
Algorithms for
Tree Automata with Constraints

Master Thesis, Université de Franche-Comté

LIFC-INRIA/CASSIS, project ACCESS

Student:

Vincent H

Supervisors:

Pierre-Cyrille H́

Olga K

July 4, 2010

2

Contents

Contents 1

List of Tables 4

List of Figures 5

I Some Preliminaries 7

1 Introduction and Motivation 8

2 Preliminaries 10

2.1 Tree Automata and extensions . 10

2.1.1 Bottom-up Nondeterministic Finite Tree Automata 10

Symbols, trees, terms and subterms 10

Tree automata . 12

2.1.2 Some extensions . 15

The class AWEDC (1981) . 16

Subclasses of AWEDC (≈ 1990) 16

TAGED (2006) . 17

2.2 Propositional logic and the SAT problem 19

2.3 Other concepts and notations . 20

II TAGEDs and the Membership Problem 26

3 Introduction 27

1

4 Article version 29

4.1 Propositional Encoding . 29

4.2 Complexity, implementation and experiments 34

5 Full version 38

5.1 Propositional encoding and proof 38

5.2 Some implementation details . 47

5.2.1 External tools and file formats 47

5.2.2 Notes about the implemented tool 48

6 Conclusion 53

III Generating Interesting TAGEDs Randomly 54

7 Introduction and related work 55

8 Generating random Tree Automata 57

8.1 First model: dense generation . 57

8.2 Second model: sparse generation 61

8.3 Third model: skeleton-driven generation 65

8.4 Fourth model: hybrid generation 71

9 Generating random Constraints 76

9.1 First model: dense generation . 76

9.2 Second model: sparse generation 78

9.3 Third model: logarithmic generation 81

10 Conclusion 83

IV TAGEDs and the Emptiness Problem 85

11 Introduction 86

12 Cleanup: hunting for spuriousness 88

12.1 A theory of spuriousness . 88

12.2 Algorithms and implementation 97

12.3 Experimental results . 102

12.4 Conclusion . 105

2

13 Signature quotienting 107

13.1 A first attempt . 108

13.2 As an over-approximation . 112

13.3 Implementations . 115

13.4 Conclusion . 117

14 Parenting relations 118

14.1 The theory . 121

14.2 Implementation and experiments 127

14.3 Conclusion . 129

15 A brutal algorithm 131

15.1 Algorithms and implementation 131

15.2 Conclusion . 137

16 Strategies and tactics 139

16.1 Outline of the algorithm . 140

16.2 Experiments . 143

16.3 Conclusion . 144

17 Conclusion 145

Bibliography 147

Index 153

Abstract / Résumé 156

3

List of Tables

2.1 Decision problems for tree automata 15

2.2 Decision problems for TAGED . 19

8.1 Probability of final leaf-rules . 65

8.2 Generation 3: size statistics . 70

8.3 Generation 4: size statistics . 73

14.1 Tests of “parenting relation” approach 130

4

List of Figures

4.1 CNF solving time, Laboratory example 36

4.2 CNF solving time, { f (t, t) | f ∈ Σ, t ∈ T (Σ) } 37

5.1 Input syntax of the tool (see 5.2[p50]) 49

5.2 Example LATEX output of the tool (see 5.1[p49]) 50

5.3 Size of the formula for { f (t, t) | f ∈ Σ, t ∈ T (Σ) } 51

8.1 x = p∆, y = pF, z = p∅, |Q| = { 3, 8, 10, 13, 15, 20 } 60

8.2 In-degree distribution, δ = 5 . 62

8.3 Probability of emptiness as a function of δ 63

8.4 Rough outline of Generation 4 algorithm 72

9.1 Theoretical |∆g|/|∆| ratio and experimental data at |Q| = 15 78

9.2 Probability Pd as a function of p0 80

9.3 Probability Pd as a function of pb 81

9.4 Very simple constraints generation algorithm 82

12.1 Reduction algorithm, from [CDG+07, page 25] 91

12.2 Gene2: Full cleanup factor (raw vs. cleanup) 103

12.3 Gene2: Cleanup factor (reduced vs. cleanup) 104

12.4 Gene4: Cleanup factor . 104

14.1 Three of sixteen ways to build q f 119

15.1 Pure brute-force emptiness . 131

15.2 Building romps . 133

15.3 Building the set T̂ (cf. conjecture 96[p134]) 136

15.4 Deciding =A-compatibility of a romp 137

5

15.5 Outline of the brutal algorithm . 138

16.1 Outline of the emptiness decision algorithm 141

6

Part I

Some Preliminaries

7

Chapter 1
Introduction and Motivation

Tree automata, created in the fifties in the context of circuit verification, are pow-

erful theoretical tools which have since foundmanyuseful applications in varied

areas of Computer Science, such as automated theorem proving and program

verification, term rewriting and XML schema languages, to name but a few. As

new applications were found for them, new needs arose which prompted the

development of several extensions of tree automata. A short but quite instruc-

tive survey of some of those extensions can be found in [FTT08a].

While these extensions have proved to be extremely useful from a theoretical

point of view, there are practical drawbacks to their improved expressiveness,

which lie mainly in the complexity and decidability of the associated decision

problems (membership, emptiness, universality etc. . .). Extended expressive-

ness comes with a cost: in some cases those problems become undecidable, and

those which are decidable fall for themost part in prohibitive classes of algorith-

mic complexity (NP-complete or worse). This makes it difficult to implement

any sufficiently efficient tool based on these formalisms.

