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Abstract. In formal verification, reachability analysis can be guided by temporal logic properties, for instance
to achieve the counter-example-guided abstraction refinement (CEGAR) objectives. A way to perform this
analysis is to translate a temporal logic formula expressed on maximal rewriting words into a “rewrite
proposition” – a propositional formula whose atoms are language comparisons – and then to generate positive
approximation procedures based on (approximations of) the rewrite proposition.

This paper provides a theoretical framework for both sub-problems on a fragment of LTL useful for safety
properties, thus laying the foundation for a complete, automatic model-checking chain based on this method.
For the first sub-problem, a set of translation rules yields the rewrite proposition; for the second, a set of
procedure generation rules produces all possible theorems of the form “given some assumptions about the input
system, this procedure decides (resp. positively approximates) whether the system satisfies the property”.
Keywords: Linear Temporal Logic, Rewrite Systems, Rewrite Propositions, Regular Model-Checking

1. Introduction & Context

Term rewriting and rewriting logic have been intensively and successfully used for solving equational problems
in automated deduction, for programming language definitions, for model transformations and generation of
efficient interpreters as well as for specification and verification in software engineering. In this last context,
system states are modelled by languages, while rewrite rules stand for actions of the system; for instance
procedure or method calls. This technique has been successfully used to prove the security of cryptographic
protocols [1] and Java Bytecode programs [2]. When proving security or safety, reachability analysis over
sets of terms can be guided by temporal logic properties, for instance in [3, 4].

In particular, [4], which the present paper (c) aims to develop and complete, outlined a novel method for
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checking that the rules of a term-rewriting system (TRS, or rewrite system) are activated in accordance with a
temporal property. Specifically, three Linear Temporal Logic (LTL) formulæ (d) were translated into equivalent
rewrite propositions, which in turn were converted into algorithms that yield yes or maybe, which we call
positive approximation procedures – the general problem is undecidable. For instance, given an initial language
Π, a rewrite system R and two subsets X,Y ⊆ R, the LTL property �(X ⇒ •Y ) – one of the three dealt with
in [4] – signifies that whenever an accessible term is rewritten by some rewrite rule in X, the resulting term can
be rewritten by some rule in Y , and not by any other rule. More concretely, if R models a cash machine, and
X = { ask_PIN } and Y = { auth1, auth2, cancel }, then this property can be read as “whenever the user enters
his or her PIN, then something happens immediately after, and that can only be either the authentication of
the user (through either method 1 or 2) or the cancellation of the transaction —this excludes other possible but
undesirable actions, such as sending the PIN over the network.” Note that ask_PIN etcetera are, in this context,
rewrite rules on trees representing the states of the machine. That property was shown to be satisfied if and only
if the following rewrite proposition holds: [R \ Y ] (X (R∗(Π))) = ∅ ∧ X (R∗(Π)) ⊆ Y −1(T ), where R∗(Π) is
the transitive and reflexive forward closure of Π byR, and T is the set of all trees. The point of translating satis-
faction in terms of rewrite propositions is that they present a more tractable intermediary form which can itself
be translated into automata-based decision or positive approximation procedures. Indeed, if the initial language
Π is regular, then the literature is rife with constructive results concerning questions such as preservation of
regularity under forward closure, that is to say, “under which conditions on the rewrite system R is R∗(Π) still
regular?”. A recent and complete survey of such results can be found in [8, Sec. 2.1.1]. When preserving regular-
ity is not an option, one may fall back on more expressive classes of tree automata (TA) such as Tree Automata
with Global Equality constraints (TA=) [9]. As an example of both aspects, [4, Prop. 5] states that a language
given byR−1(T ) can in all generality be represented by a TA=; furthermore, ifR is left-linear, then the language
is regular. Such results can be supplemented by regular approximation techniques; ifA is a TA, such a procedure
Approx(A,R) yields another TA B such that L(B) ⊇ R∗(L(A)), where L(A) is the language accepted by A [10,
11]. Current methods yield approximations that are tight enough to be quite useful. Put together, those tools
provide a framework for building decision and positive approximation procedures from rewrite propositions. For
instance, the proposition given above was shown to be positively approximated by the conjunction of the proce-
dures IsEmpty(OneStep(R \ Y, Approx(A,R)), X) and Subset(OneStep(X, Approx(A,R)), Backward(Y )), where
L(A) = Π and under the additional constraint that Y must be left-linear. Note that, syntax notwithstanding,
this is almost a straightforward reformulation of the original rewrite proposition.

To summarise the above, our approach to model-checking temporal properties of sequences of rewrite
rules, as illustrated in [4], consists of two phases: (1) translation of a temporal logic formula expressed on
maximal rewriting words into a rewrite proposition, which is independent of the specific properties of the
system, and (2) translation of the rewrite proposition into positive approximation procedures, instantiating
languages by means of automata, and introducing sound approximations where needed. In order for this
approach to become useful for program verification, both steps must be generalised to arbitrary temporal
properties – within an appropriate fragment of LTL – and automated. In the present paper, we develop
automated methods for each phase on a fragment sufficient to express useful properties, and point out both
limitations of the method and possible optimisations whenever relevant.

Note to reviewers:
This paper extends the previous IJCAR paper [5] in the following ways:

� A single translation rule (X}) – which is where most of the information stored during the translation
is actually used – replaces and extends the previous method (which involved several, more complicated,
less general rules). e.g. Sec. 3.1[p5].

� Sec. 5[p20], showing how to instantiate approximated algorithms from rewrite propositions, is new.
� Sec. 6[p24], presenting full derivations and discussing applicability, is new.
� Full proofs are given for most propositions – though, for want of space, some of them redirect to the thesis [6].
� There are far more examples, explanations, and intuitions interspersed throughout the text.

None of this material has been published in a workshop, conference, or journal, though a more discursive

(d) . . . chosen for their relevance to model-checking [7].
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version of it exists in the relevant parts of the Ph.D. thesis [6], which is that of the second author (alphabetical
order), the other authors being the thesis advisors.

Related work. In recent years, new results in rewriting logic have deeply extended the spectrum of its
applications [12, 13, 14, 15], especially in relation with temporal logic for rewriting [16, 17]. Unlike [17], where
LTL model checking is performed over finite structures, our approach handles temporal formulæ over infinite
state systems. In this sense, it is close to [12]. However, in spite of its simplicity for practical applications,
it does not permit – in its current state, at least – to consider equational theories. Our viewpoint differs
slightly from other regular model-checking approaches such as Regular LTL [3] in that the temporal property
relates to sequences of actions as opposed to sequences of states. It is however very similar to the method
presented in [18], when reducing the equational theory to the identity. This work inserts itself within tree
regular model-checking (TRMC), where it complements reachability analysis performed given a TRS model
of transitions, as in [1, 2, 19, 20]. This adds to the already rich ecosystem surrounding TRS as a central
formal model amenable to both execution and verification though model-checking, abstract interpretation,
static analysis, interactive proofs etcetera [21, 10, 22, 23, 24].
Organisation of the paper. Section 2 presents the notions and notations in use throughout this paper, in-
cluding the choice of temporal semantics and precise statements of the problems at hand. Section 3[p5] provides
a brief intuitive introduction to our proposal for (1), and develops the notion of signatures used in its resolution.
Section 4[p13] relies on signatures to provide a set of translation rules that addresses (1). Section 5[p20] focuses
on (2), which is addressed by means of procedure generation rules generating all possible positive approxima-
tion theorems. Section 6[p24] shows full derivations of both steps on toy formulæ, and examines whether and how
well the developed methods apply to common temporal properties and existing TRS models in various domains.

2. Preliminaries & Problem Statement

The extended naturals are denoted by N

/

= N∪{+∞}. For any k ∈ N, we let Nk

/

= [k,+∞)∩N and Nk

/

= Nk∪
{+∞}. We write Jn,mK, where n,m ∈ N, the integer interval [n,m]∩N, with the convention that Jn,+∞K

/

= Nn.
The powerset of S is written ℘(S). Substitution is written f [v/X], meaning “v replaces X in the expression f”.

2.1. Rewrite Words & Maximal Rewrite Words

A comprehensive survey on term rewriting can be found in [25]. Let A be a ranked alphabet, T (A) (or simply
T ) the set of all terms on A, R a finite rewrite system, and Π ⊆ T any set of terms. A finite or infinite word
on R is an element of
W

/

=
⋃
n∈N

(
J1, nK→ R

)
.

The length #w ∈ N of a word w is defined as Card (domw). Note that the empty function – of graph
∅×R = ∅ – is a word, which we call the empty word, denoted by λ. Let w ∈ W be a word of domain J1, nK,
for n ∈ N, and let m ∈ N1; then the m-suffix of w is the word denoted by wm, such that

wm

/

=
∣∣∣∣J1, n−m+ 1K −→ R

k 7−→ w(k +m− 1) .

Note that w1 = w, for any word w. The intuitive meaning attached to a word w is a sequence of rewrite
rules of Rrepresenting a “run” of the TRS R. Such a notion only makes sense with respect to initial terms
to be rewritten. Thus we now define the maximal rewrite words of R, originating in Π:

LΠM

/

=
{
w ∈ W

∣∣∣∣ ∃u0 ∈ Π : ∃u1, . . . , u#w ∈ T : ∀k ∈ domw,
uk−1

w(k)−−−→ uk ∧ #w ∈ N⇒ R({u#w}) = ∅

}
.

Note the potential presence of the empty word in that set. Informally, a word w is in LΠM if and only if the
rewrite rules w(1), . . . , w(n), . . . can be activated in succession, starting from a term u0 ∈ Π, and the word
w is “maximal” in the sense that it cannot be extended. Thus LΠM captures the behaviours (or runs) of R,
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(w, i) |= X iff i ∈ domw and w(i) ∈ X
(w, i) |= ¬ϕ iff (w, i) |=/ ϕ
(w, i) |= (ϕ ∧ ψ) iff (w, i) |= ϕ and (w, i) |= ψ
(w, i) |= •mϕ iff i+m ∈ domw and (w, i+m) |= ϕ
(w, i) |= ◦mϕ iff i+m /∈ domw or (w, i+m) |= ϕ

(w, i) |= ϕUψ iff ∃j ∈ domw : j > i ∧
{

(w, j) |= ψ ∧
∀k ∈ Ji, j − 1K , (w, k) |= ϕ

(w, i) |= > (w, i) |=/ ⊥
(w, i) |= ¬X iff i /∈ domw or w(i) /∈ X
(w, i) |= (ϕ ∨ ψ) iff (w, i) |= ϕ or (w, i) |= ψ
(w, i) |= (ϕ⇒ ψ) iff (w, i) |= ϕ⇒ (w, i) |= ψ
(w, i) |= ♦ϕ iff ∃j ∈ domw : j > i ∧ (w, j) |= ϕ
(w, i) |= �ϕ iff ∀j ∈ domw, j > i⇒ (w, j) |= ϕ

For any w ∈ W, i ∈ N1, m ∈ N and X ∈ ℘(R).

Fig. 1: LTL Semantics on Maximal Rewrite Words

starting from Π; this notion is equivalent the full paths of the rewrite graph described in [4], and corresponds
to the usual maximal trace semantics [26], with a focus on transitions instead of states.

2.2. Defining Temporal Semantics on Rewrite Words

Choice of LTL & Syntax. Let us define precisely the kind of temporal formulæ under consideration, and
their semantics. We shall use a slight variant of LTL with generalised weak and strong next operators; the
reasons for this choice will be discussed when the semantics are examined. A formula ϕ ∈ LTL is generated
by the following grammar:

ϕ := X | ¬ϕ | ϕ ∧ ϕ | •mϕ | ◦mϕ | ϕUϕ X ∈ ℘(R)
> | ⊥ | ϕ ∨ ϕ | ϕ⇒ ϕ | ♦ϕ | �ϕ m ∈ N .

Note that the operators which appear on the first line are functionally complete; the remaining operators
are defined syntactically as: >

/

= R∨¬R, ⊥

/

= ¬>, ϕ∨ψ

/

= ¬(¬ϕ∧¬ψ), ϕ⇒ ψ

/

= ¬ϕ∨ψ, ♦ϕ

/

= >Uϕ and
�ϕ

/

= ¬♦¬ϕ.

Choice of Semantics. In the literature, the semantics of LTL are defined and well-understood for ω-words;
however the words of LΠM may be finite – even empty – or infinite, which corresponds to the fact that,
depending on its input, a rewrite system may either not terminate, terminate after some rewrite operations,
or terminate immediately. Therefore we need semantics capable of accommodating both ω-words and finite
words, including the edge-case of the empty word. Figure 1[p4] presents our choice of semantics for this paper,
which is essentially Finite-LTL [F-LTL, 7] with generalised next operators and the added twist that words
may be infinite or empty. Note that •1 and ◦1 correspond exactly to the classical strong and weak next
operators, and that for m > 1, •m (resp. ◦m) can trivially be obtained by repeating •1 (resp. ◦1) m times.
So the only non-trivial difference here is the existence of •0 and ◦0; this will prove quite convenient when
we deal with the translation of �, using the following lemma.
Lemma 1 (Weak-Next & Always). Let ϕ ∈ LTL, w ∈ W, k ∈ N and i ∈ N1; it holds that (1) (w, i) |= �ϕ
iff (w, i) |=

∧∞
m=0 ◦mϕ and (2) (w, i) |= �ϕ iff (w, i) |=

∧k−1
m=0(◦mϕ) ∧ ◦k �ϕ.

Short Proof. (1) (w, i) |=
∧∞
m=0 ◦mϕ ⇐⇒

∧∞
m=0(w, i) |= ◦mϕ ⇐⇒ ∀j ∈ domw, j > i⇒ (w, j) |= ϕ ⇐⇒

(w, i) |= �ϕ. (2) (w, i) |=
∧∞
m=0 ◦mϕ ⇐⇒ (w, i) |=

∧k−1
m=0 (◦mϕ) ∧

∧∞
m=k (◦mϕ) (w, i + k) |= �ϕ ⇐⇒

(w, i) |=
∧k−1
m=0 (◦mϕ) ∧ ◦k �ϕ.

