorem 5 (Loops). Let A be a TWA and t € T(X). Then for all o« € Pos(t),
U'(t|,), as defined above, is the set of all loops of A on t|,,.

Ez:ample: For the TWA X? UO(a) = { (q@ QU) }* = { (qe, q€)7 (QUv QU)v (qga QU) }7 and
U f(a,b)) = (@U{(qe,qu)})" (no simple here-loop, and one loop built on the

left child). On the other hand, U*f(b,a)) = @*, because Ul(a) = BGo(b) = o*.

Note that a reasonably efficient algorithm for testing membership is straightfor-
wardly derived from the above computation of loops:

Corollary 6 (TWA Membership). Let A be a TWA and t € T(X). Then we have
t € Lng(A) if and only if UNt)N (I x F) # .



Corollary 7. The complexity of TWA membership is O (||t - QI + |A])).
We now introduce a new notion related to tree loops: tree overloops.

Definition 8 (Over-Root, Extended Positions and Transitions). The exztended po-
sitions Pos(t) of a tree t € T(X) are the set Pos(t) U {}, where £ is called
the overroot. The parent function p(-) is extended over Pos(t) into the extended
parent function p(-), such that p(e) =€ and € < €. The notion of configuration is
extended as well, so that the transitions of (¥, Q,*x — 1, Q) become valid. Their
application yields configurations of the form (g, q).

Definition 9 (Tree Over-Loops). Let A be a TWA and ¢ a tree. A pair of states
(p,q) € Q? forms an overloop of A on t|, if there exists a run (a, p), (81,51), - - - ,
(Bn, $n), (p(a) , q) such that for all k € [1,n], Bk < .

A way to compute overloops is to compute loops, then check for 1-transitions:

Definition 10 (Up-Closure). Let L C Q*,7 € T and o € X"
def
(pq) €@ |} €Q:(p.p)eLand (o,p, 7T q)eA} .

Uz L] =
Lemma 11 (Up-Closure). Let A be a TWA. If L is the set of all loops of A on a

fo

subtree u = t|,,, then U [L] is the set of all overloops of A on u.

Similarly to loops, we denote B(u) the set of all overloops of A on a subtree u,
where 7 is the type of the root of v. By Lem. 11 we have 0"(u) = Uy o[0T ()],
and in the case of leaves this yields $"(a) = U7 [(H7)*]. However, in the case of
inner nodes (say v = f(ug,uys)), in order to have an inductive computation of
overloops instead of one based on loops, we need to compute the overloops of the
father, knowing the overloops of the children. The simplest way is to compute the
loops of the father and take the up-closure. We only need to check whether 1. the
automaton can go down and left (resp. right) from p to a state py and 2. there is
a left (resp. right) overloop (pg, qo): this forms a loop (p, qg). Formally:

WeS: (T x(0),p) € A })]
Ipg € Q 7 and (pp, gp) € BYup)

Theorem 12 (Overloops). Let A bea TWA andt € T (X). Then for all « € Pos(t),
B*(¢t|,), as defined above, is the set of all overloops of A on t|,,.

o700) = 7| (3 U { (.0

Example: For the TWA X, $%a) = U? [Uo(a)} = {(qu,qu), (¢, qu) }. However
U*(f(a,b)) is the empty set. Thus a small adjustment is needed to test membership
using overloops, as standard TWA — such as X — never admit any overloop at
the root of a tree, for lack of {-transitions.

Definition 13 (Overfinal State & Escaped TWA). Let A = (X, Q, I, F, A) be a
TWA; it can be transformed into an escaped TWA

A=(5% Qu{v}, LF, A6 (2, Fx>1v)) ,
where v ¢ @ is a fresh state, called overfinal state. [Clearly Lng(A) = Lng (A’).]



Ezample: Once X is escaped, we have O*(f(a, b)) = { (qu, V), (q¢, V') }.

Corollary 14 ( TWA Membership Redux). Let A be an escaped TWA andt € T (X).
Then t € Lng(A) if and only if B*¢t)N (I x {v'}) # @.

3 Transforming TWA into equivalent BUTA

It is well-known that every TWA is equivalent to a BUTA; a more general version
of this result has been proven in [8] — using game-theoretic arguments — and
the main idea of a loop-based transformation from TWA into BUTA is outlined
in [3] and [12, p143]. In this section we present two versions of it: the classical,
loop-based one (Algo. 1(,41) and an overloop-based variant (Algo. 2p,4). We go on
to show that, in the case of deterministic TWA, the overloop-based construction
results in much smaller equivalent BUTA than the classical one.

3.1 Two Variants: Loops and Overloops

Lemma 15 (Loop-Based Algorithm). Let A be a TWA, B its equivalent BUTA
by Algorithm 1, t € T(X) and a subtree v = t|,. Then for every type 7 € T,
there is one unique run p of B on u such that p(¢) = (u(e), 7, L). Furthermore, L
is the set of all loops of A on u, provided that fjao = 7.