The focus of my Master’s short project (a) and research internship (b) was on the

elaboration and study of efficient algorithms and approaches to two decision

problems associated with a recent extension of tree automata, called tree au-

tomata with global equality and disequality constraints (TAGEDs for short).

The short project and the internship concerned the uniform membership prob-

lem for TAGEDs and the emptiness problem for positive TAGEDs, respectively.

As announced , those are two difficult decision problems to tackle with any

efficiency, for they are respectively NP-complete and EXPTIME-complete.

(a) First semester of 2009 – 2010.
(b) Second semester 2009 – 2010; kindly supported by INRIA project ACCESS.

8

The document you are now reading is the report for both the project and the

internship. It is organised into four main parts.

In the first you will find – besides the present introduction – some reminders

about tree automata, a quick survey of some of their extensions, as well as

some information about the SAT problem and its practical uses. The purpose

of this first part is both to give a context to this work, and to set the vocabulary,

notations and concepts which will be used throughout this document.

The second part reports on the first semester’s project: We propose a SAT

encoding for the uniform membership problem, and discuss our preliminary

experimental results.

The third part discusses several methods for generating random TAGEDs to be

used for experimental evaluation of new algorithms. This work was done as

part of the internship, as the need for a systematic experimental approach arose.

The fourth part discusses the approaches and heuristics which I have developed

to decide emptiness and reduce the size of TAGEDs as much as possible. This was

the main theme of the internship.

9

Chapter 2
Preliminaries

In this chapter we present the necessary vocabulary, notations and concepts

whichwill be used throughout the document. References for this section include

notably [CDG+07, FTT08a].

2.1 Tree Automata and extensions

Before we begin, let us state that there are two kinds of “vanilla” tree automata:

bottom-up and top-down. Intuitively the first kind computes from the leaves

up and the second from the root down. In the non-deterministic case both

kinds have the same expressive power, however deterministic top-down tree

automata are strictly less powerful than their bottom-up counterparts. And

similarly to Finite State Machines, deterministic bottom-up tree automata are

just as expressive as their non-deterministic brothers.

In this document, we shall only deal with the bottom-up variety, in the most

general, non-deterministic, case. So whenever we write “tree automata”, we

mean “bottom-up non-deterministic tree automata”.

2.1.1 Bottom-up Nondeterministic Finite Tree Automata

Symbols, trees, terms and subterms

Before speaking of “tree automata”, let us start by defining the notions of

“tree”, and that of “term”. We shall see that those two notions can be con-

sidered equivalent in the context which interests us, and so we will confuse

them in the remainder of the document. Let Σ be a finite set of symbols, and

10

let arity : Σ → N be the arity function. Intuitively, this function associates to

a symbol f ∈ Σ the number of “arguments” which it may take. We denote

Σn =
{
f ∈ Σ | arity(f) = n

}
the set of all symbols of arity n, called “n-ary sym-

bols”, and ArΣ = { k ∈ N | Σk , ∅ } the set of all arities for which there exists at

least a symbol in Σ. Whenever it is convenient, we shall denote f/n a symbol

f ∈ Σn. It is assumed that the set of “constants” Σ0 is non-empty. The couple

(Σ, arity) forms a “ranked alphabet”. We will most often refer simply to the

“ranked alphabet Σ” and omit the explicit mention of arity. We denote by T (Σ)
the set of “ground terms” or more simply “terms”, over the ranked alphabet Σ.

It is defined as the smallest set such that

1. Σ0 ⊆ T (Σ) and

2. for any n > 1 if t1, . . . , tn ∈ T (Σ) then f (t1, . . . , tn) ∈ T (Σ), for any f ∈ Σn.

A set of words S is said to be “prefix-closed” if it is such that for any w ∈ S,

all prefixes of w are also in S. A tree over a set of labels L is a mapping from a

prefix-closed set S ⊆ N∗ into L. Let t ∈ T (Σ); it can be seen as a tree by defining

the set of “positions” Pos(t) inductively as follows:

1. Pos(t) = { ε } if t ∈ Σ0

2. Pos
(
f (t1, . . . , tn)

)
=
{
ε
}
∪
{
i.α | i ∈ ~1, n� and α ∈ Pos(ti)

}
otherwise.

Then t is a mapping from Pos(t) to Σ, such that leaves map to Σ0 and nodes map

to symbols of corresponding arity. As announced above, we will from now on

confuse those two notions: for instance for any term t ∈ T (Σ) and any α ∈ Pos(t),
t(α) is the symbol at position α in the term t. Note that then Pos(t) and dom(t)

are two different notations for the same object, but in the context of trees wewill

systematically prefer the former notation. There remains to define the notion of

“subterm” (or “subtree”). Let t ∈ T (Σ) and α ∈ Pos(t), we denote t|α the subterm
of t at position α, which is defined as follows:

1. Pos(t|α) =
{
β | α.β ∈ Pos(t) }

2. for any β ∈ Pos(t|α), t|α (β) = t(α.β).