Before moving on, let us stress that the choice of LTL must be considered as data for the purposes of this paper.

TRS & LTL. Let ϕ be an LTL formula. It is said that a word w satisfies/is a model of ϕ (denoted by
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w |= ϕ) iff (w, 1) |= ϕ. Alternatively, we have (w, i) |= ϕ iff wi |= ϕ. We say that the rewrite system R, with
initial language Π, satisfies/is a model of ϕ (denoted by R,Π |= ϕ) iff ∀w ∈ LΠM, w |= ϕ.

2.3. Rewrite Propositions & Problem Statement

A rewrite proposition on R, from Π is a formula of propositional logic whose atoms are language or rewrite
systems comparisons. More specifically, a rewrite proposition π is generated by the following grammar:

π := γ | γ ∧ γ | γ ∨ γ γ := ` = ∅ | ` ⊆ ` X ∈ ℘(R) .
` := Π | T | X(`) | X−1(`) | X∗(`)

Since the comparisons γ have obvious truth values, the interpretation of rewrite propositions is trivial; thus
π is automatically confused with its truth value in the remainder of this paper.
Problem Statements. The overarching goal is a systematic method to positively approximate whether
R,Π |= ϕ, given a rewrite system R, a temporal formula ϕ in LTL, and an initial language Π ⊆ T . This
goal is broken down into two distinct sub-problems:
(1) Finding an algorithmic method for building, from ϕ, a rewrite proposition π such that R,Π |= ϕ if and only

if π holds. We call such a method, as well as its result, an exact translation of ϕ, and say that π translates ϕ.
(2) Finding an algorithm for generating, from π, a positive approximation procedure δ, that answers positively

only if π holds, or a full decision procedure, whenever possible.
By solving both sub-problems, one has δ =⇒ π and π ⇐⇒ R,Π |= ϕ, and therefore δ =⇒ R,Π |= ϕ,
which achieves the overall goal.
One notices that the full equivalence is not needed in π ⇔ R,Π |= ϕ; if π is only a sufficient (resp. necessary)
condition, then it is an under-approximated (resp. over-approximated) translation. Of course, only under-
approximated translations hold any practical interest for our purposes. Regarding the first problem, this
paper concerns itself only with exact translations.

3. Technical Groundwork: Antecedent Signatures

The first problem is tackled by two complementary tools: signatures, developed in this section, and translation
rules in Sec. 4[p13] relying on signatures.

3.1. Overview & Intuitions

The Base Cases. Counterintuitively, ϕ = ¬X is actually a simpler case than ϕ = X as far as the translation
is concerned, so it will be considered first.
Case 1: Negative Literal. Suppose R,Π |= ¬X. Recalling the semantics in Fig. 1[p4], this means that
no term of Π can be rewritten by a rule in X. They may or may not be rewritable by rules not in X, though.
Consider now

π1 ≡ X(Π) = ∅ ; (π1)
it is easy to become convinced that this is an exact translation.
Case 2: Positive Literal. Let ϕ = X. Writing π2 ≡ [R \X](Π) = ∅ translates the fact that only rules
of X can rewrite Π, but there is nothing in π2 to enforce that. Looking at the semantics, all possible words of
LΠM must have at least one move (i.e. 1 ∈ domw). It means that all terms of Π are rewritable: Π ⊆ R−1(T ).
More specifically, since we already impose that they are not rewritable by R \X, they are rewritable by X,
i.e. Π ⊆ X−1(T ). We obtain an exact translation:

π′2 ≡ [R \X](Π) = ∅ ∧ Π ⊆ X−1(T ) . (π′2)
Of Strength & Weakness. Let us reflect on the previous cases; the immediate intuition is that X is
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stronger than ¬X, in the sense that whenever one sees X, one must write an additional clause – enforcing
rewritability – compared to ¬X. This actually depends on the context, as the next example will show.

Case 3: Always Negative. Let ϕ = �¬X. This means that neither the terms of Π nor their successors
can be rewritten by X; in other words π3 ≡ X (R∗(Π)) = ∅. The translation is almost the same as for ¬X
in π1. More formally,

π3 ≡ X (R∗(Π)) = ∅ ≡ π1[R∗(Π)/Π] . (π3)
Case 4: Always Positive. In general, under the semantics for �, words of any length may satisfy �X.
Differently from the relationship between the translations of ¬X and �¬X, the correct translation is simply

π′4 ≡ [R \X] (R∗(Π)) = ∅ . (π′4)
Unlike Cases 1 and 2, X is not in any sense stronger than ¬X when behind a �. This is an important point
which we shall need to keep track of during the translation; that necessary bookkeeping will be done by
means of the signatures introduced in Sec. 3.3[p7].

Conjunction, Disjunction & Negation. Case 5: And & Or. It is pretty clear that if π5 translates ϕ
and π′5 translates ψ, then π5∧π′5 translates ϕ∧ψ. This holds thanks to the implicit universal quantifier, as we
have (R,Π |= ϕ∧ψ) ⇐⇒ (R,Π |= ϕ)∧ (R,Π |= ψ). Contrariwise, the same does not hold for the disjunction,
and we have no general solution (e) to handle it. Given that one of the implications still holds, namely
(R,Π |= ϕ∨ψ) ⇐= (R,Π |= ϕ)∨ (R,Π |= ψ), a crude under-approximation can still be given if all else fails:

π5 ∨ π′5 =⇒ R,Π |= ϕ ∨ ψ . (π′′5 )
Case 6: Negation. Although we have seen in Case 1 that a negative literal can easily be translated,
negation cannot be handled in all generality by our method. Note that, because of the universal quantification,
R,Π |=/ ϕ 6= R,Π |= ¬ϕ; thus the fact that π6 translates ϕ does not a priori imply that ¬π6 translates
¬ϕ. This is why we shall assume in practice that input formulæ are provided in a sanitised form, where
negations only appear on literals. The presence of both weak and strong next operators facilitates this, as
¬ ◦m ϕ⇔ •m¬ϕ. Note that this is not exactly the same as requiring a Negative Normal Form (NNF).

Handling Material Implication. Case 7: Implication. Inasmuch as ϕ⇒ ψ is defined as ¬ϕ∨ψ (Cases
5 and 6), must material implication be forgone as well? An example involving an implication has been given
in the introduction (page 1), so it would seem that a translation can be provided in at least some cases. Let
us take the simple example X ⇒ •Y . Assuming that any term u ∈ Π is rewritten into some u′ by a rule in X,
then u′ must be rewritable by Y , and only by Y . The set of X-successors of Π being X(Π), those conditions
yield the translation

π7 ≡ X(Π) ⊆ Y −1 (T ) ∧ [R \ Y ] (X(Π)) = ∅ . (π7)
Note that the way in which implication has been handled here is very different from the approach taken
for the other binary operators: the antecedent of the implication was “assumed”, whilst the consequent was
translated as usual. In fact, recalling that π′2 translates X, and thus π′′2 ≡ π′2[Y/X] translates Y , we have
π7 ≡ π′′2 [X(Π)/Π]. So, “assuming” the antecedent consisted simply in changing our set of reachable terms,
called the past from now on, hence the notation Π. When considering •Y ⇒ X, the antecedent lies in the future,
relatively to the consequent. Therefore, in order to deal with all cases, Section 3.3[p7] introduces the signatures.

3.2. Choosing a Suitable Fragment of LTL

As negation of complex formulæ is problematic, we shall therefore work only with formulæ in a sanitised form,
such that negation appears only on literals, and implication remains allowed. For instance, (A ∨ B) ⇒ C,
(A ⇒ C) ∧ (B ⇒ C), and (¬A ∧ ¬B) ∨ C are three equivalent formulæ, all sanitised. However, the first
and second forms will be favoured over the third (the NNF), because those forms fit into the translation
system presented hereafter. Furthermore, there are operators – such as ♦ – for which it seems that no
exact translation can be provided, since rewrite propositions are not expressive enough; in particular, R∗(Π)

(e) There are however special cases where disjunction can be translated exactly; see rules (∨⇒
∧ )[p14] and (∨¬

⇒).
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hides all information regarding finite or infinite traces. Hence, none of the operators of the “Until” family
{♦,U,W,R, . . . } can be translated exactly, As this paper focusses on exact translations, we shall work chiefly
within the following fragment of LTL, denoted by R-LTL:

ϕ := X | ¬X | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | X ∈ ℘(R)
•m ϕ | ◦mϕ | �ϕ m ∈ N .

3.3. Girdling the Future: Signatures

To deal with implication (cf. Sec. 3.1[p5], Case 7), our approach consists in building a model of ϕ – called
a signature of ϕ, written ξ(ϕ). This model will also be used to store sufficient information regarding the
context in order to determine whether the translation ought to be “strong” or “weak”.
The variety of signatures defined hereafter handles formulæ ϕ within the fragment A-LTL (A for antecedent),
which is R-LTL without ∨ or ⇒. This section defines signatures formally and presents a suitable map
ξ(·) : A-LTL→ Σ, where Σ is the space of signatures, whose correctness proof is broken down in eight main
lemmata, and finally summarised by Thm. 15[p13].

The informal idea behind our definition of signatures is to capture information regarding the possible
successive rewriting steps from the current language Π. The empty signature encodes no information at all:
Starting from t ∈ Π, there may or may not be a rewriting transition t r−→ t′ and even if there is all that can
be said at this point is that r ∈ R; moreover, no further information is available about t′ and its possible
successors. But as more information is gained from antecedents, constraints will be added to the signature.
The compatibility of a rewrite word with a signature gives them precise semantics; it will be made explicit
by the definition of constrained words below.
Signatures. A signature σ is an element of the space

Σ =
⋃
n∈N

[ (
J1, nK ∪ {ω}

)
→ ℘(R)

]
× ℘(N) .

Core, Support, Domain, Cardinal. Let σ = (f, S); then the function f is called the core of σ, denoted
by ∂σ, and S is called its support, written ∇σ. The domain of σ is defined as dom σ

/

= dom f \ {ω}, and its
cardinal is #σ

/

= Card (dom σ).
Special Notations, Empty Signature. A signature σ = (f, S) will be written either compactly as
σ = *f | S+, or in extenso as

Hf(1), f(2), . . . , f(#σ) # f(ω) | SI .
We denote by ε

/

= H#R | NI the empty signature. Let k ∈ N1 ∪ {ω}, then we write

σ[k]

/

=
{
f(k) if k ∈ dom σ
f(ω) if k /∈ dom σ

.

The notation σ[k] is read “σ at (position) k” and is referred to as the at operator.
Constrained Words. The set of maximal rewrite words which satisfy the constraints encoded by a
signature assigns precise semantics to the signatures we build. The maximal rewrite words of R, originating
in Π and constrained by σ are defined by

LΠ # σM

/

= {w ∈ LΠM | #w ∈ ∇σ ∧ ∀k ∈ domw, w(k) ∈ σ[k] } .

For the sake of conciseness, we write LΠ # σM#m the set {w ∈ LΠ # σM | #w = m }, LΠ # σM#S the set {w ∈ LΠ # σM | #w ∈ S },
and LΠ # σM#≺n the set {w ∈ LΠ # σM | #w ≺ n }, for (≺) ∈ {<,>,6,> } and n ∈ N.
Example: Let σ = HX,Y # Z | N2I; then its core is the function ∂σ = { 1 7→ X, 2 7→ Y, ω 7→ Z }, its
domain is dom σ = J1, 2K, its support is ∇σ = N2, its cardinal is #σ = 2, and we have σ[1] = X, σ[2] = Y ,
σ[3] = σ[4] = · · · = σ[ω] = Z. Its constrained words are the maximal rewrite words of length at least 2, whose
first two letters are in X and Y , respectively, and whose other letters are all in Z. ♦
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Our objective in this section is in particular to define a map

ξ(·) : A-LTL −→ Σ

such that ξ(ϕ) is a model of ϕ, in the sense that the maximal rewrite words constrained by ξ(ϕ) are exactly those
which satisfy ϕ. In formal terms, we expect ξ(·) to satisfy the following property, for all Π ⊆ T and ϕ ∈ A-LTL:

LΠ # ξ(ϕ)M = {w ∈ LΠM | w |= ϕ } . (3.1)

The map ξ(·) will have to be built inductively on the structure of its argument. Let us start by observing that
the empty signature carries no constraint at all, which bridges constrained words and maximal rewrite words:

Lemma 2 (No Constraints). It holds that LΠ # εM = LΠM.

Proof. For this first proof, all steps have been detailed. We have

LΠ # εM = LΠ # H#R | NIM (i)
= {w ∈ LΠM | #w ∈ ∇ε ∧ ∀k ∈ domw, w(k) ∈ ε[k] } (ii)
= {w ∈ LΠM | #w ∈ N ∧ ∀k ∈ domw, w(k) ∈ R} (iii)
= {w ∈ LΠM | > ∧ >} = {w ∈ LΠM } = LΠM , (iv)

where step (i) proceeds by definition of the empty signature, step (ii) by definition of constrained rewrite
words, step (iii) by definition of the “at operator” for signatures, and step (iv) rests on all lengths being in
N, and all rules in R.

As an immediate consequence of the above, the empty signature is a model of >.

Lemma 3 (True). Taking ξ(>)
/

= ε satisfies (3.1).

Proof. LΠ # ξ(>)M = LΠ # εM = LΠM = {w ∈ LΠM | w |= >} .

Conversely, to handle ⊥, we need a signature that rejects every possible rewrite word; in that case there are
many possible, equally valid choices, the most straightforward of which is as follows:

Lemma 4 (False). Taking ξ(⊥)

/

= H#∅ | ∅I satisfies (3.1).

Proof. The result rests on x ∈ ∅ being false for all x.

The next lemma claims that for positive literals the proposed translation was correct.

Lemma 5 (Positive Literal). Taking ξ(X)

/

= HX #R | N1I satisfies (3.1).