Proof. Both claims are shown by structural induction on w. First claim: If
u = a € Xy, then by line A in Algorithm 1, p(¢) = P = (a,7,L) = (u(e), 7, L).
It is unique, as only one transition a — P is generated for each couple a,T.
If u = f(ug,uy),f € X5, then by induction hypothesis there exists one run
po on ug such that pg(e) = Py = (ug(e),0,5¢), and one run p; on u; such
that p;(e) = P; = (uz(e),1,S7). Thus by line B in Algo. 1 we use the rule
f(Pp, P;) — P to build the run p such that p(¢) = P = (f,7,L) = (u(e), 7, L),
plo = po and p|, = p;. Since py and p; are unique, so is p. Second claim: If
u=a € Xy, then p(¢) = (a, 7, HI"), and by Theorem 5 we have H* = U7(a). If
u = f(ug,uz), then p(e) = (f, 7, (H} U S)*) and by induction hypothesis Sy =
U%ug) and og = ugy(e), for all § € S. Thus by Theorem 5, (HFUS)* =0"(u). O

Theorem 16. Algorithm 1 is correct; that is, Lng(A) = Lng(B).

Proof. If t € Lng (A), then there is a loop (gi,qr) € I X F of A on t. Therefore
there is a run p of B on t such that p(e) = (t(¢),*, L), with (¢, ¢) € L. Thus
p(e) is a final state and t € Lng (B). Conversely, if ¢t € Lng (B) then there is an
accepting run p of B on ¢, that is to say such that p(e) = (t(¢), *, U%(t)) and there
exists (i, qr) € (I x F) N UXt). Thus by Cor. 6 we have t € Lng (A). O

Two short but important remarks are in order. First: it might seem strange that
our states are in X' x T x 2Q2, and not more simply in T x 2Q2, as suggested in
[12]. In [3] a similar construction — albeit deterministic, see the second remark — is
proposed, which does not include X' either. However, it is not clear how loops could
be considered independently from the root symbol of the subtree that bears them.



Consider for instance a,b € Xy with only the transitions ({a,b},p,7 — O,q)
and (b,q,7 — 1T,5’) € A. Then the loops on a and b are exactly the same —
{(p,q)}" — and yet, from their father’s point of view, they behave very differently.
If A can go down from a state s to p, it can form a loop (s, s’) if the child is b,
but not if it is a. In contrast to the loop-based construction, the overloop-based
algorithm (Algo. 2) suppresses this problem completely.

Second: the observation made in Lemma 15 that the run of B is unique, given a
subtree and a type, makes it easy to adapt the algorithm to yield a deterministic
BUTA. Indeed, every tree in 7 (X)) is non-deterministically evaluated by B into
exactly three possible states (one per type); the correct one is chosen according to
the context during the run. Recall that rules f(Py, P;) — P are built such that
the “type” component of Py is 0, and final states bear the root type *. Hence, it
suffices to group those three possible states into one element of X' x (2Q2)|T| to
achieve determinism, which brings us back to the states suggested in [3].

Lemma 17 (Overloop-Based Algorithm). Let A be a TWA, B its equivalent BUTA
by Algorithm 2, t € T(X) and a subtree v = t|,. Then for all T € T, there is one
unique run p of B on u such that p(¢) = (1,0). Furthermore, O is the set of all
overloops of A on u, provided that fjo = 7.

Theorem 18. Algorithm 2 is correct; that is, Lng(A) = Lng(B).

Note that this construction can be adapted to yield deterministic BUTA in
exactly the same way as for Algo. 1.

3.2 Overloops and the Deterministic Case

Definition 19 (Deterministic TWA). A TWA A = (¥ Q, I, F, A) is deterministic
(ie. a DTWA) if@ for all o0 € X, pe Q,7 € T, |{o,p,7 = M, Q)N A| < 1.

Definition 20 (Functional Relation). A relation R C Q? is functional (or right-
unique, or a partial function) if, for all p,q,¢" € Q, pRq and pR¢ — q=¢ .

Remark 21. There are 2/Q° binary relations on @), of which |@Q + 1||Q| are partial

’|Q|

functions, of which |@Q|™' are total functions.

Remark 22. If a relation R is functional, then so is R¥, for any k € N.

By construction, a BUTA built by Algo. 1 (loop-based) has at most |X|-|T]-2/QI”
states, while one built by Algo. 2 (overloop-based) has at most |T| - 219°. We
will see in this section that, in the deterministic case, this upper bound is in fact
much lower for the overloop-based algorithm than for the traditional loop-based
one. More specifically, we will show that the following holds:

Theorem 23 (Deterministic Upper-Bound). Let A be a deterministic TWA and

B its equivalent BUTA built by application of Algorithm 2. Then B has at most
|']T| . 2|Q|10g2(|Q|+1) states.

(@) In this paper we do not need the usual, stronger definition, where I is a singleton.



The idea is that every state which we build corresponds exactly to the set L
of all loops (resp. overloops) of the automaton A on a certain subtree u. Since
L C Q?, we can see it as a binary relation on the states. The intuition here is
that, if A is deterministic, and enters the root of u in one given state p, then
there “should be” only one possible outcome. More formally:

Lemma 24. If A is a deterministic TWA, then — 4 is functional.