We denote by u E t the fact that u is a subterm of t,ie. there exists α ∈ Pos(t) such
that u = t|α. The relation E is a partial order on T (Σ). The same notation is

used between positions: for two positions α, β ∈ Pos(t), we say that “α is under

11

β” and note α E β the fact that β is a prefix (a) of α. We define the induced strict

order in the usual way, ie. x ⊳ y ⇐⇒ x E y and x , y, regardless of whether x

and y are terms or positions. On some limited occasions, we will need a more

precise evaluation of the degree to which one term is below another, and to this

purpose we will denote α En β (resp. α ⊳n β) the fact that α E β (resp. α ⊳ β)

and |α| − |β| = n, for n ∈ N (resp. n ∈ N∗). Note that α E0 β ⇐⇒ α = β and

for all n > 1, α ⊳n β ⇐⇒ α En β. In the vernacular, α ⊳1 β means that α is a

direct child of β, α ⊳2 β means that α is a grand-child of β and so on. We have

obviously E=
⋃

n∈N En and ⊳=
⋃

n∈N∗ ⊳n.

Terms are quite often represented graphically. For instance

t
def
= f

f a
a

g a
b

represents the term t = f (f (a, a), g(a, b)), with a ∈ Σ0 and f ∈ Σ2. If we add the

positions of Pos(t) as subscripts we get

t
def
= fε

f1
a11
a12

g2
a21
b22

.

Then we see that we have clearly, for instance t(1) = f and t|2 = g a
b
.

Tree automata

Before introducing tree automata formally, let us just state that they can be

seen as an extension of finite state machines, which the reader is assumed to be

familiar with. Indeed, a word can be seen as a term: let us take for instance the

word w = abc. Then one can take the ranked alphabet Σ = { a/1, b/1, c/1, #/0 } and
build the corresponding unary term tw = a(b(c(#))). Tree automata have the same

expressiveness over unary terms as finite state machines have over words. The

difference is that they recognise tree languages instead of just word languages,

which makes them much more general.

A “non-deterministic finite tree automaton” (NFTA) over a ranked alphabet Σ

is a tupleA = (Σ,Q, F,∆) where

(a)Note that this is the reverse notation from that taken in [FTT08b], which may be confusing

to some readers. The advantage of choosing this notation the way we have done it is that the
symbol “E” remains consistent with respect to terms and positions, ie. for all α, β ∈ Pos(t), we

have α E β =⇒ t|α E t|β.

12

⋄ Σ is the ranked alphabet

⋄ Q is a set of states, whichwewill see as constant symbols. Of course, states

and standard symbols must not mix: Σ∩Q = ∅. The setT (Σ ∪Q) is called

the “set of configurations”.

⋄ F ⊆ Q is the subset of “final” states

⋄ ∆ is a set of transition rules.

The rules of ∆ define a “ground rewrite system” on T (Σ ∪Q). They are of the

form

f
(
q1, . . . , qn

)→ q with q, q1, . . . , qn ∈ Q and f ∈ Σn.

Thus, a tree automaton over Σ runs on ground terms over Σ, starting with the

leaves. Indeed, rules for leaves are of the form a → q, and can be considered

“initial”. The reader will have noticed that no set of initial states has been

defined. . . We denote→∆ the rewriting relation, called “move relation” induced

by ∆ over T (Σ ∪Q), and→∗
∆
its transitive reflexive closure. A term t ∈ T (Σ) is

“accepted” byA if and only if there exists a final state q f ∈ F such that t→∗
∆
q f .

The “recognised tree language Lng (A)” ofA is the set of all accepted terms:

Lng (A)
def
=
{
t ∈ T (Σ) | ∃q f ∈ F : t→∗∆ q f

}
.

Or one can equivalently use the alternative definitions

Lng (A, q) def
=
{
t ∈ T (Σ) | t→∗∆ q

}
and Lng (A)

def
=
⋃

q f∈F
Lng

(
A, q f

)
.

Note that the move relation, such as we have defined it, destroys the term t until

only one state is left. In order to keep track of the moves which led to this result,

that is to say, of the states the different subterms evaluated to, another notion is

needed. We call “run of A on t” a mapping ρ : Pos(t) → Q (in other words, a

tree) compatible with the rules of ∆. That is to say, for every position α ∈ Pos(t),
if t(α) = f ∈ Σn, ρ (α) = q and ∀i ∈ ~1, n� : ρ(α.i) = qi, then there must exist some

rule f (q1, . . . , qn) → q ∈ ∆. A run ρ is said to be “accepting” or “successful” if

ρ(ε) ∈ F. It follows that a term t ∈ T (Σ) is accepted by A if and only if there

exists a successful run ρ ofA on t. This is the definition which we will use most

throughout this document.

Let us take a very classical example:

A def
=
(
Σ = { ∧,∨/2,¬/1, 0, 1/0 } , Q =

{
q0, q1

}
, F =

{
q1
}
,∆
)

13

where the transition rules correspond closely to the usual rules of propositional

logic:

∆ =
{
b→ qb, ∧(qb, qb′)→ qb∧b′, ∨(qb, qb′)→ qb∨b′ , ¬(qb)→ q¬b | b, b′ ∈ { 0, 1 }

}
.