Proof. Straightforward by translating #w in terms of domw.

Negative literals are translated in roughly the same way as positive ones, the main difference being that the
length 0 is not excluded from their support.

Lemma 6 (Negative Literal). Taking ξ(¬X)

/

= HR \X #R | NI satisfies (3.1).

Proof. It suffices to break up the ∀k ∈ domw.

Now that the base cases are all covered, we move on to the inductive cases, the first of which is conjunction.
Let us take the simplest possible example: X ∧ Y . We have by Lemma 5

ξ(X) = HX #R | N1I and ξ(Y ) = HY #R | N1I ,

but also, considering that X ∩ Y is a positive literal as well:

ξ(X ∩ Y ) = HX ∩ Y #R | N1I .

It should be intuitively pretty clear that ξ(X ∩ Y ) encodes both the constraints of ξ(X) and ξ(Y ). However,
the general idea that “conjunction” between signatures is translated by intersections stands on its own, as
the next lemmata will show.
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Signature Product. Let σ and σ′ be two signatures; then their product is another signature defined as
σ � σ′

/

= *g | ∇σ ∩∇σ′+, where

g

/

=
∣∣∣∣dom ∂σ ∪ dom ∂σ′ −→ ℘(R)

k 7−→ σ[k] ∩ σ′[k] .

Note that as a consequence, ∀k ∈ N1, (σ � σ′)[k] = σ[k] ∩ σ′[k].

Example: Let us take the two signatures σ = HX,Y # Z | N2I and ρ = HX ′ # Z ′ | N3I; then σ � ρ =
HX ∩X ′, Y ∩ Z ′ # Z ∩ Z ′ | N3I. ♦
Signature product is fairly well-behaved with respect to constrained words, and can be “broken down” and
replaced by the intersection of simpler constrained sets. The next lemma and its generalisation (3.3)[p11] show
this to be true of finite products, and this property will later be generalised to infinite products (Lem. 12[p11]).

Lemma 7 (Breaking Finite Products). For any signatures σ, ρ ∈ Σ, and any language Π, we have LΠ # σ � ρM =
LΠ # σM ∩ LΠ # ρM.

Proof. LΠ # σ � ρM is, by definition, the set of w ∈ LΠM such that

#w ∈ ∇σ ∩∇ρ ∧ ∀k ∈ domw, w(k) ∈ σ[k] ∩ ρ[k]
⇐⇒ #w ∈ ∇σ ∧ ∀k ∈ domw, w(k) ∈ σ[k]
∧ #w ∈ ∇ρ ∧ ∀k ∈ domw, w(k) ∈ ρ[k]
⇐⇒ w ∈ LΠ # σM ∧ w ∈ LΠ # ρM
⇐⇒ w ∈ LΠ # σM ∩ LΠ # ρM .

Thus LΠ # σ � ρM = LΠM ∩ LΠ # σM ∩ LΠ # ρM = LΠ # σM ∩ LΠ # ρM.

Lemma 8 (Conjunction). Provided that the subformulæ ξ(ϕ) and ξ(ψ) satisfy (3.1), taking ξ(ϕ ∧ ψ)

/

=
ξ(ϕ)� ξ(ψ) satisfies (3.1).

Proof. Straightforward using the previous lemma.

We shall generalise results on signature products to infinitary cases later on, to encode �ϕ. Meanwhile, let
us turn our attention to the strong and weak next operators. Let us consider a formula ϕ whose signature
is given by

ξ(ϕ) = HW,X, Y # Z | N2I ,

and propose plausible candidates for ξ
(
◦1ϕ

)
and ξ

(
•1ϕ

)
. Although we still lack all the formal tools to prove

it, after numerous similar examples it is easy to derive that

ϕ = W ∧ •1X ∧ ◦2Y ∧ ◦3�Z .

The lengths of the words w |= ◦1ϕ can therefore be enumerated. By the semantics of ◦1, if #w = 0 or #w = 1,
then w is automatically a model of ◦1ϕ. Suppose that #w > 2; then it must be the case that w2 |= ϕ. In
particular, because of the strong next this means that #w2 ∈ N2, in other words #w2 > 2; thus, since
#w2 = #w− 1, we have #w > 3. So the set of acceptable lengths is J0, 1K ∪N3 = N \ {2}. Now, as far as the
rewrite rules are concerned, the first rule, if it exists, can be anything; obviously the second one must live in
X, the third in Y , and all the subsequent rules must come from Z. So we have derived the following signature:

ξ
(
◦1ϕ

)
= HR,W,X, Y # Z | J0, 1K ∪ N3I .

It is clear that ξ
(
•1ϕ

)
will have the same core as ξ

(
◦1ϕ

)
, but a different support. Indeed in that case the length

0 and 1 are clearly not suitable, while the rest of the previous reasoning still holds. Thus we have immediately

ξ
(
•1ϕ

)
= HR,W,X, Y # Z | N3I .

The work done on this example is generalised in the next definitions, and this suffices to compute ξ
(
•1ϕ

)
and ξ

(
◦1ϕ

)
for all ϕ, as shown in the next lemma.

Arithmetic Overloading. We overload the operator + on the profile ℘(N)× N→ ℘(N) such that, for
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any S ∈ ℘(N) and n ∈ N, we have

S + n

/

= { k + n | k ∈ S } .

Right Shifts. Let σ ∈ Σ, m ∈ N and R1 = R, . . . , Rm = R; then we define the weak m-right shift of σ as

σ B m

/

= HR1, . . . ,Rm, ∂σ(1), . . . , ∂σ(#σ) # ∂σ(ω) | J0,mK ∪ (∇σ +m)I ,

while the strong m-right shift of σ is

σ I m

/

= HR1, . . . ,Rm, ∂σ(1), . . . , ∂σ(#σ) # ∂σ(ω) | (∇σ \ {0}) +mI .

The only point in those definitions that was not readily apparent in the above example is the ∇σ \ {0}
appearing in the support of the right shift. The reason for its introduction is best understood in the context
of a formula ϕ whose signature admits zero in its support; when behind a strong next of level zero (•0), the
only change in the support of the signature is the removal of the zero. The proofs of Lem. 9, 10 and 13[p12]
make use of immediate equations: for all m ∈ N and all k ∈ N1, if k 6 m, (σ I m)[k] = (σ B m)[k] = R and
if k > m, (σ I m)[k] = (σ B m)[k] = σ[k −m].

Lemma 9 (Weak Next). Provided that the signature of the subformula ξ(ϕ) satisfies (3.1), taking ξ(◦mϕ)

/

=
ξ(ϕ) B m satisfies (3.1).

Proof. We write σ = ξ(ϕ) and σm = ξ(ϕ) B m. Let w ∈ LΠM, then w |= ◦mϕ iff

1 +m /∈ domw ∨ w1+m |= ϕ ⇐⇒ #w ∈ J0,mK ∨ w1+m |= ϕ

⇐⇒ #w ∈ J0,mK ∨ (#w1+m ∈ ∇σ ∧ ∀k ∈ domw1+m, w1+m(k) ∈ σ[k])
⇐⇒ #w ∈ J0,mK ∨ (#w −m ∈ ∇σ ∧ ∀k ∈ J1 +m,#wK , w(k) ∈ σ[k −m])
⇐⇒ (#w ∈ J0,mK ∨ #w ∈ ∇σ +m) ∧ (∀k ∈ J1 +m,#wK , w(k) ∈ σm[k])
⇐⇒ #w ∈ ∇σm ∧ ∀k ∈ domw, w(k) ∈ σm[k] ⇐⇒ w ∈ LΠ # σmM .

Note that #w1+m = #w−m only holds because we can safely assume, by the left member of the disjunction,
that #w ∈ J0,mK, or in other words, #w > m.

Lemma 10 (Strong Next). Provided that the signature of the subformula ξ(ϕ) satisfies (3.1), taking ξ(•mϕ)

/

=
ξ(ϕ) I m satisfies (3.1).

A proof can be found in [6].
Now there only remains to deal with the last inductive case: the � operator. To this end, we recall Lem. 1[p4]:

�ϕ ⇐⇒
∞∧
m=0
◦mϕ .

By using previous results and explanations, one has “for free”:

ξ(�ϕ)

/

=
∞⊗
m=0

[
ξ(ϕ) B m

]
. (3.2)

This is exactly the approach which we shall follow, but there remains work to do in order to assign a precise
meaning to (3.2), prove its correctness with respect to (3.1), and derive a closed form of (3.2) in terms of
ξ(ϕ), so that we may actually use it in an algorithm. In order to do so, we must first establish the legitimacy
of using a finite extended notation

m⊗
k=l

σk

/

= σl � σl+1 � · · ·� σm

with the usual properties, which is provided by Remark 11.

Remark 11 (Extended Product Notation). The set of signatures Σ, equipped with the signature-product �,
forms a commutative monoid whose neutral element is ε.
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Proof. The associativity and commutativity of � stem directly from those of ∪ and ∩. The neutrality of
ε = H#R | NI stems from that of N (= ∇ε) for ∩ within ℘(N), of R (= ε[k] ,∀k) for ∩ within ℘(R), and of
∅ (its domain) for ∪.
All our previous results involving product behave as one would expect them to under extended notations;
in particular, Lemma 7[p9] instantly generalises to

LΠ #
n⊗
k=1

σkM =
n⋂
k=1

LΠ # σkM ∀σ1, . . . , σn ∈ Σ, n ∈ N , (3.3)

and it follows that Lemma 8[p9] becomes

ξ

(
n∧
k=1

ϕk

)
=

n⊗
k=1

ξ(ϕk) ∀ϕ1, . . . , ϕn ∈ A-LTL, n ∈ N . (3.4)

Infinite Products. This is still not enough, however, as (3.2) involves an infinite product, which is
customarily defined based on finite products as follows: the infinite product

⊗∞
k=l σk converges if and only

if the associated sequence of partial products (
⊗n

k=l σk)
n∈Nl

converges, and in that case
∞⊗
k=l

σk

/

= lim
n→∞

n⊗
k=l

σk .

This definition rests upon the introduction of suitable notions of convergence and limit for sequences of
signatures, to which we must now attend. Let ρ = (σn)n∈N be an infinite sequence of signatures. It is said
to be convergent if
(1) the sequence (∇σn)n∈N converges towards a limit ∇σ∞,
(2) for all k ∈ N1, the sequence (σn[k])n∈N converges towards a limit σ∞[k],
(3) the sequence of limits (σ∞[k])k∈N1 itself converges towards a limit σ∞[∞].
We call the sequence (σ∞[k])k∈N1 the limit core. It is not directly in the form of a bona fide signature core.
However, its co-domain being ℘(R), which is finite, there exists a rank N > 0 such that for all k > N ,
σ∞[k] = σ∞[∞], and thus, taking the smallest such N , we define the limit of ρ, which we denote by lim ρ
or limn→∞ σn, or even more simply by σ∞, as

lim
n→∞

σn
/

= Hσ∞[1] , . . . , σ∞[N ] # σ∞[∞] | ∇σ∞I .

Note that the core of the limit is equivalent (f) to the limit core, in the intuitive sense that they define the
same constrained words. Otherwise ρ is divergent, and its limit is left undefined.
Example: Taking Ri = R ∀i, we have limn→∞HR1, . . .Rn, X #R | J1, nKI = H#X | N1I . It is easy to build
artificial sequences that fail (1), (2) or (3). ♦
Without further ado, we can bring this notion of convergence to bear and further generalise (3.3) to infinitary
cases. This result will be central to the proof of correctness.
Lemma 12 (Breaking Infinite Products). For any language Π and any sequence (σn)n∈N of signatures such
that the infinite product

⊗∞
n=0 σn converges,

LΠ #
∞⊗
n=0

σnM =
∞⋂
n=0

LΠ # σnM .

(f) The meticulous reader will have noticed that, throughout this section, we have omitted to mention that signatures
are not unique, in the sense that for instance HX #R | N1I, HX,R #R | N1I and HX,R,R #R | N1I etcetera are all equally
valid choices for ξ(X). This slight ambiguity can easily be resolved by defining a notion of extensional equivalence between
signatures and working with representatives of the classes. We have chosen to eschew this discussion entirely in the main text,
as it is mostly a cosmetic consideration and would make the discussion more cumbersome. For future reference, extensional
equivalence can be defined as σ ≡ ρ ⇐⇒ ∇σ = ∇ρ ∧ ∀k ∈ N1, σ[k] = ρ[k], and has the following fundamental characterisation:
σ ≡ ρ ⇐⇒ ∀Π ⊆ T , ∀R, LΠ # σM = LΠ # ρM.
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Proof. Let ρm =
⊗m

n=0 σn, for m ∈ N, and ρ∞ = limm→∞ ρm. Let us compute the support of this limit

∇ρ∞ = lim
m→∞

∇ρm = lim
m→∞

∇

(
m⊗
n=0

σn

)
= lim
m→∞

m⋂
n=0
∇σn =

∞⋂
n=0
∇σn ,

and its limit core; let k ∈ N1 in

ρ∞[k] = lim
m→∞

ρm[k] = lim
m→∞

[( m⊗
n=0

σn

)
[k]
]

= lim
m→∞

m⋂
n=0

σn[k] =
∞⋂
n=0

σn[k] .

So, a word w ∈ LΠ # ρ∞M is a word of LΠM such that
#w ∈ ∇ρ∞ ∧ ∀k ∈ domw, w(k) ∈ ρ∞[k]

⇐⇒ #w ∈
⋂∞
n=0∇σn ∧ ∀k ∈ domw, w(k) ∈

⋂∞
n=0 σn[k]

⇐⇒
∧∞
n=0

[
#w ∈ ∇σn ∧ ∀k ∈ domw, w(k) ∈ σn[k]

]
⇐⇒

∧∞
n=0 w ∈ LΠ # σnM ⇐⇒ w ∈

⋂∞
n=0 LΠ # σnM .