Proof. In a given configuration («,p), over a tree t, [(t(«),p, o — M, Q) N A|
< 1. Therefore, («, p) has at most one successor. O

However, in the case of loops, this does not suffice to make L functional because,
determinism notwithstanding, a single (non-trivial) loop may reach the root
several times, and in different states, before exiting the subtree. Thus there is
nothing to prevent us from having both pLq and pL¢’, for ¢ # ¢'; we show next
that in that case, one of these loops is simply an extension of the other.

Lemma 25 (Hidden Loops). Let p,q,q' € Q, q # q' such that (p,q) and (p,q’)
are loops of the TWA A on a given subtree t| . Then if A is deterministic, either
(¢,¢") or (¢, q) must be a loop of A on t|,.

Proof. By Definition 1, there exist two runs cg,...,c, and dg,...,d,, such that
co = do = (a,p), ¢ = (a,q) and d,, = (0, ¢’). If n = m then ¢y —-™ ¢, and
co " d, and by Lemma 24 and Remark 22, it follows that ¢,, = d,,,. But this
contradicts q # ¢’, so we must have n # m. Say that n < m. Then ¢,, = d,,, and
(o,q) =dn,...,dn = (a,q") forms a run. Therefore (q,q’) is a loop. Similarly, if
n > m, then by the same arguments (¢’, q) is a loop. O

Contrariwise, two overloops cannot be combined to form another overloop on
the same subtree, which satisfies the above intuition of a “single outcome”:

Lemma 26. Let p,q,q € Q, such that (p,q) and (p,q’) are overloops of the TWA
A on a given subtree t|,. Then if A is deterministic, ¢ = ¢'.

Proof. By Def. 9, there exist s, s’ € @ such that (a,p),..., (a,s), (p(a),q) and
(a,p),...,(a,8), (p(),q") are runs; thus (p,s) and (p,s’) are loops. If s # ¢,
then by Lem. 25, say, (s,s’), is a loop. So there exist s1,...,s, € @,/ < «
y- ooy B Jasuch that (o, 8), (51, 51), -« -5 (Bnsy Sn), (@, §') is a run. Thus we have in
particular (o, s) - (p(a),q) and (o, s) = (B1, s1). It follows that p(a) = 81 <«
which is contradictory. Hence s = s’. We have both (a,s) — (p(a),q) and
(o, 8) = (p(a),q’). Since —» is functional (Lem. 24), we have finally ¢ = ¢’. [

With this, we can conclude the proof of Theorem 23.

Proof of Theorem 23. By construction, for every state P = (7, L) generated for B
by Algorithm 2, there exists at least a subtree ¢ such that L is the set of overloops
of A on t. Thus, by Lemma 26, L is functional. Therefore, by Remark 21, there

are at most |T| - |Q + 1||Q| states (or, equivalently, |T| - 2/@Q1log2(IQ1+1)), O



4 The Emptiness Problem & Experimental Results

Polynomial Over-Approximation for the Emptiness Problem. Testing
emptiness of a TWA A is an EXpTIME-complete problem [3]. This is rather
unfortunate, as there are practical questions — such as satisfiability of some XPath
fragments — which reduce to the emptiness of the language of a TWA. We present
in this section a crude but fairly accurate and very expeditious overloops-based
algorithm capable of detecting emptiness in a number of cases. Algorithm 3[4 is
a variant of Algorithm 2 with the following properties:

Lemma 27 (Overloops Over-Approximation). Let A be a TWA, then when the
execution of Algorithm 3 ends, for any 7 € T, L7 2 Ue 7z o7(t).

Theorem 28. Algorithm 3 is correct; that is, it yields Empty only if Lng (A) = .

Corollary 29 (Complexity of the Approximation). The execution of Algorithm 3 is
done in a time polynomial in the size of A — more precisely: O(|X|-|T|*-|Q|*-| A).

Note that Algorithm 3 can easily be made just as coarse or as fine as the need
dictates. At the coarse end of that gamut we have a variant of Algorithm 3 which
forgoes type information, thus hoarding up all overloops in a single set £ instead
of three, and at the fine end we find something equivalent to Algorithm 2.

Experimental Results. APPROXIMATION. The approximation has yielded
astonishingly good results with randomly generated TWA: out of the — roughly —
ten thousands of automata of various sizes (2 < |@Q| < 20) on which it was tested,
75% of which had empty languages, only two of them yielded Unknown instead
of Empty. Those results are — unfortunately — probably much better than what
can be expected in practice, as our generation scheme is, for now, very simplistic.
It is therefore likely that the generated instances are in some sense trivial wrt.
emptiness. Two approaches which we plan on taking to obtain more meaningful
results are a study similar to that of [9] to identify interesting instances, and the
use of statistically-exploitable generation schemes as in [10]. GENERAL RESULTS.
Comparing the output of Algos. 1 & 2, we noted that the latter generates smaller
automata — the cardinality of each state being ignored — by a factor two or more,
depending on the size of the input TWA. The same caveat as above applies
concerning the random TWA. DEMONSTRATION SOFTWARE. Readers interested
in experimenting with this paper’s algorithms will find online (?) a proof of concept
(binaries and 0Caml source code), as well as instructions for use.