For instance, ∧(q0, q1)→ q0 ∈ ∆. Then if we consider the following term t

∧

¬

∧

0 1

∨

0 ¬

0

it can be rewritten with the help of the transition rules:

∧

¬

∧

0 1

∨

0 ¬

0

→∗
∆ ∧

¬

∧

q0 q1

∨

q0 ¬

q0

→∗
∆ ∧

¬

q0

∨

q0 q1

→∗
∆ ∧

q1 q1

→∆ q1

Note that each of the three first transformations above make use of several rules

at once, as it would have been somewhat tedious to separate each and every

step. Here is a breakdown of the rules which where used at each step of the

transformation:

1. 0→ q0, 1→ q1 ∈ ∆

2. ∧(q0, q1)→ q0,¬(q0)→ q1 ∈ ∆

3. ¬(q0)→ q1,∨(q0, q1)→ q1 ∈ ∆

4. ∧(q1, q1)→ q1 ∈ ∆

This lengthy transformation t→∗
∆
q1 can also be summarised more conveniently

by the run ρ:

14

ρ = ε ∧ q1

1 ¬ q1

11 ∧ q0

111 0 q0 112 1 q1

2 ∨ q1

21 0 q0 22 ¬ q1

221 0 q0

Since ρ(ε) = q1 ∈ F, the term t is accepted byA. Of course,A recognises all true

propositional formulæ, coded as trees.

Before moving on to extensions of tree automata, let us give in table 2.1[p15]
a survey of common decision problems and their complexity, in both non-

deterministic and deterministic cases, and state some closure properties.

Decision Problem NFTA DFTA

Emptiness Linear time Linear time

Equivalence EXPTIME-complete O(‖A1‖ × ‖A2‖)
Finiteness Polynomial Polynomial

Inclusion EXPTIME-complete EXPTIME-complete

Intersection non-emptiness EXPTIME-complete EXPTIME-complete

Membership ALOGTIME-complete O(‖t‖)
Singleton set Polynomial Polynomial

Uniform Membership O(‖t‖ × ‖A‖) O(‖t‖ + ‖A‖)
Universality EXPTIME-complete Polynomial

Table 2.1 — Decision problems for tree automata

Theorem 1 (Closure properties of tree automata). The class of recognisable tree

languages is closed under union, under complementation, and under intersection.

2.1.2 Some extensions

An aspect which is lacking in vanilla tree automata is testing equality and

enforcing difference of some subterms. For instance, the language { f (t, t) | f ∈
Σ, t ∈ T (Σ) } is non-regular, meaning that there is no tree automaton which

recognises it. The same goes for { f (t, t′) | f ∈ Σ, t, t′ ∈ T (Σ) : t , t′ }. Many

extensions to tree automata have been proposed over the years to deal with such

15

constraints, the challenge being to add enough expressiveness to solvewhatever

problem was at hand, while preserving reasonable decidability and complexity,

good closure properties etc. . . Two different approaches have been taken: either

by considering local constraints, comparing only “relative” subterms, or by

using global constraints, which allow comparison of arbitrary subterms.

In this section, which is very strongly inspired by [FTT08a], we will quickly go

over some of these extensions.

The class AWEDC (1981)

The class AWEDC (short for Tree Automata With Equality and Difference Con-

straints) was first introduced by Max Dauchet and Jocelyne Mongy in Mongy’s

PhD thesis. Equality and difference constraints can be specified between any

subterms. Transition rules are of the form:

f (q1, q2, q3)→1.3=2, 1.2,1.3 q.

Then the rule only applies when, letting α be the position of the current term

t, we have t|α.1.3 = t|α.2 and t|α.1.2 , t|α.1.3. This class is quite expressive and has

good closure properties, unfortunately emptiness is undecidable.

Subclasses of AWEDC (≈ 1990)

About ten years later, driven by new motivation in fields such as term rewrit-

ing, new subclasses of AWEDC were introduced. One of them is very simple:

Automata With Constraints Between Brothers restricts AWEDC to constraints

between immediate siblings. So for instance this rule

f (q1, q2, q3)→1.3=2, 1.2,1.3 q.

is not allowed anymore while this one

f (q1, q2, q3)→1=2, 1,3 q.

would still be. Thanks to this restriction emptiness becomes decidable, although

it remains EXPTIME-complete in the case of non-deterministic automata.

The second class, called “reduction automata”, involves ordering the states of

Q and applying a transition rule

f (q1, . . . , qn)→ϕ q where ϕ is an AWEDC constraint

only if q is strictly smaller than each qi. This time emptiness is decidable (effi-

ciently) in the deterministic case, but not in the non-deterministic one.

16

TAGED (2006)

Until now, the extensions whichwe havementioned only used local constraints,

that is to say, constraints between related subterms. There exist other classes

which use global constraints, which apply between arbitrary subterms. Themost

recent addition to this family is the class TAGED: Tree Automata with Global

Equality and Disequality Constraints, which were introduced in Emmanuel

Filiot’s PhD thesis [Fil08] and in the article [FTT08b].

Definition 2 (TAGED). A TAGED is a tupleA = (Σ,Q, F,∆,=A,,A), where

⋄ (Σ,Q, F,∆) is a tree automaton

⋄ =A is a reflexive symmetric binary relation on a subset of Q

⋄ ,A is an irreflexive and symmetric binary relation on Q. Note that in our

work, we have dealt with a slightly more general case, where ,A is not

necessarily irreflexive.

A TAGEDA is said to be positive if ,A is empty and negative if =A is empty.

There is also a special subclass of TAGEDs which will interest us when we study

the emptiness problem:

Definition 3 (Identity relation). For any set S, we let idS be the identity relation

on S, that is to say: idS = { (x, x) | x ∈ S }.