We have just established that provided that the infinite product is convergent, we can break it, which will
be as essential to the correctness proof as finite product breaking (Lem. 7) was to the proof of Lem. 8. There
remains to prove that the computation of ξ(�ϕ) always terminates and yields a useable signature.
Lemma 13 (Shift-Product Convergence). Let (σn)n∈N be any sequence of signatures, and (ρn)n∈N its asso-
ciated sequence of partial products (

⊗n
i=0 σi)n∈N. Then (ρn)n∈N satisfies convergence criteria (1) and (2).

Furthermore, if σ is a given signature and σi = σ I i or σi = σ B i, for any i ∈ N, then criterion (3) is
satisfied as well, and the infinite product

⊗∞
n=0 σn converges.

A detailed proof can be found in [6].
We now have every tool we need to write down the computation of ξ(�ϕ).
Lemma 14 (Always). Provided that the signature of the subformula ξ(ϕ) satisfies (3.1), taking ξ(�ϕ)

/

=⊗∞
m=0

[
ξ(ϕ) B m

]
satisfies (3.1).

Proof. By application of Lem. 13, 12, 9[p10] and 1[p4].

Example: Let us compute the signatures of two common �-based formulæ; although we could use the
closed form given in the proof of Lemma 13 directly, we shall show a few manual steps in order to better
see how the result is built:

ξ(�X) =
⊗∞

m=0 [ξ(X) B m] =
⊗∞

m=0
[
HX #R | N1I B m

]
=
⊗∞

m=0
[
HR1, . . . ,Rm, X #R | J0,mK ∪ (N1 +m)I

]
=
⊗∞

m=0
[
HR1, . . . ,Rm, X #R | J0,mK ∪ N1+mI

]
=
⊗∞

m=0
[
HR1, . . . ,Rm, X #R | NI

]
= HX #X | NI ≡ H#X | NI .

Note that the closed form by itself yields HX #X | NI, which could in this case be manually simplified into
the “prettier” H#X | NI. These two signatures are obviously equivalent in the sense discussed in the footnote
page 11, and we shall henceforth carry out similar simplifications as matter of course. As for the result itself,
it is what was expected, as words of any length can satisfy �ϕ.

ξ
(
� •1X

)
=
⊗∞

m=0
[
ξ
(
•1X

)
B m

]
=
⊗∞

m=0
[
HR, X #R | N2I B m

]
=
⊗∞

m=0
[
HR1, . . . ,Rm,R, X #R | J0,mK ∪ N2+mI

]
= HR #X | {0} ∪ {+∞}I .

There again, the result should come as no surprise: the empty word satisfies � •1X vacuously, and as soon as
there is one transition, then there must be another, and another. . . hence a word satisfying � •1X can only
be either empty or infinite. ♦
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ξ(>)

/

= H#R | NI = ε ξ(⊥)

/

= H#∅ | ∅I
ξ(X)

/

= HX #R | N1I ξ(¬X)

/

= HR \X #R | NI
ξ(•mϕ)

/

= ξ(ϕ) I m ξ(◦mϕ)

/

= ξ(ϕ) B m

ξ(ϕ ∧ ψ)

/

= ξ(ϕ)� ξ(ψ) ξ(�ϕ)

/

=
∞⊗
m=0

[
ξ(ϕ) B m

]
Fig. 2: Building Signatures on A-LTL

Figure 2 and Thm. 15 summarise the eight main lemmata of this section.
Theorem 15 (Signatures). For any Π ⊆ T and any ϕ ∈ A-LTL, and given the map ξ(·) : A-LTL → Σ
inductively defined in Fig. 2, it holds that

LΠ # ξ(ϕ)M = {w ∈ LΠM | w |= ϕ } .

4. From Temporal Properties to Rewrite Propositions

The technical trek being now over, we come back to our overarching objective for the first problem, which
is to translate temporal properties into rewrite propositions, and prove the translation’s correctness. This
will be accomplished by means of translation rules that are used in a way similar to the rules of a classical
deduction system. Those rules are made up of translation blocks. We define the set B of translation blocks as

B

/

=
{
〈Π # σ  ϕ〉

∣∣ Π ⊆ T , σ ∈ Σ, ϕ ∈ LTL
}

,
where each translation block actually encodes a statement according to the following semantics:
〈Π # σ  ϕ〉

/

≡ ∀w ∈ LΠ # σM, w |= ϕ . (4.1)
An exact translation rule is a statement of the form

l 〈Π # σ  ϕ〉 P (σ, ϕ)
π

or 〈Π # σ  ϕ〉P (σ, ϕ) ↔ π ,

where the precondition P ∈ Σ × LTL → B is a predicate on signatures and formulæ (g), and π is a mixed
rewrite proposition, generated by the following grammar:

π := γ | γ ∧ γ | γ ∨ γ γ := ` = ∅ | X ⊆ X | ` ⊆ ` | Υ X ∈ ℘(R)
` := Π | T | X(`) | X−1(`) | X∗(`) Υ ∈ B .

This is the grammar for rewrite propositions given in Sec. 2.3[p5], with the added production γ := Υ, where
Υ is a translation block. An exact translation rule has the following semantics:

l 〈Π # σ  ϕ〉 P (σ, ϕ)
π

/

≡ P (σ, ϕ) =⇒
(
〈Π # σ  ϕ〉 ⇔ π

)
.

In one instance, we shall give an under-approximated translation rule, written and defined in a similar manner
as exact rules:

↑ 〈Π # σ  ϕ〉 P (σ, ϕ)
π

/

≡ P (σ, ϕ) =⇒
(
π ⇒ 〈Π # σ  ϕ〉

)
.

While over-approximated translation rules could obviously be defined as well, we have no use for them in the
context of this paper, and the focus is markedly on exact translations. In the following, the unqualified words
“translation”, “rule” etcetera will always refer to exact translations and rules. The modus operandi of the
(exact) translation of a formula ϕ ∈ R-LTL consists in starting with the initial translation block 〈Π # ε  ϕ〉,
and transforming it by successive application of valid exact translation rules until we have a pure rewrite

(g) that will be omitted entirely if it is a tautology – which is the case in most rules.
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proposition, that is to say until there are no translation blocks left at all. The resulting tree of rules, with
〈Π # ε  ϕ〉 at the root, will be called a derivation. By definition of the translation rules, this means that
the rewrite proposition on the leaves of the derivation is equivalent to the initial translation block, and by the
next theorem, that block is itself equivalent to the statement that the system R, given the initial language Π,
satisfies the property ϕ. In other words, it is an exact translation in the sense given in our problem statement,
Sec. 2.3[p5]. Complete examples of derivations are given in Sec. 6.1[p25].

Theorem 16 (Translation Satisfaction). 〈Π # ε  ϕ〉 ⇐⇒ R,Π |= ϕ.
Proof. Recall that LΠ # εM = LΠM by Lemma 2[p8];

〈Π # ε  ϕ〉 ⇐⇒ ∀w ∈ LΠ # εM, w |= ϕ ⇐⇒ ∀w ∈ LΠM, w |= ϕ

⇐⇒ R,Π |= ϕ .
Without further ado, we can begin to state and prove a few of the simplest translation rules. All rules given
hereafter are theorems. We start with the simplest possible rule that can be given.

〈Π # σ  >〉 ↔ > (>)

Proof. We have by definition 〈Π # σ  >〉 ⇔ ∀w ∈ LΠ # σM, w |= > ⇔ >.
Although simple, this rule proves useful later on. Dealing with ⊥ is both more delicate and less useful, so
we leave it for the end.

l 〈Π # σ  X ∧ Y 〉
〈Π # σ  X ∩ Y 〉

(∧X) l 〈Π # σ  X ∨ Y 〉
〈Π # σ  X ∪ Y 〉

(∨X)

Proof. This is a simple application of the semantics of ∧ and X:
∀w ∈ LΠ # σM, w |= X ∧ Y

⇐⇒ ∀w ∈ LΠ # σM, w 6= λ ∧ w(1) ∈ X ∧ w(1) ∈ Y
⇐⇒ ∀w ∈ LΠ # σM, w |= X ∩ Y .

Therefore by combining the empty and non-empty cases we obtain
∀w ∈ LΠ # σM, w |= X ∧ Y ⇐⇒ ∀w ∈ LΠ # σM, w |= X ∩ Y .

Rule (∨X)[p14] is proven in the exact same way.

l 〈Π # σ  ϕ ∧ ψ〉
〈Π # σ  ϕ〉 ∧ 〈Π # σ  ψ〉

(∧)

Proof. Conjunction distributes straightforwardly over the universal quantifier.
As pointed out in Sec. 3.1[p5], disjunction does not enjoy the same privileges, and all we can do in general
is state a crude under-approximated translation rule.

↑ 〈Π # σ  ϕ ∨ ψ〉
〈Π # σ  ϕ〉 ∨ 〈Π # σ  ψ〉

(∨↑)

Please note however that (∨↑) will not be used in this paper, it is given here for the sake of completeness.
Furthermore, there are some cases in which disjunction can be translated exactly; one such case appears
in rule (∨X), and two more useful cases will be introduced by the next few rules.
Recall that disjunction did not need to be handled in signatures at all (cf. Sec. 3.3[p7]), as this was best left
to a translation rule. Specifically, disjunction in antecedents is handled by the following rule:

l 〈Π # σ  [ϕ ∨ ϕ′]⇒ ψ〉
〈Π # σ  ϕ⇒ ψ〉 ∧ 〈Π # σ  ϕ′ ⇒ ψ〉

(∨⇒∧ )
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Proof. The result rests on the tautology
(
[ϕ ∨ ϕ′]⇒ ψ

)
⇔ (ϕ⇒ ψ) ∧ (ϕ′ ⇒ ψ). The detailed steps are

omitted.

Note that neither (∨⇒∧ ) nor similar rules based on tautologies – (∨X), (∨¬⇒) – are strictly necessary for the
translation. They are nevertheless well worth a mention because they point out both limits and common
modi operandi of the translation process. The next rule, called the rule of signature introduction, is essential
to any non-trivial derivation, and rests upon the definition of ξ(·) given in the previous section.

l 〈Π # σ  ϕ⇒ ψ〉 ϕ ∈ A-LTL
〈Π # σ � ξ(ϕ)  ψ〉

(⇒Σ)

Proof. We use the main property (3.1)[p8] of ξ(·) (cf. Theorem 15[p13]), as well as the (reverse) finite product-
breaking Lemma 7[p9].

∀w ∈ LΠ # σM, w |= (ϕ⇒ ψ) ⇐⇒ ∀w ∈ LΠ # σM, (w |= ϕ)⇒ (w |= ψ)
⇐⇒ ∀w ∈ LΠ # σM, w ∈ LΠ # ξ(ϕ)M⇒ w |= ψ ⇐⇒ ∀w ∈ LΠ # σM ∩ LΠ # ξ(ϕ)M, w |= ψ

⇐⇒ ∀w ∈ LΠ # σ � ξ(ϕ)M, w |= ψ .

The signature-introduction rule makes it possible to handle disjunction in some more cases, as the next rule
will show. Its proof rests on a tautology.

l 〈Π # σ  ϕ ∨ ψ〉 ∃ϕ ∈ A-LTL : ϕ⇔ ¬ϕ
〈Π # σ  ϕ⇒ ψ〉

(∨¬⇒)

While rule (∨¬⇒) is technically trivial, it has the merit of clearly showing the importance of the form in which
a temporal formula is given. The best form to use is any form that allows an exact translation —there may
be several.

We have now run out of translation rules that we can state and prove easily using only previously established
results and definitions. Let us see what weakness or strength of context mean as far as signatures are concerned,
by considering the least invasive operators that introduce a new context: the weak- and strong-next operators
of level zero, ◦0 and •0. If σ is the signature of some formula ϕ, then we have by definition of the weak and
strong right shifts and by Lem. 9[p10] and 10:

ξ
(
◦0ϕ

)
= *∂σ | {0} ∪ ∇σ + and ξ

(
•0ϕ

)
= *∂σ | ∇σ \ {0} + .

In other words, what the context really changes is whether or not 0 ∈ ∇σ. We shall refer to a signature σ as
weak if 0 ∈ ∇σ, and strong if 0 /∈ ∇σ. This terminology is consistent with the operators of the above equations.
We shall now argue that the mode of translation should mirror the quality of the signature in the current
translation block. That is to say, given a block 〈Π # σ  ϕ〉, the translation of ϕ should be strong if σ is
weak, and weak if σ is strong. Thus we shall transition from a strong translation mode (or “strong context”)
to a weak mode (or “weak context”) by “strengthening” the current translation block’s signature: if σ is a
signature, then ?σ

/

= *∂σ | ∇σ \ {0} + is its strengthening. Let us apply this reasoning on the atomic cases of
our translation: the literals ¬X and X. Translating ¬X is exactly like translating R \X in a weak context.

l 〈Π # σ  ¬X〉
〈Π # ?σ  R \X〉

(¬X)

Proof. The proof rests on the equality between the sets LΠ # ?σM and LΠ # σM#>0, which is justified by the
definition of LΠ # σM.

The case of the atom is actually more complicated, and we leave it for the very last. We now deal with the
translation of the weak next operator. The semantics suggests that, if the set of (1+m)-suffixes can be expressed
as a set of constrained maximal rewrite words LΠ′ # σ′M, then we shall simply need to ensure that those suffixes
satisfy ϕ. The initial language Π′ is immediately determined: (1 +m)-suffixes are obtained after m rewriting
steps from Π, performed according to σ. This is a very common pattern, and deserves a compact notation.

Signature Iteration. Let Π ⊆ T a language, and σ ∈ Σ a signature; then for n ∈ N we let Πn
σ

/

=
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σ[n]
(
σ[n− 1] (· · ·σ[1] (Π) · · ·)

)
be the n-iteration of the signature σ. More formally, it is defined recursively

such that Π0
σ

/

= Π and Πn+1
σ

/

= σ[n+ 1] (Πn
σ).

With this notation, we have the initial language Π′ = Πm
σ . As for the signature σ′, it is intuitively obtained

by an operation which is dual to the right shifts: on each step the leftmost constraints of σ are “consumed”
into the language. Naturally, we call this operation the left shift.