5 Conclusion

In this paper we have introduced tree overloops, and applied both loops and
overloops to common operations on TWA: deciding membership, transforming a
TWA into a BUTA, and inexpensively testing emptiness. We have shown that the

(®) On http://lifc.univ- fcomte. fr/~vhugot/TWA.



use of overloops simplifies transformation into BUTA, and substantially lowers
the upper bound in the deterministic case. We intend to pursue this further by
using overloops to characterise useful classes of TWA and perform significant
simplifications on the automata, hopefully leading to applications to XPath.

Acknowledgements. The authors would like to thank the members of the
INRIA ARC ACCESS for interesting discussions on this topic. Our thanks go
as well to the anonymous reviewer who provided a tighter complexity bound for
Cor. 7, and whose careful proofreading improved the readability of this paper.
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Appendix: Proofs

Corollary 6:

Proof. There is a loop (gi,qt) € I x F of A on t iff there is a run of the form
(e,¢),...,(g,q). The first configuration is initial, and the last final. Therefore it
is an accepting run, and ¢t € Lng (A). |

Corollary 7:

Proof. The computation is done inductively on the structure of ¢; thus there
are ||t|| main operations. Each of those operations includes the computation of
the here-loops, which is O(|4]), and for inner nodes, the computation of down-
loops, which is O(|Q|” - |A|). Lastly, the transitive closure is computed: this is a
polynomial operation. For instance using the Roy—Floyd—Warshall algorithm this
adds a ©(Q?). All in all, the whole computation is a O (|¢] - (1QI° +1QI7 - |A])).

O

Lemma 11:

Proof. Immediate from Def. 9, as we have necessarily (,, = «. Thus any overloop
is a loop followed by a move up, and conversely. ]

Corollary 14:

Proof. The couple (¢;,v') € I x {v'} is an overloop iff there is a run (e, ¢;), . . .,
(¢,¢¢), (Z,v'). By Def. 13, we must have ¢¢ € F; therefore t € Lng (A). O

Theorem 16:

Proof. If t € Lng (A), then there is a loop (g, qr) € I X F' of A on t. Therefore
there is a run p of B on t such that p(e) = (t(¢),*, L), with (¢, ¢) € L. Thus
p(e) is a final state and t € Lng (B). Conversely, if ¢t € Lng (B) then there is an
accepting run p of B on t, that is to say such that p(e) = (t(¢), *, 0%(t)) and there
exists (gi, qr) € (I x F)NUXt). Thus by Cor. 6 we have t € Lng (A). O

Lemma 17:

Proof. See proof of Lemma 15. The only change is that this time, we build the
loops, then deduce the overloops from them (Lem. 11). For leaves, the loops are
built line C exactly as they are in Algo. 1, line A. For inner nodes and singular
loops whose first move is down, the computation on line D is slightly different
from that of B, — and in fact easier — as we know the overloops of the children
instead of their loops. ]

Theorem 18:



Proof. By construction (i,v") € I x {v'} is an overloop iff there exists f € F
such that (i, f) is a loop. Same proof as Theorem 16. |

Lemma 27:

Proof. This result is fairly clear when comparing Algorithms 2 and 3. Let us
consider a tree t and a subtree u = t|_, with 7 = ja. We show that 07(u) C L.
Base case: u = a € Y. Then by the first line of Algo. 3, we have $"(u) = $7(a) =
UZ[HI*] € L. Inductive case: If u = f(ug,uy),f € Ys, then by induction
hypothesis we have $%ugy) C Ly and B¥(uy) € L;. The expression computed in
the main loop is almost the same as that of Thm. 12 for $"(u), the only difference
being that Ly is used instead of B ug). Since we have BYug) C Ly for all § € S,
the expression in Algo. 3 computes at least all overloops of $7(u) — and adds
them to £,. Thus $"(u) C L. O

Theorem 28:

Proof. Suppose that Algo. 3 yields Empty. By definition, this is the case if and
only if £, N (I x {v'}) = @. By Lemma 27, we have |J,c 75 O7(t) C L, for
all types 7, and it follows that, in particular (U,cz s, OGN x{V})) =@.

This can be equivalently rephrased as V¢t € T(X), 0*¢) N (I x {V'}) = @. By
Corollary 14, this translates into: for all ¢t € T(X),t ¢ Lng(A), that is to say,
Lng(A) =o. O

Corollary 29:

Proof. For all types 7, all operations in Algo. 3 which alter £, add elements
to it. The first loop executes a fixed number of times (|Xy| x |T|). The main
loop contains only an inner loop which executes a fixed number of times as well
(|X2] x |T]), and the main loop itself executes until no element is added to Ly,
L or L, during the iteration. Since an iteration can only add elements, and each
iteration adds at least one, there can be at most

SoIL =D 1R =Tl x |Qf

T€T T€T

iterations of the main loop. Each iteration of both the first loop and the main
inner loop computes a set of overloops, based on two sets of previously-computed
(potential) overloops. This operation executes in a time which is a O(|Q|* - |A|),
and it is executed in total | Zo| - |T| + |T| - |Q|* - (| 2] - |T|) times. Overall, the
number of times it is executed is a O(|X|-|T|?-|Q|?). Globally, the execution time
of Algo. 3isa O(|X| - |T|>-|Q|" - |A|). This is of course a very loose bound. [



Appendix: Extended Example

This appendix contains the output of our demonstration program (¢), with our
running example X as the input TWA, and ¢(f(a,b), c) as the input tree.