Definition 4 (Diagonal TAGED). A TAGED A = (Σ,Q, F,∆,=A,,A) is said to be

diagonal if =A⊆ idQ.

The notion of run is subject to a new constraint: it must be compatible with the

equality and disequality constraints:

Definition 5 (Compatibility with the global constraints). A run ρ is compatible

with the equality constraint =A if

∀α, β ∈ Pos(t) : ρ(α) =A ρ(β) =⇒ t|α = t|β .

In the same way, ρ is compatible with the disequality constraint ,A if

∀α, β ∈ Pos(t) : ρ(α) ,A ρ(β) =⇒ t|α , t|β .

If ,A is not assumed to be irreflexive, this last definition must be extended into

∀α, β ∈ Pos(t) : α , β ∧ ρ(α) ,A ρ(β) =⇒ t|α , t|β .

17

Every other notion remains unchanged compared to vanilla tree automata. It is

clear that TAGEDs are at least as expressive as the later, since they coincide exactly

when =A and ,A are both empty. They are in fact strictly more expressive, since

they can recognise languages which vanilla tree automata cannot, such as the

aforementioned { f (t, t) | f ∈ Σ, t ∈ T (Σ) } and { f (t, t′) | f ∈ Σ, t, t′ ∈ T (Σ) :

t , t′ }. Let us convince ourselves that this is the case with the following,

very classical example: the very simple positive TAGED A below recognises the

language { f (t, t) | f ∈ Σ, t ∈ T (Σ) }. Note that this is a running example which

the reader will meet again in section 4.1[p30], in the slides and probably in most

works discussing TAGEDs.

A def
=
(
Σ =
{
a, f
}
, Q =

{
q, q̂, q f

}
, F =

{
q f

}
, ∆, q̂ =A q̂, q̂ ,A q f

)
,

where ∆
def
=
{
f (̂q, q̂)→ q f , f (q, q)→ q, f (q, q)→ q̂, a→ q, a→ q̂,

}

To see how this works, consider the two terms below, and their runs for the

underlying tree automaton. Both have accepting runs, since q f if a final state,

and are therefore in the language of the underlying tree automaton. The run

over the first term has two instances of q̂ at positions 1 and 2, both over subterms

structurally equal to f (a, a). In other words we have t|1 = t|2 = f (a, a). This term

t is therefore compatible with the equality constraint q̂ =A q̂ and it follows that

the first term is accepted by theA. On the other hand, in the case of the second

term t′ we also have two instances of q̂, but this time, one is over the subterm

t′|1 = f (a, a) while the other is over t′|2 = a. And because of this, we have

t′|1 , t′|2 which violates the equality constraint q̂ =A q̂, and t′ is rejected by the

TAGEDA.

t= f

f

a a

f

a a

→∗
∆ f qf

f q̂

a q a q

f q̂

a q a q

vs. t’= f

f

a a

a

→∗
∆ f qf

f q̂

a q a q

a q̂

Decidability and complexity of several decision problems are given in table

2.2[p19]. In the table, TAGED+ and TAGED- stand for positive and negative TAGEDs,

respectively.

Theorem 6 (Closure properties of TAGEDs). The class of languages recognisable by

TAGEDs is closed under union, and under intersection. It is not closed under comple-

mentation.

18

Decision Problem TAGED complexity

Emptiness, TAGED+ EXPTIME-complete

Emptiness, TAGED- NEXPTIME

Finiteness, TAGED+, =A⊆ idQ O(‖A‖ × |Q|2)
Finiteness, TAGED+ EXPTIME

Membership NP-complete

Universality Undecidable

Table 2.2 — Decision problems for TAGED

2.2 Propositional logic and the SAT problem

In this section we give some very basic elements of propositional logic and

present the SAT problem. References for this section include [GL07].

Classical propositional (or boolean) logic is the simplest of all logics. We let A

be an infinite set of “atoms”, or “propositional variables” and build “formulæ”

using only the basic logical connectors ∧(and), ∨(or), ¬(not), =⇒ (implication).

The symbols ⊤(or 1) and ⊥(or 0) are also used to denote true and false, respec-

tively. For instance, if we let A,B,C,D ∈ A, then ϕ = ¬D ∧ (⊥ ∧ A ∧ ⊤) ∧ (⊥ ∧
B ∨ ¬⊥) ∨ C is a propositional formula. A truth value is associated to formulæ

in the obvious way. A “literal” is either an atom A or its negation ¬A.
In this document, or more precisely in the proofs of our formulæ, wewill mainly

make use of three notions:

Definition 7 (Free Variables). Le ϕ be a propositional formula. Then we call

“free variables ofϕ”, and denote FreeVars
(
ϕ
)
, the propositional variableswhich

appear in the formula ϕ. More formally,

FreeVars (⊤/⊥) = ∅
FreeVars (A) = {A } , for A ∈ A

FreeVars
(¬ϕ) = FreeVars

(
ϕ
)

FreeVars
(
ϕ[∧/ ∨ /⇒]ψ

)
= FreeVars

(
ϕ
) ∪ FreeVars

(
ψ
)
.

Definition 8 (Conjunctive Normal Form). A formula is in Conjunctive Normal

Form (CNF) if it is a conjunction of disjunctions of literals and contains only

¬,∧ or ∨. Any formula can be put into CNF (that is to say, transformed into an

equivalent formula which is in CNF) by applying basic logic rules.