Arithmetic Overloading. We overload the operator − on the profile ℘(N)× N→ ℘(N) such that, for
any S ∈ ℘(N) and n ∈ N, we have

S − n

/

= { k − n | k ∈ S } ∩ N .

Shift Left. Let σ ∈ Σ, m ∈ N, then we define the m-left shift of σ as

σ C m

/

= H∂σ(m+ 1), . . . , ∂σ(#σ) # ∂σ(ω) | ∇σ −mI .

Note that we have, in a fashion dual to right shifts, the property that for allm ∈ N and all k ∈ N1, (σ C m)[k] =
σ[k +m]. However, this time there is no need to define weak and strong versions; instead, the strengthening star
will be used whenever needed. One could nevertheless write the strong left shift as σ J m

/

= ?(σ C m), as in [5].
Example: Let σ = HX,Y # Z | N2I; then σ J 1 = σ C 1 = HY # Z | N1I. ♦
Our earlier intuition about (1 + m)-suffixes can now be formalised into the next lemma; recall that by
definition of suffixes, w#w+1 = w#w+2 = w#w+3 = · · · = λ. It is therefore necessary to exclude too-short
words, otherwise the empty word would have to appear in LΠm

σ # σ C mM not only when a term of Πm
σ cannot

be rewritten, but also if any term of some Πn
σ, n < m, could not be rewritten.

Lemma 17 (Shifting Suffixes). Let σ be a signature and Π ⊆ T a language; then LΠm
σ # σ C mM =

{
wm+1∣∣∣ w ∈ LΠ # σM#>m

}
.

A detailed proof can be found in [6].
As announced, the translation rule is a forthright corollary of this lemma:

l 〈Π # σ  ◦mϕ〉
〈Πm

σ # ?(σ C m)  ϕ〉
(◦m)

Dealing with the strong next operator is not much more difficult, thanks to: w |= •mϕ ⇐⇒ #w > m ∧ w |=
◦mϕ. The only novelty here is the condition #w > m, which will be translated by excluding smaller lengths.

Lemma 18. Let σ be a signature and Π ⊆ T a language; then for any m ∈ N, it holds that LΠ # σM#m = ∅
iff m ∈ ∇σ =⇒ Πm

σ ⊆ R−1 (T ).

A detailed proof can be found in [6]. Then, by Lemma 18[p16], we have:

Corollary 19 (Length Rejection). Let S ∈ ℘(N), σ ∈ Σ and Π ⊆ T ; it holds that LΠ # σM#S = ∅ iff∧
m∈S∩∇σ Πm

σ ⊆ R−1 (T ) iff
(⋃

m∈S∩∇σ Πm
σ

)
⊆ R−1 (T ).

Given those results, the following translation can be proven:

l 〈Π # σ  •mϕ〉
〈Π # σ  ◦mϕ〉 ∧

∧
k∈J0,mK∩∇σ

Πk
σ ⊆ R−1 (T )

(•m)

The penultimate rules concern the � operator; the approach is quite similar to that of Sec. 3.3. We start
by writing

〈Π # σ  �ϕ〉 ⇔

〈
Π # σ 

∞∧
m=0
◦mϕ

〉
⇔

∞∧
m=0
〈Π # σ  ◦mϕ〉 ,
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and, after application of rule (◦m), we have

〈Π # σ  �ϕ〉 ⇔
∞∧
m=0

〈
Πm
σ # ?(σ C m)  ϕ

〉
,

but this falls short of a usable translation, at least in its current, infinite form. The usual intuition to overcome
this kind of infiniteness is to hope for some kind of fixed point to be reached. Unfortunately, this is not the
case here, since there is no reason in general to expect some h such that Πh

σ = Πh+1
σ . On the other hand,

it seems reasonable that the signature may stabilise at some point, that is to say we might find some h such
that ?(σ C h) = ?(σ C (h+ 1)), or more simply, h′ such that σ C h′ = σ C (h′ + 1).

Stability. A signature σ ∈ Σ is called left-stable, or simply stable, if it satisfies the following three, equivalent
conditions:
(1) σ C 1 = σ,
(2) ∀n ∈ N, σ C n = σ,
(3) #σ = 0 ∧ ∇σ ∈ {∅, {+∞} ,N,N }.
By definition of the left shift, it is immediate that (σ C n) C 1 = σ C (n + 1), and the first equivalence
(1) ⇔ (2) follows. The implication (3) ⇒ (1) is also a simple application of the definition. To obtain the
converse (1)⇒ (3), notice that if #σ > 0 then #σ C 1 = #σ−1 6= #σ, but if #σ = 0 then #σ C 1 = #σ = 0.
Similarly, we need to have
∇σ − 1 = ∇σ ⇐⇒ ∀n ∈ N, n ∈ ∇σ − 1⇔ n ∈ ∇σ

⇐⇒ ∀n ∈ N, n+ 1 ∈ ∇σ ⇔ n ∈ ∇σ .
Since ∞ + 1 = ∞, we can have either ∞ ∈ ∇σ or ∞ /∈ ∇σ; furthermore, if 0 ∈ ∇σ then ∇σ ∩ N = N, and
if 0 /∈ ∇σ then ∇σ ∩ N = ∅. All in all, there are only the four possibilities listed in (3).

A stable signature allows for an easy translation of �ϕ, which can be stated as the rule (� ∗). This rule, once
proven, will serve as a lemma for the proof of the more general (� }), which subsumes it in the translation
system.

l 〈Π # σ  �ϕ〉 σ is stable〈
σ[ω]∗(Π) # ?σ  ϕ

〉 (� ∗)

A small intermediary remark is required for a complete proof:
Remark 20 (Constrained Union). Let σ ∈ Σ, I ⊆ N, and for each i ∈ I, Πi ⊆ T . Then

⋃
i∈ILΠi # σM =

L
⋃
i∈I Πi # σM.

Proof. From the definition we immediately have
⋃
i∈ILΠiM = L

⋃
i∈I ΠiM. Likewise, by definition LΠ # σM =

{w ∈ LΠM | P (w, σ)}, where P (w, σ) is some predicate depending only on w and σ. We have
⋃
i∈ILΠi # σM =⋃

i∈I {w ∈ LΠiM | P (w, σ)} =
{
w ∈

⋃
n∈ILΠiM

∣∣ P (w, σ)
}

=
{
w ∈ L

⋃
n∈I ΠiM

∣∣ P (w, σ)
}

= L
⋃
n∈I Πi # σM.

Proof of rule (� ∗). Assume that σ is stable.
〈Π # σ  �ϕ〉

⇔
∧∞
m=0

〈
Πm
σ # ?(σ C m)  ϕ

〉
⇔
∧∞
m=0

〈
Πm
σ # ?σ  ϕ

〉
⇔∀m ∈ N, ∀w ∈ LΠm

σ # ?σM; w |= ϕ ⇔ ∀w ∈
⋃∞
m=0LΠm

σ # ?σM; w |= ϕ

⇔∀w ∈ L
⋃∞
m=0 Πm

σ # ?σM; w |= ϕ ⇔ ∀w ∈ L
⋃∞
m=0 σ[ω]m (Π) # ?σM; w |= ϕ

⇔∀w ∈ Lσ[ω]∗ (Π) # ?σM; w |= ϕ ⇔
〈
σ[ω]∗(Π) # ?σ  ϕ

〉
.

In the next paragraphs, we explore how to get a stable signature from an unstable one, and how to employ
that to effect the translation of �ϕ in the general case.

High Point. The high point of a signature σ ∈ Σ, denoted by }σ, is is defined according to either of the
following equivalent statements:
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(1) }σ

/

= min {h ∈ N | σ C h is stable },
(2) }σ

/

= min {h ∈ N#σ | ∇σ ⊇ Nh or ∇σ ∩ Nh = ∅ }.
The equivalence between those two definitions stems from the third characterisation of stability, because
the stability of σ C }σ entails #(σ C }σ) = 0, which implies }σ > #σ, and ∇(σ C }σ) = ∇σ − }σ ∈
{∅, {+∞} ,N,N }, hence ∇σ ⊇ N}σ or ∇σ ∩ N}σ = ∅. Note that since σ C 0 = σ, the high point gives a
fourth characterisation of stability – which is the most convenient one in practice – as σ is stable if and only
if }σ = 0. There remains, however, that not all signatures have a high point; consider the counterexamples
σ1 = H#X | { 2k | k ∈ N }I or σ2 = H#X | PI, where P is the set of prime numbers. We take the convention
that in those cases }σ

/

= +∞, and say that a signature σ is stabilisable if }σ ∈ N. It is fortunate that, while
all signatures of Σ may not be stabilisable, in practice this is the case for all the signatures we shall need
to deal with, as the next lemma will show.
Lemma 21 (Stability of ξ(·)). The signature of any formula ϕ ∈ A-LTL is stabilisable; in other words,
}ξ(ϕ) ∈ N, ∀ϕ ∈ A-LTL.
A detailed proof can be found in [6].
With this in place, the solution to a general translation of �ϕ is suggested by the second statement of
Lem. 1[p4]. The conjunction of weak-next operators needs only be unwound up to a certain, arbitrary rank,
and there always exists a rank beyond which the signature stabilises, i.e., beyond which translation is no
longer a problem. Hence we have the following complete rule, which supersedes the less general rule (� ∗)[p17]:

l 〈Π # σ  �ϕ〉 }σ ∈ N〈
Π # σ 

}σ−1∧
k=0
◦kϕ

〉
∧
〈
σ[ω]∗(Π}σ

σ ) # ? (σ C }σ)  ϕ
〉 (� })

Proof. A corollary of Lem. 1[p4]’s second statement and of rules (� ∗)[p17], (∧)[p14], (>)[p14] and (◦m)[p16].

Note that rule (>) is used when }σ = 0, in which case the conjunction
∧}σ−1
k=0 ◦kϕ is simply >. Unlike >, ⊥

is never introduced by the rules themselves, since we never have to deal with potentially empty disjunctions.
Also, termination can be enforced through other means (the atom ∅, for instance). Nevertheless, for the
sake of completeness, we give a sketch of what the translation rule would be like. In the following, the map
ξ−1(·) : Σ→ A-LTL acts as an inverse (up to equivalence) for our signature-builder ξ(·). More specifically,
it satisfies the conditions ξ

(
ξ−1(σ)

)
≡ σ and w |= ξ−1(ξ(ϕ))⇔ w |= ϕ.

l 〈Π # σ  ⊥〉
〈Π # ε  ξ−1(σ)〉 (⊥)

Proof. This rests on the first-order tautology ∀x, (P (x)⇒ ⊥)⇔ ∀x,¬P (x).
It should be noted that ξ−1(σ) does not necessarily yield a translatable formula, so using (⊥) brings no

advantage compared to preprocessing. Thus it remains best to remove ⊥s before the translation.
The very last case of this section is that of the atom X, the trickiest to translate. Let us recall two previous
results in the case σ = ε:
〈Π # ε  ¬X〉 ⇔ 〈Π # ?ε  R \X〉 (¬X)[p15], σ = ε

〈Π # ε  ¬X〉 ⇔ X(Π) = ∅ 1, Sec. 3.1[p5] .

The substitution of R \X for X in the right-hand sides of the above equivalences immediately yields the
following translation of the atom X in the case when σ = ?ε:
〈Π # ?ε  X〉 ⇔ [R \X](Π) = ∅ . (X?

ε )
Bearing in mind the first two cases of Sec. 3.1[p5], it is π2. As seen then, an additional condition was needed
to ensure existence of the transition: Π ⊆ R−1(T ). With the additional notions and notations introduced
since then, we can couch that by:

l 〈Π # ε  X〉
〈Π # ?ε  X〉 ∧ Π ⊆ R−1 (T ) . (Xε)
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A concrete way of interpreting the above rule is to say that it exchanges the presence of 0 in the support
of the signature for a statement rejecting the existence of 0-length maximal rewrite words. As for the “weak”
part of the translation, [R \X](Π) = ∅, it excludes all words of length 1 or more that do not start with a
rule of X. While this partition of lengths may appear artificial in this case, it becomes more clearly marked
in the next example. Let us consider the formula

ϕ = X ∧ •1Y ∧ •2Z =⇒ A .

The intuition under its translation is to generate the assertion that any maximal rewrite word which satisfies
the antecedent, but does not satisfy the consequent, cannot exist. What would such a word look like? Starting
with the initial language Π, it is obtained by successive applications of X, Y , and Z, followed by arbitrary
many other applications of any rule in R. Furthermore, its first rule is not in A. In other words, any word
built on Z (Y ([X \A](Π))) would satisfy those criteria. Thus we have the following translation:

π ≡ Z (Y ([X \A](Π))) = ∅ .

Notice that this excludes only the words of length 3 or more which are built according to the succession
X \A, Y , Z. It is perfectly possible to have, for instance a maximal word w = ρ of length 1, with ρ ∈ X \A
and t0 ∈ Π ρ−→ t1. While it may violate the consequent, w does not actually satisfy the antecedent: be-
cause of the strong next of level 2 •2, a length of at least 3 is required for that —in terms of support, we
have N3. Supposing now that we had to deal with ϕ′′ = X ∧ •1Y ∧ ◦2Z ⇒ A, then the translation would
be:π′′ ≡ Z (Y ([X \A](Π))) = ∅ ∧ Y ([X \A](Π)) ⊆ R−1(T ). At this point, the general method has become
clear: if, assuming ¬A for the first move, a length is in the support, and the words so built could be extended
into something that violates the antecedent, then reject it by enforcing rewritability. However, if no possible
extension of the words could violate the antecedent, then assert emptiness of its target language. Recalling
the discussion of stability made earlier, that is certainly the case if the signature stabilises onto ε. In order
to write in a compact way the assumption that the first transition is not by A, we overload the set difference
operator \ on the profile Σ× ℘(R)→ Σ such that, for any σ ∈ Σ and X ⊆ R, we have

σ \X

/

= σ � ξ(¬X) ≡ Hσ[1] \X,σ[2] , σ[3] , . . . , σ[min (#σ, 1)] # ∂σ(ω) | ∇σI .