Among other things, the tool displays the results of the transformation into
BUTA by Algorithms 1 and 2. Notice that, even for a TWA as trivial as X, the
resulting loop-based BUTA B; is huge, while the overloop-based BUTA B, is
comparatively quite small. Numerically, ||B1|| = 1986 and ||Bz|| = 95, where the
size of a BUTA (X, Q, F, A) is defined — in the usual way [7] — as:

def

1(Z,Q,F.A) | < 1QI+ > (arity(f) +2)

f(P1,,pn)—qEA

Note that these are the “raw” results of the algorithms; in practice, it is therefore
advisable to trim the BUTA, removing useless rules and states. We used the
cleanup method described in [9], which is stronger than the standard reduction
algorithm, even in the absence of global (TAGED) constraints. Of course, standard
reduction alone would have no effect whatsoever, because Algorithms 1 and 2
yield reduced BUTA by construction. The automata after cleanup, B} and B,
were such that ||B}| = 1617 and ||BS|| = 78. So we have

B B B B
1B - oo weg VB L os oy IBLL Bl

~ : ~ ~1.2 .
1Bzl 1Bzl 1BL]F Bl

Thus attempts to reduce the resulting BUTA “after the fact” are much less useful
than the switch from loops to overloops, and cannot reclaim the extra space taken
by the loop-based construction. Of course, this is just an empirical observation
on a single, trivial example, but we have observed the same trend with many
other TWA, whether hand-written or randomly generated (1), and we believe
that it is worth mentioning in this appendix.

More will be known about the size differences between the two approaches
once tests are done using random TWA generated according to a statistically-
exploitable distribution, such as that described in [10].

(©) The reader will find detailed explanations regarding the program’s inputs and outputs
on the dedicated web page.
() We generated about twenty thousands of them during our tests



TWA Output Proof of Concept;
contact Vincent Hugot (vhugot@lifc.univ-fcomte.fr)
Generated on 2011-04-19 13:16:11 (GMT)

TwA [1 = {
alphab = #6{a/0, b/0, c/0, £/2, g/2, h/2}
states = #2{ql, qu}

inits = #1{ql}
finals = #1{qu}
rules = #14{(a ql @) -> (* qu), (a ql <) -> (* qu), (a
qu <) -> (! qu), (b qu <) -> (! qu), (c qu <) ->
(! qu), (f q1 @ -> (< ql), (f ql <) -> (< ql), (f
qu <) -> (! qu), (g ql @) -> (< gl), (g ql <) -> (<
ql), (g qu <) -> (! qu), (h gl @ -> (< ql), (h ql
<) -> (< ql), (h qu <) -> (! quw}

1 Deterministic run

ACCEPTING
(ql,e) — (ql,0) — (q1,0.0) = (qu,0.0) — (qu,0) — (qu,¢)



2 g 3 g 4 g 5
/N /\ /\
c|| flal] ¢ fooc f el flau
/ \ / N\ /N / \
a b algll b |lalqu] b ||a

2 Nondeterministic power run

a,{ql,

u}

Q

3 Transformations into BUTA

Note: Post-processing BUTA Cleanup is deactivated.

3.1 Classical loop-based transformation

States/Loops correspondance table

-->

O N Ok W~ O
|
|
\2

9 -->

10 -->
11 -->
12 -->
13 -->

[a,0,#3{(ql,ql),
[a,<,#3{(ql,ql),
[a,>,#2{(ql,ql),
[b,0,#2{(ql,ql),
[b,<,#2{(ql,ql),
[b,>,#2{(ql,ql),
[c,0,#2{(ql,ql),
[c,<,#2{(ql,ql),
[c,>,#2{(ql,ql),
[f,0,#3{(ql,ql),
[f,0,#2{(ql,ql),
[f,<,#3{(ql,ql),
[f,<,#2{(ql,ql),
[f,>,#2{(ql,ql),

(qu,qu) }]
(qu,qu) }]

(ql,qu),
(ql ,qu) ’
(qu,qu) }]
(qu,qu) }]
(qu, qu) }]
(qu,qu) }]
(qu,qu) }]
(qu,qu) }]
(qu,qu) }]
(gql,qu), (qu,qu)}]

(qu,qu) }]

(ql,qu),

(qu,qu) }]

(qu,qu) }]

(qu,qu) }]




15
16
17
18
19
20
21
22
23

TAGED

c(
£ (
£ (
£ (
£ (
£ (
18
£ (
£ (
£ (
£ (
18
£ (
23
£ (
£ (
18
f (
£ (
£ (
£ (
18
£ (
5)

[g,0,#3{(ql,ql),
[g,0,#2{(ql,ql),
g,<,#3{(ql,ql),
[g,<,#2{(ql,ql),
lg,>,#2{(ql,ql),
[h,0,#3{(ql,ql),
[h,0,#2{(ql,ql),
[h,<,#3{(ql,ql),
[h,<,#2{(ql,ql),
[h,>,#2{(ql,ql),