Definition 9 (Valuation, Interpretation, Environment). We call Valuation, Inter-

pretation or Environment a mapping I : A → { 0, 1 }, which associates a truth

19

value (0 or 1) to each atom. An interpretation I satisfies, or models, a proposi-

tional formula ϕ if ϕ is true for the interpretation I of the variables. We denote

I |= ϕ the fact that I models ϕ, and I |=/ ϕ the fact that it does not.

Since the truth value of a propositional formula only depends on its free vari-

ables, a common abuse of this notation is to denote J |= ϕwhen J is only a partial

function whose domain includes FreeVars
(
ϕ
)
, and such that any extension I of

J to the whole of Amodels ϕ.

The SAT Problem (or Boolean satisfiability problem) consists in determining

whether, for a given formula ϕ, there exists a valuation I which satisfies it. It

is the first known NP-complete decision problem. Before it was proven to be

so by Cook in 1971, the notion of NP-completeness did not even exist. Since

then, a tremendous amount of research went into creating highly optimised

heuristics for solving this problem, and into implementing them efficiently in

so-called “SAT solvers”. Let us just mention two among them, whichwe used in

our experiments: picoSAT and MiniSAT2. Those efforts were successful enough

that modern SAT solvers are generally capable of dealing with huge formulæ in

reasonable time.

Since any NP-complete decision problem can be (polynomially) encoded into

an instance of the SAT problem, encoding a newNP-complete problem into SAT

proved to be a viable means of solving it efficiently. Instead of spending much

time determining and implementing specific heuristics for each new problem,

this method leverages all the work done on SAT solvers in almost forty years.

This idea was first introduced in [CBRZ01], where it was used in the context of

bounded model checking.

2.3 Other concepts and notations

In this last section we introduce the odd notations and concepts which do not

fit well anywhere else.

Definition 10 (Size of a TAGED or Tree Automaton). Let A = (Σ,Q, F,∆,=A,,A)

be a TAGED; in the case A is a vanilla tree automaton we will treat it as a TAGED

all the same in the obvious way: A = (Σ,Q, F,∆,∅,∅). The size ofA is denoted

‖A‖ and defined as:

‖A‖ def
= |Q| + 2 ·

(
|=A| + |,A|

)
+
∑

f (p1,...,pn)→q∈∆

(
arity(f) + 2

)
.

20

Definition 11 (Domain of a relation). Let ⋖ ⊆ S2 be a relation over a set S; then

its domain dom (⋖) is defined as follows:

dom (⋖)
def
=
{
x ∈ S | ∃y ∈ S : x ⋖ y or y ⋖ x

}

Definition 12 (Strict partial order). Let ⋖ ⊆ S2 be a relation over a set S; then it

is a strict partial order if it satisfies the following properties, for any x, y, z ∈ S:

1. Asymmetry: for any x, y ∈ S, if x ⋖ y then y ⋖/ x.

2. Irreflexivity: for any x ∈ S, x ⋖/ x.

3. Transitivity: for any x, y, z ∈ S: if x ⋖ y and y ⋖ z then x ⋖ z.

Notational conventions: I have strived to keep more or less uniform notations

throughout this document. This paragraph gives the general guidelines which

have been followed more or less closely.

⋄ Automata are generally denotedA,A′, B,. . .

⋄ Closures of a relation R are denoted R+ for the transitive closure of R and

R∗ for its reflexive and transitive closure.

⋄ Definitions use the symbol
def
= whenever appropriate

⋄ Positions in a term t (ie. elements of Pos(t)) are denoted α and β

⋄ Propositional formulæ are denoted ϕ and ψ. The specific formulæ which

we introduce use capital Greek letters

⋄ Quotient sets are denoted S/∼, where S is a set and ∼ is an equivalence

relation on S (or on a subset of S, in which case we silently use that subset

in place of S). We denote [x]∼, or [x] for short, the ∼-equivalence class of

x ∈ S.

⋄ References to distant elements include the page number as a subscript: for

instance “section 5.1[p38]” refers to “section 5.1, page 38”

⋄ Runs are denoted ρ and romps (used principally in chapter 15[p131]) are

denoted ̺

⋄ States are denoted p and q

21

⋄ Symbols (elements of Σ) are denoted a, b, c, . . . when they are constant,

f , g, . . . when they are not, and σwhen arity is completely unknown (b).

⋄ Terms are denoted t, t′ and subterms u, v, . . .

⋄ Valuations are denoted I and J (and in one occasion,V).

⋄ We shall sometimes speak of the “arity of a rule”, and write arity(r), for

r = f (p1, . . . , pn) → q, which we shall take to mean arity(f). For any tree t

(whatever its labels), we shall also occasionally speak of its arity to mean

that of its root symbol,ie. arity(t) = arity(t(ε)).

OCaml code: The sections concerning algorithms and implementations quote

some OCaml code. I have written for the occasion a small program which allows

a form of literate programming, mixing standard LATEX and OCaml program code.

Besides standard lexical highlighting, the program also uses special symbols as

a replacement for the ASCII equivalent, for instance real arrows instead of ->

and λ instead of the fun of anonymous functions. The example code which

follows shows this at work.