We can now write the translation rule in the case where stabilisation is done on ε:

l 〈Π # σ  X〉 (σ \X) C } (σ \X) = ε

Π}(σ\X)
σ\X = ∅ ∧

}(σ\X)−1∧
k∈∇σ,k=0

Πk
σ\X ⊆ R

−1 (T )

(X})

Note that rules (X?
ε ) and (Xε) are in fact special cases of the above. The proof of this formula will be done

with the help of the following small lemma:

Lemma 22. Let σ ∈ Σ and h ∈ N such that σ C h = ε; then LΠ # σM#>h = ∅ iff Πh
σ = ∅.

Proof. It suffices to characterise that property in terms of h-suffixes:

LΠ # σM#>h = ∅ ⇐⇒
{
wh+1

∣∣∣ w ∈ LΠ # σM#>h
}

= ∅ .

Therefore, by Lem. 17[p16], we obtain LΠ # σM#>h = ∅ ⇔ LΠh
σ # σ C hM = ∅ ⇔ LΠh

σ # εM = ∅ ⇔ LΠh
σM = ∅ ⇔

Πh
σ = ∅.

Proof of rule (X}). By application of Lem. 7[p9] one has:

∀w ∈ LΠ # σM, w |= X ⇐⇒ ∀w ∈ LΠ # σM, w |=/ ¬X
⇐⇒ ∀w ∈ LΠ # σM, w /∈ LΠ # ξ(¬X)M ⇐⇒ LΠ # σM ∩ LΠ # ξ(¬X)M = ∅
⇐⇒ LΠ # σ � ξ(¬X)M = ∅ ⇐⇒ LΠ # σ \XM = ∅ .

It then becomes possible to reason on the length of the words; most of the work is done by invoking Lem. 22[p19]
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and Cor. 19[p16];

LΠ # σ \XM = ∅ ⇐⇒ ∀k ∈ N, LΠ # σ \XM#k = ∅

⇐⇒ LΠ # σ \XM#>}(σ\X) = ∅ ∧ LΠ # σ \XM#<}(σ\X) = ∅

⇐⇒ Π}(σ\X)
σ\X = ∅ ∧

∧k=}(σ\X)−1
k∈∇σ,k=0 Πk

σ\X ⊆ R
−1 (T ) .

Cases when the signature does not stabilise onto ε – which correspond to σ(ω)  R – require an approximated
approach to the same extent as a translation of ♦ does, and thus exceeds the scope of the present paper.
Complete examples of derivations using the rules of this section are given in Sec. 6.1[p25].

5. Generating a Positive Approximation Procedure

We now have the tools to translate the original verification problem into an equivalent rewrite proposition, for a
large gamut of temporal properties. The difference between the original undecidable problem statement in terms
of a system and a temporal property, and its reformulation as a rewrite proposition, is that the latter is much
more amenable to being transformed into a positive approximation procedure. The reader will have noticed
that, in the previous section, the focus rested entirely on the temporal property ϕ, while decidability and repre-
sentation of the languages involved by automata were ignored. In this section, we focus solely on those aspects.

5.1. A Simple Functional Algorithm

Our objective here is to translate a rewrite proposition π into a decision or positive approximation procedure δ
– we call this operation “procedure generation”. For the sake of clarity, we attribute a truth value to δ, which is
computable and conflated to the result of its execution, that is to say, such that δ is true if the execution of the
procedure generates a positive answer, and false if it does not answer. With this convention, we have δ ⇒ π; this
fits into our overall objective. Since π is at worst an under-approximated translation, we have in any case π =⇒
R,Π |= ϕ; thus a positive answer of δ is enough to conclude that the system satisfies the expected property.
More precisely, what will really be generated is not merely a single procedure δ, but a set of different theorems
of the form “under such assumptions on the rewrite system, δ decides (resp. positively approximates) π”.
The grammar of positive approximation procedures is quite similar to that of rewrite propositions in Sec. 2.3[p5].
Their semantics, although linked, are very different.

δ := γ | γ ∧ γ | γ ∨ γ γ := α = ∅ | α ⊆ α X ∈ ℘(R) .
α := Π | T | X(α) | X−1(α) | X?(α) | \α

In the context of a positive approximation procedure, the notation Π | T | X(`) | X−1(`) stands for an
arbitrary tree automaton that accepts this same language. Two kinds of automata are considered in this
paper: vanilla tree automata (TA) and tree automata with global equality constraints (TA=), but the method
can certainly be extended to involve other varieties. Consequently, in the context of positive approximation
procedures the cases ` = ∅ | ` ⊆ ` designate either decision or positive approximation procedures for emptiness
and inclusion (respectively) of the automata involved. Note that this overloading of notation does not introduce
any ambiguity, so long as the context is kept clear. This brings us to the cases X?(α) | \α, which are unique to
positive approximation procedures (h). The crux of the undecidability of π is the potential presence of X∗(`);
however there are well-known methods [10, 8] which, given a regular language `, compute a TA recognising
a regular over-approximation (that is to say, a regular superset) of X∗(`), which is what we denote by
X?(α). As for \α, which we call the “constraint relaxation of α”, it is simply the TA obtained by removing
all the equality constraints from the TA= α. It is immediate that L(\α) ⊇ L(α), thus we have a regular
over-approximation again —but a very crude one, this time. Relaxations will be avoided inasmuch as possible.
There are implicit sanity rules which must be respected in order for the generated δ to be a valid positive
approximation procedure. For instance, \α ⊆ β positively approximates L(α) ⊆ L(β), but α ⊆ \β does not.

(h) Note the different stars: ∗ in ` versus ? in α.
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Granted, that would be a silly way of positively approximating inclusion; it is merely an example to illustrate
that one has to be careful to use over-approximations only where it does not break the positive approximation.
Note that, as it depends in part upon the kinds of automata involved, it is best to deal with it separately,
rather than attempting to incorporate those rules in the grammar of δ.

The question central to the positive approximation phase is the nature of an automaton α built to accept
a language `: could it simply be a TA? must it be a TA=? must it be something even more expressive? We
can require of the user that the input Π be a regular tree language, and there is no question that T is regular
in any case. It is also known that X−1(T ) is accepted by a TA= [4, Prp. 5], as well as X(`), provided that
` is regular [4, Prp. 7]. Furthermore, properties of the rewrite systems can favourably influence the expressive
power required: for instance, if X is left-linear, then X−1(T ) is only a regular language. Moreover, there is
a wide variety of properties of a rewrite system X under which X∗(`) is actually regular, provided that `
itself is regular, see for instance [10]. Thus we can gain the following insights:

(1) The expressive power required to encode a language ` depends on a set of assumptions on the inductive
sub-parts of `. Each assumption belongs to one of three possible categories:

a. the expressive power of a sub-language ` (regular, TA=, or beyond),
b. linearity or other regularity-preserving properties of a TRS X,
c. presence of an over-approximation.

(2) Procedure generation needs to build that set of assumptions inductively.
(3) Actually, in theory different combinations of assumptions may be chosen, which lead to potentially different

procedures.

To illustrate this, let us consider ` = X(Y (Π)). The sub-language Π is regular by hypothesis; Y (Π) requires
a TA= (in general), thus ` cannot be expressed with a TA=. There are two possible paths: we can either
make an assumption, or introduce an approximation. For instance, if we assume that Y preserves regularity
through one-step rewriting (e.g. if it is linear), then Y (Π) is regular, and it follows that ` is accepted by
a TA=. Contrariwise, if we make no such assumption, we can still proceed by computing α+ = X(\Y (Π)),
which is also a TA=, but then we have L (α+) ⊇ `, and we need to keep in mind (i.e. add to our assumptions)
that we are using an over-approximation. When considering the procedure generation in an abstract way,
both those paths must be considered. Generally, the path which minimises the use of approximations and
positive approximations will be considered the most desirable.

We shall deal with the question of expressive power and the related problem of detecting approximations by
means of a simple inference system, referred to as “kind inference”, working recursively on an automaton α
built by generation from a rewrite language `. Let K

/

= {TA,TA= } be the set of all “kinds” of tree automata
considered in this paper. Now let P

/

= { left-lin, reg-pres, reg-pres∗ } be the set of possible properties of a rewrite
system, where left-lin stands for left-linear (regularity-preserving for backwards-rewriting of T ), reg-pres is
a place-holder for any property or conjunction of properties that entail preservation of regularity through
one-step forward rewriting (i.e. linear, etc), and reg-pres∗ is a similar place-holder for preservation of regularity
wrt. reachability (i.e. ground, right-linear & monadic, left-linear & semi-monadic, decreasing, etc [8]) (i). Then
we let A be the set of all possible assumptions, defined as

A

/

= {α : k | k ∈ K } ] {X : p | X ∈ ℘(R) , p ∈ P } ] {α : +++ } ] { γ : +++ } ,

where α is any automaton-expression and γ any test as defined by the grammar at the beginning of the
section. The four disjoint sets in this definition correspond to the four kinds of assumptions listed earlier. In
the case of a test γ, γ : +++ means that it is a positive approximation instead of an exact test. A kind-inference
rule is either simple or a chain of simple rules; a simple rule is of the form

Γ ` ∆ where Γ,∆ ∈ ℘(A) ,

and the meaning that, whenever all the assumptions within Γ hold, then so do all those within ∆. Regarding
notations, the sets’ braces will be omitted when writing the rules, and the comma is taken to mean set union:

(i) The practical implementation detects the specific properties that ensures this, which we abstract in this paper. Note that
this aspect will keep improving as new regularity-preserving classes of TRS are discovered and implemented.
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e.g. “Γ,Γ′, a” means “Γ ∪ Γ′ ∪ {a}”. A chain-rule is a C-separated sequence of simple rules,
Γ1 ` ∆1 C Γ2 ` ∆2 C . . . C Γn ` ∆n ,

such that Γi ⊆ Γi+1. A chain-rule behaves as one of the simple rules in the chain. Given the assumptions Γ,
the rule that applies is Γk ` ∆k, such that Γk ⊆ Γ, and either k = n or Γk+1 6⊆ Γ. Chain-rules are useful in
the common cases where making some more assumptions (on the left, e.g. about a rewrite system) prevents
us from having to make some other assumptions (e.g. that such language is over-approximated). Given a
set of rules S (simple and chains), and a set of assumptions Γ, one-step deduction is written Γ `1 ∆, and
holds iff there is in S either a simple rule Γ′ ` ∆′ such that Γ′ ⊆ Γ and ∆ ⊆ ∆′, or a chain-rule whose active
simple rule, given Γ, satisfies the same properties. A deduction, written Γ0 `∗ ∆, can be seen as extending
this by reflexivity and transitivity, and is defined as follows:

Γ0 `∗ ∆ iff ∆ ⊆ Γ0 ∨ ∃Γ1, . . . ,Γn : Γn ⊇ ∆ ∧ ∀k ∈ J1, nK ,
⋃k−1
i=0 Γi `1 Γk .

Let us now state the axioms of the kind-inference system. We start by the most immediate ones:
` Π : TA ` T : TA .

The first rule is a practical hypothesis. The second is trivially true. A third basic rule one might want to
state is α : TA ` α : TA=, which would reflect the fact that TA are technically degenerate cases of TA= where
the set of constraints is empty. However, this rule is not included in the system, as the assumption α : TA
is taken to mean that α recognises a tree language that is known to be regular, while α : TA= means that
α accepts a TA=-language that may be regular.

With this in mind, we move on to forward rewriting, for which there are two main cases in a chain-rule:
either the rewrite system preserves regularity, or it does not, in which case we use a TA= [4, Prp. 7]. Forward
rewriting cannot a priori be done on a TA=-language while staying within the allowed kinds of tree automata
(TA and TA=), therefore there is no rule in that case;

α : TA ` X(α) : TA= C α : TA, X : reg-pres ` X(α) : TA .
Backwards rewriting is similarly captured by a two-rules chain, hinging on left linearity [4, Prp. 5]:

` X−1(T ) : TA= C X : left-lin ` X−1(T ) : TA .

Note that the more general case X−1(`) is not handled, because the derivations of Sec. 4[p13] are such that
no translation rule can yield rewrite propositions that require it. Our first approximated case is constraint
relaxation, with two independent rules:

α : TA ` \α : TA α : TA= ` \α : TA, \α : +++ .
By the first rule, relaxing the constraints of a TA gives a TA —the same as before. This rule could be omitted
without damage. The second rule simply states that relaxing the constraints of a TA= results in a TA, and
introduces an over-approximation, in general (j). Note that the two rules are not in competition, as α : TA
and α : TA= are contradictory assumptions. The other approximated case is reachability over-approximation,
captured by a two-rules chain.

α : TA ` X?(α) : TA, X?(α) : +++ C α : TA, X : reg-pres∗ ` X?(α) : TA .
In the general case (first rule), the use of some over-approximation algorithm is required; however in the best
case (second rule), it can safely be assumed that no approximation has taken place: L (X?(α)) = X∗(`).

Lastly, we must not forget to encode the fact that over-approximation propagates through forward rewriting,
and contaminates tests:

α : +++ ` X(α) : +++, (α = ∅) : +++, (α ⊆ β) : +++ ,
which in turn contaminate the entire procedure, confining it to positive approximation:

γ : +++ ` (γ ∨ γ′) : +++, (γ ∧ γ′) : +++ .

(j) One might construct special instances of TA= where relaxation does not introduce any approximation, for instance if the
constraints involve states that are unreachable.



Positively Approximating LTL Properties over Rewrite Rules 23

Even without any prior approximation, an inclusion test must be a positive approximation procedure if its
right-hand side is a TA=, and cannot be a TA; in that case the usual method (α ∩ βc = ∅) cannot apply,
since TA= cannot be complemented [9].

β : TA= ` (α ⊆ β) : +++ .