’fromTWA-Sigma’
alphab #6{a/0, b/0,
states #24{0, 1,
2, 20, 21, 22, 23
final #4{0, 14, 19,
rules #495{a () ->0,
->5,
)->6, c()->7, c()->8,
1, 13)->9, f(1,
1, 2)->11, £(1,
1, 23)->13, f(1,
1, 5)->9, f(1,
11, 13)->11, f(11,
y->11, £(11, 18)->13,
11, 2)->13, f(11,
11, 23)->9, f(11,
11, 8)->11, f(11,
12, 13)->12, f(12,
y->12, f£(12, 18)->13,
12, 2)->13, f£(12, 23)
)->13, f£(12, 5)->10,
12, 8)->10, f(12,
16, 13)->13, f(16,
)->13, £(16, 18)->9,
16, 2)->9, f(16,
16, 5)->11, f(16,
16, 8)->13, f (16,
17, 13)->13, f(17,
)->13, £(17, 2)->10,
17, 23)->10, f(17,
->10, f£(17, 5)->12,

[1986]

10,

18) ->11,
2)->13,
23) -
8)->11,
13) ->13,

2) -
5) -
8) -

13) ->13,

8) -
13) ->9,

23) -
5) -
8) -

18) ->10,

23) ->12,
f£f(17,

(ql,qu), (qu,qu)}]
(qu,qu) }]
(ql,qu),
(qu,qu) }]
(qu,qu)}]
(ql ,qu) s
(qu,qu) }]
(ql,qu),
(qu,qu) }]
(qu,qu) }]

(qu,qu) }]

(qu,qu) }]

(qu, qu) }]

{
/2,
12,

4, 5,

c/0,
11,
> 3,
9}
a()->1,

g/2, h/2}
13, 14, 15,
6, 7, 8, 9}

16, 17, 18, 19,

a()->2, bO)->3, bO)->4, b()

£f(1, 13)->11, f(1, 13)->13,
f(1, 18)->13, f(1, 18)->9,

f(1, 2)->9, f(1, 23)->11,

>9, f(1, 5)->11, f(1, 5)->13,

f(1, 8)->13, f(1, 8)->9,

f(11, 13)->9, f(11,

f(11, 18)->9, f(11, 2)->11,

>9, f(11, 23)->11, f(11, 23)->13,

>11, f(11, 5)->13, f£(11, 5)->9,

>13, f(11, 8)->9, f(12, 13)->10,
f(12, 18)->10, f(12,
2)->10, f(12, 2)->12,

f(12, 23)->12, f(12,

5)->12, f£(12, 5)->13,

f(12, 8)->13, f(16, 13)->11,
f(16, 18)->11, f(16,
2)->11, f(16, 2)->13,

f(16, 23)->13, f(16, 23)->9,

f(16, 5)->9, f(16, 8)->11,

f(17, 13)->10, f(17, 13)->12,
£f(17, 18)->12, f(17,

2)->12, £(17, 2)->13,
£f(17, 23)->13, £(17,

5)->13, f£(17, 8)->10,

f(12,
->10,
f(12,
>12,

f(16,
>11,
>13,
>9,

f(17,



f(17, 8)->12, f(17, 8)->13, f(21, 13)->11, f(21, 13)->13,
f(21, 13)->9, f(21, 18)->11, f(21, 18)->13, f(21,

18) ->9, f(21, 2)->11, f(21, 2)->13, f(21, 2)->9, f(21,
23) ->11, f(21, 23)->13, f(21, 23)->9, f(21, 5)->11,
f(21, 5)->13, f(21, 5)->9, f(21, 8)->11, f(21, 8)->13,
f(21, 8)->9, f(22, 13)->10, f(22, 13)->12, f(22, 13)->13,
f(22, 18)->10, f(22, 18)->12, f(22, 18)->13, f(22,
2)->10, f(22, 2)->12, f(22, 2)->13, f(22, 23)->10,

f (22, 23)->12, f(22, 23)->13, f(22, 5)->10, f(22,
5)->12, f(22, 5)->13, f(22, 8)->10, f(22, 8)->12,

f(22, 8)->13, f(4, 13)->10, f(4, 13)->12, f(4, 13)->13,
f(4, 18)->10, f(4, 18)->12, f(4, 18)->13, f(4, 2)->10,
f(4, 2)->12, f(4, 2)->13, f(4, 23)->10, f(4, 23)->12,
f(4, 23)->13, f(4, 5)->10, f(4, 5)->12, f(4, 5)->13,
f(4, 8)->10, f(4, 8)->12, f(4, 8)->13, f(7, 13)->10,
£f(7, 13)->12, £(7, 13)->13, f(7, 18)->10, f(7, 18)->12,
£f(7, 18)->13, f(7, 2)->10, £(7, 2)->12, £(7, 2)->13,
£(7, 23)->10, £(7, 23)->12, f(7, 23)->13, £(7, 5)->10,
£f(7, 5)->12, £(7, 5)->13, f(7, 8)->10, f(7, 8)->12,