1 L This is a LATEX comment inside the .ml file M

2 (*(*$ This is a \LaTeX\ comment inside the \texttt{.ml} file *)*)

3

4

LThe little snippets of code below showmost of the few standard OCaml constructions

which are rendered with special symbols (built-in aliases; see below) M

5

6 (*let lambda_expression x = fun n -> 2*n + n , x*.x +. x*)

7 let lambda_expression x = λn → 2×n + n , x×.x +. x

8

9 (*let (a_match : ’a list list * ’b -> ’a list * ’b) =

10 function a::l,x -> a,x | _,x -> [],x*)

11 let (a_match : α list list × β → α list × β) =

12 λ a::l,x → a,x | ⊥,x → ∅,x

13

14 (*let quantifiers x f lst set set’ = lst <> [] && x <= 10 && x >= 0

15 && List.mem x lst && List.for_all f lst

16 && List.exists f lst && Set.subset set set’

17 || Set.equal (Set.union set (Set.inter set’ set)) Set.empty

18 || not (Set.is_empty Set.empty)*)

(b) Though in many cases I have also used f , g, . . . in that manner.

22

19 let quantifiers x f lst set set’ = lst , ∅ ∧ x 6 10 ∧ x > 0

20 ∧ L.∈ x lst ∧ L.∀ f lst

21 ∧ L.∃ f lst ∧ Set.⊆ set set’

22 ∨ Set.= (Set.∪ set (Set.∩ set’ set)) Set.∅

23 ∨ ¬(Set.∅? Set.∅)

24

25 L There are also a few non-standard constructions which I use, defined below M

26

27 L Function composition operator: Standard f ◦ g notation. M

28 (*let (%) f g x = f (g x)*)

29 let (◦) f g x = f (g x)

30

31

L Arguments to the right: this low-precedence operator is a syntactic short-

cut to avoid LISP-like parentheses creep M

32 (*let (@@) f x = f x*)

33 let (~) f x = f x

34

35 let example f g h x y = f ~ g x ~ h y (* = f (g x (h y)) *)

36

37

L List union: this concatenates two lists without any respect for the order of

their elements. It is faster than standard concatenation, and typically used

on lists which represent sets, hence the notation M

38 (*let (@<) = List.rev_append*)

39 let (∪) = L.rev_append

40

41

L Indexes: Some identifiers will automatically be displayed with subscripts

M

42 (*let x_1 = x_10 + b_i + k_A*)

43 let x1 = x10 + bi + kA

44

45

L Aliases: The program makes is possible to declare aliases on the fly for a

given Caml identifier. This has been used in the algorithms to obtain a degree

of coherence between program notations andmathematical notations. Some

aliases have been mentionned in the previous paragraphs, but it would be

tedious to list all of them. Here we present user-defined aliases. M

46 (*(*#alias:ta:alsTA*) (* note: \alsTA = LaTeX command *)

47 (*#alias:qi:alsQI*) (* idem *)

48 let a_tree_automaton = ta

49 let f_of_qis = List.map f qi*)

50 let a_tree_automaton = A

23

51 let f_of_qis = L.map f [q1, . . . , qn]

52

53

LMasking and sectioning: There is some codewhich is necessary in practice

but utterly uninteresting to read: debug code, for instance. This code can

be masked by special markup and will not appear at all in the listings. This

supplements the markup which generates TEX files from sections of code

files, and helps bridge the gap between terse pseudo-code and practical

programming. M

54 (*let some_function rho =

55 (*$*) debug_out "Entering some_function..." (*$*)

56 let pi = 3.1415 in 2*pi*rho *)

57 let some_function ρ =

58 let π = 3.1415 in 2×π×ρ

59

60

OCaml code: XSet functor: During development of the prototypes, I havewritten

and used an extension of OCaml’s standard library’s Set.Make functor, called

XSet. The documentation for XSet-specific operations follows. Note that the

ASCII identifier is used in the signature line even if there is a LATEX alias for

it, since those aliases are “module-aliases”: they are only replaced when they

qualify an upper-case identifier.

61 val of_list: elt list → t

62 L "Mod.of_list [x1, . . . , xn]" yields the set { x1, . . . , xn }. M

63

64 val map_to_list: (elt → α) → t → α list

65

L "Mod.mapL f { x1, . . . , xn }" yields a list ℓ =
[
y1, . . . , yn

]
such that for all k ∈

~1, n� : yk = f (xk). M

66

67 val push : elt → t ref → unit

68 L "Mod.←֓ x Sr" adds the element x to the set reference: Sr := Sr ∪ { x }. M

69

70 val push_ : elt list → t ref → unit

71

L "Mod.←֓ + [x1, . . . , xn] S
r" adds the elements of the list [x1, . . . , xn] to the set

reference: Sr := Sr ∪ { x1, . . . , xn }. M

72

73 val pop : elt → t ref → unit

74 L "Mod.pop x Sr" removes the element x from the set reference: Sr := Sr \ { x }. M

75

24

76 val inter_: t list → t

77 L "Mod.∩+ [S1, . . . , Sn]" yields the set ∩n
k=1

Sk. M

78

79 val union_: t list → t

80 L "Mod.∪+ [S1, . . . , Sn]" yields the set ∪n
k=1

Sk. M

81

82 val mem_ : elt list → t → bool

83 L "Mod.∈+ [x1, . . . , xn] S" returns true if and only if for all k ∈ ~1, n� : xk ∈ S. M

84

85 val add_ : elt list → t → t

86 L "Mod.add+ [x1, . . . , xn] S" yields the set S ∪ { x1, . . . , xn }. M

87

88 val iteri : (int → elt → unit) → t → unit

89

L "Mod.iteri f s" applies f in turn to all elements of s. The elements of s are

presented to f in increasing order with respect to the ordering over the type

of the elements. Furthermore, f accepts the rank of each element as its first

argument, starting from zero. M

90

91 val iter2 : (elt → elt → unit) → t → t → unit

92

L "Mod.iter2 f s s′" applies f in turn to all elements of s and s′: equivalent to