This system is not complete (and no implementation of it can be), but the rules above are quite sufficient for
our immediate purposes. Indeed, we can now proceed to write the procedure generation itself. As mentioned
before, the generation is to be done inductively on the structure of the input rewrite proposition. More
precisely, given a rewrite proposition π, we want to obtain the set of all possible couples ∆, δ, such that
∆ ⊆ A and δ is the best positive approximation procedure under the assumptions ∆. By “the best” we mean
“minimising the use of approximations and positive approximations”. Such a couple ∆, δ can be regarded as
the theorem “If ∆, then δ positively approximates π.”. We use a recursive relation given as a set of rules.
Here is what a procedure-generation rule looks like in the most general case:

Γ # [`1 � ∆1, δ1; `2 � ∆2, δ2; . . . ] # P # π ⇒ ∆ # δ .

Let us start by the parts that are not optional: Γ ⊆ A is a set of assumptions, in practice only pertaining
to properties of the rewrite system, i.e. excluding kind and over-approximation assumptions; π is the rewrite
proposition (resp. sub-part of a rewrite proposition, such as a language ` or a comparison γ) being converted;
δ is the corresponding procedure (resp. sub-part of a procedure, such as an automaton α or simple comparison
γ), and ∆ is the set of assumptions under which δ is constructed. The optional parameter P is a predicate
which must be satisfied in order for the rule to apply; it is mostly used for kind inference statements. The
optional list of patterns of the form “`k � ∆k, δk” between brackets serves to name possible recursive calls;
the `k are supposed to be direct sub-components of π, and ∆k, δk corresponds to any one possible result of
the procedure generation for `k, under the assumptions Γ. The simplest rules need neither of those options:

Γ # Π⇒ Γ # Π Γ # T ⇒ Γ # T .

In both cases, the language on the left simply becomes the automaton on the right, and no assumption is
required or introduced. The case of backwards rewriting is also quite simple, though it requires two rules:

Γ #X−1(T )⇒ Γ #X−1(T ) Γ #X−1(T )⇒ Γ, X : left-lin #X−1(T ) .

In the first rule, no extra assumption is introduced, which means that the resulting automaton will need to be
a TA= in general. In the second rule, the introduction of the assumption X : left-lin means that it will only be
a TA. Depending on which rule is chosen, the subsequent derivation will yield different procedures (the first
choice may lead to constraints relaxations that are unneeded in the second, for instance), different assumptions,
and thus different theorems. This is a very common pattern; in fact, that situation occurs at every point of
the generation where the presence or absence of some properties of the rewrite system changes the required
kind of the automaton. To avoid writing all the different possible rules manually, we “factor” them by putting
such properties between angle-brackets: 〈p1, . . . , pn〉. A rule where this syntax appears is short for the 2n rules
obtained by choosing all possible subsets of those properties. Thus the last two rules can be written simply as:

Γ #X−1(T )⇒ Γ, 〈X : left-lin〉 #X−1(T ) .

Forward rewriting needs to be more general than the backwards case, thus the next rules are recursive:

Γ # [`� ∆, α] #∆ `∗ α : TA #X(`)⇒ Γ,∆, 〈X : reg-pres〉 #X(α)
Γ # [`� ∆, α] #∆ `∗ α : TA= #X(`)⇒ Γ,∆, 〈X : reg-pres〉 #X(\α) .

The first rule means that, given the assumptions Γ, and further assuming that the language `, under the same
assumptions Γ, can be converted into the automaton α, with the resulting assumptions ∆, and also assuming
that α can be a simple TA, the language X(`) can be represented by the automaton X(α), under the union of
our starting assumptions Γ, and the assumptions ∆ made during the generation of α. Furthermore, whether
or not X is regularity-preserving influences the kind of automaton obtained, and thus leads to different
branches. Note that explicitly returning the union Γ ∪∆, as was done here, is not strictly necessary, since
we take care that no rule ever removes any assumptions – they can only be added, – and thus ∆ ⊇ Γ.

The second rule deals with the case where the automaton α can only be a TA=; in that case, we need to
make an over-approximation by relaxing the constraints of α before forward rewriting. Then again, different
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branches must be explored depending on whether X is regularity-preserving. We have the same kind of
pattern for reachability:

Γ # [`� ∆, α] # ∆ `∗ α : TA #X∗(`)⇒ Γ,∆, 〈X : reg-pres∗〉 #X?(α)
Γ # [`� ∆, α] #∆ `∗ α : TA= #X∗(`)⇒ Γ,∆, 〈X : reg-pres∗〉 #X?(\α) .

Depending on whether X is regularity-preserving for reachability, X?(α) (resp. X?(\α)) will be exact or
over-approximated (resp. over- and twice-over–approximated). We are now done with the construction of
automata, and move on to the generation of tests γ, starting with inclusion.

Γ # [`� ∆, α; `′� ∆′, α′] # ∆′ 6`∗ α′ : +++ # ` ⊆ `′ ⇒ Γ,∆,∆′ # α ⊆ α′ .

Recall that if α′ : TA=, then (α ⊆ α′) : + will be deduced by the other rules regarding approximations. The
only other kind of simple test is emptiness testing:

Γ # [`� ∆, α] # ∆ `∗ α : TA ∨∆ `∗ α : TA= # ` = ∅⇒ Γ,∆ # α = ∅ .

This is the immediate case: an automaton α accepting ` is built, and regardless of whether α has constraints
or not, an emptiness test is run on it; the algorithmic complexity changes (ExpTime vs linear time), but
this is a decision procedure in both cases. There is another case, where it is possible to test emptiness of
a language without being able to build the corresponding automaton [4, Prp. 6], given by the next rule.

Γ # [`� ∆, α] # ∆ `∗ α : TA= #X(`) = ∅⇒ Γ,∆ #X(α) = ∅ .

In that case X(α) cannot be built, since it is not even known whether it is at all recognisable by a TA=. One
possibility, covered by previous rules, is to actually test X(\α) = ∅, which introduces an approximation; but in
that case it is a terrible idea, as X(`) = ∅ iff `∩R−1 (T ) = ∅, which is decidable thanks to TA= being closed
by intersection. The above rule reflects that fact, and “X(α) = ∅,” where α is a TA=, is taken to abstract the
above test. Note that no approximation will be deduced forX(α); in fact, the previous rules simply have nothing
to say about X(α), since it is not an automaton of any allowed kind, but merely a notation that only takes
meaning in the context of an emptiness test. Again, this could be reflected explicitly in the grammar, at the cost
of introducing new symbols. Lastly, let us emphasise that both paths (exact intersection-emptiness test and
constraint relaxation) will be explored by the system, and yield two different theorems. It is easy to discriminate
between the two, as only the assumptions generated by the second theorem will enable the deduction of
(X(α) = ∅) : +, and not the first. In a practical implementation, the best option is always chosen if this
special rule is applied with a higher priority than the more general forward-rewriting rules. Before concluding,
let us not forget the rules for conjunctions and disjunctions of tests, which are trivial given our convention
regarding the truth value of a positive approximation procedure, mentioned at the beginning of this section:

Γ # [γ � ∆, δ; γ′� ∆′, δ′] # γ ∧ γ′ ⇒ Γ,∆,∆′ # δ ∧ δ′

Γ # [γ � ∆, δ; γ′� ∆′, δ′] # γ ∨ γ′ ⇒ Γ,∆,∆′ # δ ∨ δ′ .

6. Examples & Discussion of Applicability

The question of whether the proposed verification chain is applicable in the real world rests on two separate
issues. The first, and most important, is whether the fragment of LTL which can be handled is actually
sufficiently large to describe relevant properties of systems. The second is whether the quality of the resulting
positive approximation procedures is likely to be acceptable. To address the first issue, we take a look at the
kinds of temporal patterns which can be translated, and attempt to quantify how useful they might be, based
on the comprehensive study done on a large number of specifications in [27]. The second issue is dependant
on both the depth of the temporal formula that needs to be checked, and the properties of the rewrite system
under consideration. Thus we look at some existing TRS models in the literature, specifically a model for
the Java Virtual Machine and Java bytecode in [2], a model for the Needham–Schroeder protocol in [1], and
a model for CCS specifications without renaming in [20]. As a prelude to these discussions, we give three
examples of derivations, using the temporal patterns of [4].
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6.1. Examples: Three Derivations

The three temporal properties below, while simple, are varied enough to test every main translation rule (k).
The first pattern, �(X ⇒ •1Y ), has already been illustrated in the introduction; its translation into a rewrite
proposition is obtained through a straight-forward, five-step derivation:

l
〈
Π # ε  �(X ⇒ •1Y )

〉
(� ∗)

l
〈
R∗(Π) # ?ε  X ⇒ •1Y

〉
(⇒Σ)

l
〈
R∗(Π) # HX #R | N1I  •1Y

〉
(•m)

l
〈
R∗(Π) # HX #R | N1I  ◦1Y

〉
(◦m)

l 〈X(R∗(Π)) # ?ε  Y 〉 (X?
ε )

[R \ Y ] (X(R∗(Π))) = ∅

∧X(R∗(Π)) ⊆ R−1 (T ) .

The result can then be optimised into [R \ Y ] (X(R∗(Π))) = ∅ ∧ X(R∗(Π)) ⊆ Y −1 (T ), which is the
expected final translation.
For the procedure generation, as there are quite a lot of choices, the resulting tree structure is hard to
represent on paper. Instead, we will effect the generation “from the inside out”, unwinding the recursivity
and keeping track of the branching possibilities manually. Let us deal with [R \ Y ] (X(R∗(Π))) = ∅ first;
we build the automaton accepting the language, step by step, and without making any a priori assumptions:
Γ = ∅. Our first step is the initial language: the only possibility is ∅ # Π⇒ ∅ # Π. The second step is R∗(Π),
which is handled by the rule for reachability:
∅ # [Π� ∅,Π] #∅ `∗ Π : TA #R∗(Π)⇒ 〈R : reg-pres∗〉 #R?(Π) .

Then either X is regularity-preserving for reachability or it is not. Third step: X(R∗(Π)), using the rule for
forward-rewriting. Let us explore the first branch, where 〈R : reg-pres∗〉 = ∅:
∅ # [R?(Π)� ∅,R?(Π)] #∅ `∗ R?(Π) : TA #X(R?(Π))

⇒ 〈X : reg-pres〉 #X(R?(Π)) .
Now, the second branch, where 〈R : reg-pres∗〉 = {R : reg-pres∗}, which we write ∆:
∅ # [R?(Π)� ∆,R?(Π)] # ∆ `∗ R?(Π) : TA #X(R?(Π))

⇒ ∆, 〈X : reg-pres〉 #X(R?(Π)) .
In both cases, this creates a new branch, depending on whether X is regularity-preserving for one step
rewriting, which one could summarise as
〈R : reg-pres∗, X : reg-pres〉 , X(R∗(Π)) .

On to the fourth step; this time, there are two possible rules that may apply. One could go on and compute the
automaton for [R \ Y ] (X(R∗(Π))), applying the forward-rewriting rule again; however, this is not possible in
all branches. To simplify, let us state that R : reg-pres∗ is moot at this point. On the other hand, X : reg-pres
influences the kind of automaton generated forX(R∗(Π)), thus we really just need to discriminate between ∆ ∈
〈R : reg-pres∗〉 and ∆ ∈ {X : reg-pres}∪〈R : reg-pres∗〉 – writing ∆ the assumptions accumulated in the current
branch. In the first case(s), we have ∆ `∗ X(R?(Π)) : TA=, which requires the use of a constraint relaxation:

∅ # [X(R∗(Π))� ∆, X(R?(Π))] # ∆ `∗ X(R?(Π)) : TA=#
[R \ Y ] (X(R∗(Π)))⇒ ∅,∆, 〈R \ Y : reg-pres〉 # [R \ Y ] (\X(R?(Π))) .

In the second case(s), we have ∆ `∗ X(R?(Π)) : TA, which obviates the need for such:
∅ # [X(R∗(Π))� ∆, X(R?(Π))] # ∆ `∗ X(R?(Π)) : TA#

[R \ Y ] (X(R∗(Π)))⇒ ∅,∆, 〈R \ Y : reg-pres〉 # [R \ Y ] (X(R?(Π))) .
Overall, this creates a third binary branching at this step; but there is more. There is another possibility:
one could use the special rule for testing emptiness without actually attempting to compute the automaton.

(k) The unused rules consist of the tautology-based simplifications, such as (∨⇒
∧ )[p14], (∨¬

⇒)[p15], (∧X)[p14], (∨X), etcetera.
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While this could in principle be done in every case, the rule only applies if ∆ `∗ X(R?(Π)) : TA= and we
have thus, for ∆ ∈ 〈R : reg-pres∗〉:

∅ # [X(R∗(Π))� ∆, X(R?(Π))] # ∆ `∗ X(R?(Π)) : TA=#
[R \ Y ] (X(R∗(Π))) = ∅⇒ ∆ # [R \ Y ] (X(R?(Π))) = ∅ .

Let us count the cases: three binary branching account for 23 = 8 cases. Furthermore, in two cases of the second
level, a different operation is permitted, which introduces no further branching, and concludes the generation
– as far as [R \ Y ] (X(R∗(Π))) = ∅ is concerned. Therefore there are in total 8 + 2 = 10 cases, of which 2
are concluded. Now, considering the first 8 cases, there remains to generate the emptiness test, with ∆ being
the set of assumptions generated so far, and writing ` = [R \ Y ] (X(R∗(Π))) and α = [R \ Y ] (X(R?(Π))),
we have in all cases

∅ # [`� ∆, α] # ∆ `∗ α : TA ∨∆ `∗ α : TA= # ` = ∅⇒ ∆ # α = ∅ .