£(7, 8)->13, g(1, 13)->14, g(1, 13)->16, g(1, 13)->18,
g(1, 18)->14, g(1, 18)->16, g(1, 18)->18, g(1, 2)->14,
g(1, 2)->16, g(1, 2)->18, g(1, 23)->14, g(1, 23)->16,
g(1, 23)->18, g(1, 5)->14, g(1, 5)->16, g(1, 5)->18,
g(1, 8)->14, g(1, 8)->16, g(1, 8)->18, g(11, 13)->14,
g(11, 13)->16, g(11, 13)->18, g(11, 18)->14, g(11,

18) ->16, g(11, 18)->18, g(11, 2)->14, g(11, 2)->16,
g(11, 2)->18, g(11, 23)->14, g(11, 23)->16, g(11,
23)->18, g(11, 5)->14, g(11, 5)->16, g(11, 5)->18,

g(11, 8)->14, g(11, 8)->16, g(11, 8)->18, g(12, 13)->15,
g(12, 13)->17, g(12, 13)->18, g(12, 18)->15, g(12,

18) ->17, g(12, 18)->18, g(12, 2)->15, g(12, 2)->17,
g(12, 2)->18, g(12, 23)->15, g(12, 23)->17, g(12,
23)->18, g(12, 5)->15, g(12, 5)->17, g(12, 5)->18,

g(12, 8)->15, g(12, 8)->17, g(12, 8)->18, g(16, 13)->14,
g(16, 13)->16, g(16, 13)->18, g(16, 18)->14, g(16,

18) ->16, g(16, 18)->18, g(16, 2)->14, g(16, 2)->16,
g(16, 2)->18, g(16, 23)->14, g(16, 23)->16, g(16,
23)->18, g(16, 5)->14, g(16, 5)->16, g(16, 5)->18,

g(16, 8)->14, g(16, 8)->16, g(16, 8)->18, g(17, 13)->15,
g(17, 13)->17, g(17, 13)->18, g(17, 18)->15, g(17,

18) ->17, g(17, 18)->18, g(17, 2)->15, g(17, 2)->17,
g(17, 2)->18, g(17, 23)->15, g(17, 23)->17, g(17,

23) ->18, g(17, 5)->15, g(17, 5)->17, g(17, 5)->18,



g(17, 8)->15, g(17, 8)->17, g(17, 8)->18, g(21, 13)->14,
g(21, 13)->16, g(21, 13)->18, g(21, 18)->14, g(21,

18) ->16, g(21, 18)->18, g(21, 2)->14, g(21, 2)->16,
g(21, 2)->18, g(21, 23)->14, g(21, 23)->16, g(21,

23) ->18, g(21, 5)->14, g(21, 5)->16, g(21, 5)->18,

g(21, 8)->14, g(21, 8)->16, g(21, 8)->18, g(22, 13)->15,
g(22, 13)->17, g(22, 13)->18, g(22, 18)->15, g(22,

18) ->17, g(22, 18)->18, g(22, 2)->15, g(22, 2)->17,
g(22, 2)->18, g(22, 23)->15, g(22, 23)->17, g(22,

23) ->18, g(22, 5)->15, g(22, 5)->17, g(22, 5)->18,

g(22, 8)->15, g(22, 8)->17, g(22, 8)->18, g(4, 13)->15,
g(4, 13)->17, g(4, 13)->18, g(4, 18)->15, g(4, 18)->17,
g(4, 18)->18, g4, 2)->15, g(4, 2)->17, g(4, 2)->18,
g(4, 23)->15, g(4, 23)->17, g(4, 23)->18, g(4, 5)->15,
g(4, 5)->17, g4, 5)->18, g(4, 8)->15, g(4, 8)->17,
g4, 8)->18, g(7, 13)->15, g(7, 13)->17, g(7, 13)->18,
g(7, 18)->15, g(7, 18)->17, g(7, 18)->18, g(7, 2)->15,
g(7, 2)->17, g(7, 2)->18, g(7, 23)->15, g(7, 23)->17,
g(7, 23)->18, g(7, 5)->15, g(7, 5)->17, g(7, 5)->18,
g(7, 8)->15, g(7, 8)->17, g(7, 8)->18, h(1, 13)->19,
h(1, 13)->21, h(1, 13)->23, h(1, 18)->19, h(1, 18)->21,
h(1, 18)->23, h(1, 2)->19, h(1, 2)->21, h(1, 2)->23,
h(1, 23)->19, h(1, 23)->21, h(1, 23)->23, h(1, 5)->19,
h(1, 5)->21, h(1, 5)->23, h(1, 8)->19, h(1, 8)->21,

h(1, 8)->23, h(11, 13)->19, h(11, 13)->21, h(11, 13)->23,
h(11, 18)->19, h(11, 18)->21, h(11, 18)->23, h(11,
2)->19, h(11, 2)->21, h(11, 2)->23, h(11, 23)->19,

h(11, 23)->21, h(11, 23)->23, h(11, 5)->19, h(11,
5)->21, h(11, 5)->23, h(11, 8)->19, h(11, 8)->21,