Because of ∆ `∗ α : TA∨∆ `∗ α : TA=, the rule applies in all cases, and thus introduces no further branching
nor any new assumptions, preserving the final count of 10 cases. Discarding the paths that are strictly worse
than others, there remain only two relevant possibilities: 〈R : reg-pres∗〉. Indeed, the following steps can be
done without introducing any new approximations, for all X and Y . Thus what we have generated so far
is a decision procedure if R : reg-pres∗, and merely a positive approximation procedure otherwise. Note that
this analysis of the cases can easily be automated: for each generated set of assumptions ∆, complete ∆
by kind inference into ∆′ = ∆ ∪ { a | ∆ `∗ a }; only the cases where ∆′ is minimal wrt. inclusion have to
be considered. Let us move on to the second part of the rewrite proposition: X(R∗(Π)) ⊆ Y −1 (T ). The
automaton accepting X(R∗(Π)) is built exactly as before —again, there are four cases. Y −1 (T ) is built in
one step, and introduces a binary branching:

∅ # Y −1(T )⇒ ∅, 〈Y : left-lin〉 # Y −1(T ) .

Let us recall the rule for inclusion:

Γ # [`� ∆, α; `′� ∆′, α′] # ∆′ 6`∗ α′ : +++ # ` ⊆ `′ ⇒ Γ,∆,∆′ # α ⊆ α′ .

Fortunately, 〈Y : left-lin〉 6`∗ Y −1(T ) : +++, so the rule applies, preserving the two cases. If ∆′ = {Y : left-lin},
then ∆′ `∗ Y −1(T ) : TA, and the inclusion test is a positive approximation, as shown by kind inference; if
∆′ = ∅, then ∆′ `∗ Y −1(T ) : TA=, and it is a decision. Overall, we have a decision procedure if Y : left-lin
and R : reg-pres∗, and a positive approximation procedure otherwise. Formally, a total of 12 cases (theorems)
have been generated, though most are redundant. As the procedure generation is easy to understand, for
the remaining examples we shall focus on the translation into rewrite propositions.

Our second pattern, ¬Y ∧ �(•1Y ⇒ X), states that rules of Y may only appear after rules of X —it
features a typical case of an implication whose antecedent is in the future wrt. its consequent, and showcases
the generality of rule (X})[p19]. A four-steps derivation suffices:

l
〈
Π # ε  ¬Y ∧ �(•1Y ⇒ X)

〉
(∧)

l 〈Π # ε  ¬Y 〉 (¬X)

l 〈Π # ?ε  R \ Y 〉 (X?
ε )

Y (Π) = ∅

∧ l
〈
Π # ε  �(•1Y ⇒ X)

〉
(� ∗)

l
〈
R∗(Π) # ε  •1Y ⇒ X

〉
(⇒Σ)

l 〈R
∗(Π) # HR, Y #R | N2I  X〉 (X})
Y ([R \X] (R∗(Π))) = ∅ .

Procedure generation for the rewrite proposition, Y (Π) = ∅ ∧ Y ([R \X] (R∗(Π))) = ∅, is strictly simpler
than for the previous pattern. In this case, the property is decided if R : reg-pres∗, and positively approximated
otherwise.

The third property pattern, �(X ⇒ ◦1�¬Y ), states that any use of a rule in X precludes the subsequent
use of any rule in Y , for the remaining execution. Applying the translation rules as usual, we obtain the
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following derivation —where ` = X(R∗(Π)):

l
〈
Π # ε  �(X ⇒ ◦1�¬Y )

〉
(� ∗)

l
〈
R∗(Π) # ?ε  X ⇒ ◦1�¬Y

〉
(⇒Σ)

l
〈
R∗(Π) # HX #R | N1I  ◦1�¬Y

〉
(◦m)

l 〈` # ?ε  �¬Y 〉 (� })

l
〈
` # ?ε  ◦0¬Y

〉
(◦m)

l 〈` # ?ε  ¬Y 〉 (¬X)

l 〈` # ?ε  R \ Y 〉 (X
?
ε )

Y (X(R∗(Π))) = ∅

∧ l 〈R(`) # ε  �¬Y 〉 (� ∗)

l 〈R
∗(R(`)) # ?ε  ¬Y 〉 (¬X)

l 〈R
∗(R(`)) # ?ε  R \ Y 〉 (X?

ε )
Y (R∗(R(X(R∗(Π))))) = ∅ .

This, while correct, is not the best possible translation. Indeed, both statements overlap: overall they have the
form Y (`) = ∅ and Y (R+(`)) = ∅, which would gain to be combined into Y (R∗(`)) = ∅. This inefficiency
can be corrected by noticing that, since λ |= �ϕ, for all formulæ ϕ, it holds that

〈Π # σ  �ϕ〉 ⇐⇒ 〈Π # ?σ  �ϕ〉 .

Using this remark, the following nicer translation is obtained immediately; starting again at the fourth step,
we apply the “un-starred” version of (� ∗) instead of the overly general (� }):

l 〈X(R∗(Π)) # ?ε  �¬Y 〉 (� ∗)

l 〈R
∗(X(R∗(Π))) # ?ε  ¬Y 〉 (¬X)

l 〈R
∗(X(R∗(Π))) # ?ε  R \ Y 〉 (X?

ε )
Y (R∗(X(R∗(Π)))) = ∅ .

The resulting translation can be optimised into Y ([R \ Y ]∗(X([R \X]∗(Π)))) = ∅, though an easily automa-
tisable process – cf. [6] for a more detailed discussion of this. Ultimately, this property can be decided under
the assumptions R : reg-pres∗ (or, more precisely, R \X : reg-pres∗ and R \ Y : reg-pres∗), and X : reg-pres;
it is positively approximated otherwise.

6.2. Discussion of Applicability

The applicability of the method is dependent on which temporal formulæ are translatable into rewrite
propositions, and on the properties of the rewrite system.

6.2.1. Exactly Translatable Fragment

In this discussion, we shall not consider under-approximated translations at all, leaving all approximations
to the procedure. The fragment of LTL which can be translated exactly contains the formulæ generated by
the following ϕ:

ϕ := > | ⊥ | X | ¬X | ϕ ∧ ϕ | ψ ⇒ ϕ | •mϕ | ◦mϕ | �ϕ X ∈ ℘(R) , m ∈ N
ψ := > | ⊥ | X | ¬X | ψ ∨ ψ | ψ ∧ ψ | •mψ | ◦mψ | � •m>

This fragment is obtained from the translations rules, and the necessity that the signature of a formula �ϕ
appearing in an antecedent be stabilisable to ε, so as to satisfy rule (X})[p19]. The form � •m> is obtained
by application of the closed form of ξ(�ϕ) obtainable from the proof of Lem. 13[p12]. The next section shows
what we can do with this fragment.

6.2.2. Coverage of Temporal Specification Patterns

A survey was conducted in [27] on a large number (555) of specifications, from many different sources and
application domains. They were classified according to which pattern and scope [as in 28] each specification
was an occurrence of. In this section we examine briefly which of those pattern/scope combinations are
amenable to checking using our method – often assuming that the pattern atoms P , Q etcetera correspond to
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Scope

Pattern Global Before After Between Until Support 6

Absence 41 5 12 18 9 48%
Universality 110 1 5 2 1 96%
Existence 12 1 4 8 1 0%
Bound Existence 0 0 0 1 0 0%
Response 241 1 3 0 0 99%
Precedence 25 0 1 0 0 96%
Resp. Chain 8 0 0 0 0 0%
Prec. Chain 1 0 0 0 0 0%

Support 6 95% 0% 32% 0% 0% 83%

Table 1. Partially supported classes of patterns from survey [27]

simple formulæ – and tally the percentages of real-world cases (per the survey) each such combination accounts
for. Thus we obtain an upper-bound on the number of cases that fall in the exactly translatable fragment.

Absence patterns are supported for global scopes (�¬P ) and after scopes (�(Q ⇒ �¬P )) —the second
derivation of the previous section was an example of that. In both cases, P should follow the grammar
P := X | ¬X | P ∧ P | P ∨ P , so that it always boils down to an atom P ⊆ R after application of rules
(∧X)[p14], (∨X) and (¬X)[p15]. Note that the latter rule can be applied without caution because, in both
cases, P is under the scope of a � operator, which, as we have seen in the previous section, renders moot the
introduction of a star performed by rule (¬X). As for Q, it should be an A-LTL formula. The other scopes
(Before, Between, and Until) involve heavy uses of ♦ and U, and thus cannot be translated exactly —in fact
we cannot handle those scopes for any pattern.

Universality is very similar to Absence, and is handled for global scopes (�P ) and after scopes (�(Q⇒ �P )).
Again, Q should be A-LTL, but this time – thanks to the absence of negations – there is no particular
restriction on P .

Response is partially supported; global scopes are of the form �(P ⇒ ♦S) and after scopes of the form
�(Q⇒ �(P ⇒ ♦S)). Although both use a ♦ operator, this is not strictly needed in some practical cases. For
instance, the first formula of the previous section was a response pattern, but instead of stating that there
would eventually be a response, it was more specific and used a next operator to assert that the response would
take place on the next step. Thus the following response patterns are supported: �(P ⇒ ◦kS), �(P ⇒ •kS),
�(Q⇒ �(P ⇒ ◦kS)) and �(Q⇒ �(P ⇒ •kS)), for P,Q ∈ A-LTL, and without any specific restriction on S.

Similarly, Precedence is partially supported for global scopes: (�¬P ) ∨ (¬P US) is not directly translatable,
but whenever the exact number of steps is known, a pattern of the form �(•kP ⇒ S) suffices. Again,
P ∈ A-LTL, and S has no special restriction.

The remaining patterns (Existence, Bounded Existence, Response Chain and Precedence Chain) are not
translatable, and using explicit numbers of steps in those cases would likely be less useful in those cases than
it can be for Response and Precedence

Table 1 is a summary of the results of the survey in [27], that shows to which pattern/scope combination each
of the 555 specifications belongs. The combinations which are handled to some extent by an exact translation
into rewrite propositions have their numbers shown in bold face. For each pattern, the last cell of the line
gives the proportion of cases belonging to a supported (or partially supported) scope. For each scope, the last
cell of the column gives the proportion of cases belonging to a supported (or partially supported) pattern. The
cell at the bottom-right gives the proportion of cases which belong to a supported (or partially supported)
pattern/scope combination, out of all cases which corresponded to a recognisable pattern/scope (511).

It should be kept in mind that the numbers in boldface constitute upper bounds. For instance, it is unknown
how many of the global response patterns were formulated – or could have been reformulated – in terms
of exact steps, and that is the single largest category. Another way to interpret the table would be as saying
that 17% of patterns are clearly not translatable a priori. Nevertheless, the table shows that the patterns
and scopes that the method does target are actually the ones which are most likely to matter in practice.
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6.2.3. Properties of TRS Encodings

Even if the temporal property under consideration admits of an exact translation into rewrite proposition, there
is no guarantee that the corresponding positive approximation procedure will be fine-grained enough to be of
any use. How fine or coarse it is depends upon two factors: the depth of the temporal formula, and the properties
of the TRS. There are three main constructions which introduce approximations:R∗(`), Πn

σ, and ` ⊆ `′, where `′
is not regular. The first kind is almost always present and is well-handled by the existing litterature; the second
is avoided by right-linearity and the third by left-linearity. Let us look at some possible application domains:

Java Virtual Machine and Java bytecode semantics are modeled using a TRS in [2], and the translation
is implemented for automatic generation from Java bytecode in [19]. All rules are left-linear by construction,
and in practice, about 93% of the rules generated by Copster (l) are also right-linear. Thus we can expect
approximations of the second kind (a single non–right-linear rule suffices), but not of the third.

In [1], the encoding of the Needham–Schroeder protocol is neither right nor left-linear. It is possible to
restore linearity properties by abstracting some parts of the TRS – like agents and nonces, as done in the
paper – but whether it is better to approximate the TRS to avoid procedure approximations or vice-versa
is best determined empirically on a case-by-case basis.

A TRS encoding of CCS specifications without renaming is given in [20]. The rules of the natural encoding
are right-linear, but not left-linear. The authors then restore left-linearity in a larger – but finite – TRS.
Thus only the first kind of approximation may appear when using the final TRS.

7. Conclusions & Perspectives

The systematic generation of positive approximation procedures to determine whether a given term-rewriting
system satisfies a specific linear temporal logic property is addressed in two steps: first, an equivalent rewrite
proposition is generated; second, a positive approximation procedure is derived from the rewrite proposition.
The first step is achieved through a set of translation rules relying on the notion of signatures, or models of
the sub-formulæ appearing as antecedents of the general LTL formula. The second step is served by procedure
generation rules, whose main aim is to juggle with the expressive power required to encode the tree languages
involved, and to manage approximations. A survey of the existing literature indicates that the method
targets widely used patterns of (safety) properties, and that linearity properties which alleviate coarseness
in the positive approximation procedure are naturally met by existing TRS models in some problem domains
(e.g. bytecode, CCS semantics).

Future works should focus on extending the translatable fragment, in particular concerning operators of the “un-
til” family —though the methods we are currently considering require a more expressive variety of rewrite propo-
sitions, possibly involving altered versions of tree automata completion algorithms storing some trace history.

Given the current fragment, however, several more direct extensions are conceivable, as the first translation
step is agnostic regarding the details of the rewriting method – thus, provided we have suitable algorithms
to calculate the successor image and the set of reachable terms, we can use those in place of the classical
ones. For instance, recent works [29] provide a completion algorithm for the innermost rewriting strategy,
very suitable for the verification of call-by-value functional programs; with some additional work to get a
similar algorithm for one-step image, the second step could yield procedures for innermost rewriting instead
of classical rewriting. The same would be true of any other similar rewriting strategy. A related perspective is
the integration of equational theories. There already exist versions of tree automata completion parametrised
by equations [30], but in those works the equations are used to ensure the precision of the approximation,
not to perform reachability analysis modulo rewriting – though it probably can be adapted to such a task,
in which case the resulting algorithms could, again, be used in place of the classical ones in the second step.
Those perspectives are important for the eventual integration of the verification method in systems such
as Maude [21], Tom [31], etc, which mix rewriting with equations and strategies, and therefrom in more
specialised rewrite-based verification frameworks such as K, for instance via K-Maude [32].

(l) Figure on the FactoList2.java example.
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