h(11, 8)->23, h(12, 13)->20, h(12, 13)->22, h(12,

13) ->23, h(12, 18)->20, h(12, 18)->22, h(12, 18)->23,
h(12, 2)->20, h(12, 2)->22, h(12, 2)->23, h(12, 23)->20,
h(12, 23)->22, h(12, 23)->23, h(12, 5)->20, h(12,
5)->22, h(12, 5)->23, h(12, 8)->20, h(12, 8)->22,

h(12, 8)->23, h(16, 13)->19, h(16, 13)->21, h(16,

13) ->23, h(16, 18)->19, h(16, 18)->21, h(16, 18)->23,
h(16, 2)->19, h(16, 2)->21, h(16, 2)->23, h(16, 23)->19,
h(16, 23)->21, h(16, 23)->23, h(16, 5)->19, h(16,
5)->21, h(16, 5)->23, h(16, 8)->19, h(16, 8)->21,

h(16, 8)->23, h(17, 13)->20, h(17, 13)->22, h(17,
13)->23, h(17, 18)->20, h(17, 18)->22, h(17, 18)->23,
h(17, 2)->20, h(17, 2)->22, h(17, 2)->23, h(17, 23)->20,
h(17, 23)->22, h(17, 23)->23, h(17, 5)->20, h(17,



5)->22, h(17, 5)->23, h(17, 8)->20, h(17, 8)->22,

h(17, 8)->23, h(21, 13)->19, h(21, 13)->21, h(21,
13)->23, h(21, 18)->19, h(21, 18)->21, h(21, 18)->23,
h(21, 2)->19, h(21, 2)->21, h(21, 2)->23, h(21, 23)->19,
h(21, 23)->21, h(21, 23)->23, h(21, 5)->19, h(21,
5)->21, h(21, 5)->23, h(21, 8)->19, h(21, 8)->21,

h(21, 8)->23, h(22, 13)->20, h(22, 13)->22, h(22,

13) ->23, h(22, 18)->20, h(22, 18)->22, h(22, 18)->23,
h(22, 2)->20, h(22, 2)->22, h(22, 2)->23, h(22, 23)->20,
h(22, 23)->22, h(22, 23)->23, h(22, 5)->20, h(22,
5)->22, h(22, 5)->23, h(22, 8)->20, h(22, 8)->22,

h(22, 8)->23, h(4, 13)->20, h(4, 13)->22, h(4, 13)->23,
h(4, 18)->20, h(4, 18)->22, h(4, 18)->23, h(4, 2)->20,
h(4, 2)->22, h(4, 2)->23, h(4, 23)->20, h(4, 23)->22,
h(4, 23)->23, h(4, 5)->20, h(4, 5)->22, h(4, 5)->23,
h(4, 8)->20, h(4, 8)->22, h(4, 8)->23, h(7, 13)->20,
h(7, 13)->22, h(7, 13)->23, h(7, 18)->20, h(7, 18)->22,
h(7, 18)->23, h(7, 2)->20, h(7, 2)->22, h(7, 2)->23,
h(7, 23)->20, h(7, 23)->22, h(7, 23)->23, h(7, 5)->20,
h(7, 5)->22, h(7, 5)->23, h(7, 8)->20, h(7, 8)->22,
h(7, 8)->23}%

==rel = #0{}
<>rel = #0{}
}
g,{14,16,18}
f,{11,13,Q} C,{6,7,8}
a,{Q,1,2} b,{3,4,5}

3.2 New overloop-based transformation

States/Loops correspondance table
10 --> [e,#2{(ql,#), (qu,#)}]

1 --> [@,#1{(qu,#)}]

12 --> [<,#2{(ql,qu), (qu,qu)}]
13 --> [<,#1{(qu,qu)}]



rd --> [>,#0{}]

TAGED ’fromTWA’> [95] = {

alphab = #6{a/0, b/0, c/0, £/2, g/2, h/2}

states = #5{!0, !'1, 12, 13, r4}

final = #1{!0}

rules = #27{a()->10, a()->12, a()->r4, bO->'1, b()->13, b

()->r4,

cO)=>11, c()->13, c(O)->rd4, £(12, rd)->10, £(12, r4)->12,
£f(12, rd4)->rd4, £(13, rd4)->'1, £(13, r4)->13, f(13,
r4)->r4, g(12, r4)->10, g(12, rd4)->12, g(l2, rd)->r4,
g(13, rd)->'1, g(13, r4)->13, g(13, rd)->r4, h(12,
r4)->'0, h(1l2, r4)->12, h(1l2, rd4)->rd4, h(13, rd)->!1,
h(13, r4)->13, h(13, r4)->r4}

==rel = #0{}
<>rel = #0{}
}
g,{!0,12,r4}
f,{10,12,r4} ¢, {!1,13,r4}
a,{10,12,r4} b,{!1,13,r4}

4 Membership by overloops

Overloops of the TWA on the tree

#2{(ql,#), (qu,#)}
5 Term in language

5.1 Loops

(as string)
a



(as tree representation)
a, (0)

5.2 Over-Loops

(as string)
a
(as tree representation)

a, (10)

6 Over-Approximation

Found potential overloop @ #2{(ql,#), (qu,#)}

#0{}
#0{}
#04{}

Unknown