f x1 x
′
1
; . . . ; f xn x

′
n. The elements of the sets are presented to f in increasing

order with respect to the ordering over the type of the elements. M

93

94 val endo: (elt → elt) → t → t

95 L "Mod.endo f { x1, . . . , xn }" yields the set
{
f (x1), . . . , f (xn)

}
. M

96

97 val filter_to_list : (elt → bool) → t → elt list

98

L "Mod.filter_to_list P { x1, . . . , xn }" yields the sub-list ℓ of [x1, . . . , xn] such

that for any x ∈ ℓ : P(x) is true. M

99

100 val remove_: elt list → t → t

101 L "Mod.remove_ [x1, . . . , xn] S" yields the set S \ { x1, . . . , xn }. M

102

103 val product_to_list : t list → elt list list

104

L "Mod.
∏

L [S1, . . . , Sn]" yields a list representation of the cartesian product∏
=
∏n

k=1 Sk where any π ∈
∏

is represented as the list [x1, . . . , xn] where

xk ∈ Sk for any k ∈ ~1, n�. So it yields a list of
∏n

k=1 |Sk| lists of n elements

each. M

105

106

25

Part II

TAGEDs and the Membership

Problem

26

Chapter 3
Introduction

This part reports on the first semester’s short project.

Update: As part of the second’s semester internship, I have presented this

material at the workshop CSTVA 2010 - 2nd Workshop on Constraints in Soft-

ware Testing, Verification and Analysis, held the 10th of April 2010, in Paris,

France. The slides are available online, both on the workshop’s home page

http://www.st.cs.uni-saarland.de/cstva10 and on my own website.

Let us state the project’s objective in some detail:

Objective: Find a reasonably efficient algorithm to solve the TAGED member-

ship decision problem. As indicated in table 2.2[p19], this problem is NP-

complete.

Suggested approach: Use a SAT encoding. See section 2.2[p19] for more infor-

mation. As stated in the introduction, this suggestion has been followed.

Not-so optional objective: Implement the proposed solution and determine

through experimental results whether it is viable. Since the objective is

to find a practical approach to tackle this computationally hard problem,

practical tests seem mandatory.

More formally, our main objective is, given an arbitrary TAGED

A = (Σ,∆,Q, F,=A,,A)

and a term t ∈ T (Σ), to build a propositional logic formula ϕ satisfiable if and

only if t ∈ Lng (A).

The reader can find two different but complementary accounts of the suggested

27

http://www.st.cs.uni-saarland.de/cstva10

SAT encoding: the “article version” in section 4.1[p29], and the “report/proof/full

version” in section5.1[p38]. The former is themost concise andup-to-date version,

and arguably the most readable, but gives absolutely no proof. The latter aims

at being complete, and offers proofs of correctness for each formula.

As for the experimental results, a concise account is given in section 4.2[p34], and

additional remarks are made in section 5.2[p47].

Note that a complete formula example is given in figure 5.2[p50].

28

Chapter 4
Article version

This chapter presents the “article version” of my report. As part of my project,

I co-wrote an article with my supervisors, the subject of which was essentially

the same as that of the project itself. The parts which I wrote – plus some minor

changes by my supervisors – are reproduced in sections 4.1[p29] and 4.2[p34].

The reader should note two practical details:

⋄ Section 4.1was, for themost part, written after section 5.1[p38]. It is therefore

more up-to-date, and its explanations are likely to be clearer. Still, there

are some parts which are common to both versions.

⋄ There are some minor differences of exposition between the “article ver-

sion” in this report and the “article version” in the article. Since I could

not decide which way was clearer I chose to include both: whenever the

article differs from what is given here, the “article’s article version” has

been included as a footnote.

⋄ Section 5.2[p47] gives some experimental results and implementation details

whichwere not covered in the article (section 4.2), mainly forwant of space,

or because they were out of its scope.

4.1 Propositional Encoding

This section presents our propositional encoding of the membership problem,

andwe informally justify it step by step. We shall also illustrate our sub-formulæ

as we go along by instantiating them on a small example. For this purpose we

29

will use the following TAGEDA and term t:

A def
=
(
Σ =
{
a, f
}
, Q =

{
q, q̂, q f

}
, F =

{
q f

}
, ∆, q̂ =A q̂, q̂ ,A q f

)
,

where ∆
def
=
{
f (̂q, q̂)→ q f , f (q, q)→ q, f (q, q)→ q̂, a→ q, a→ q̂,

}

t
def
= f t2ǫ

f t1
1

at0
11

at0
12

f t12
at0
21

at0
22

This small TAGED accepts { f (t, t) | f ∈ Σ, t ∈ T (Σ) }, which is a classical non-

regular language. Here ,A is redundant and used purely for illustrative pur-

poses. In the term, subscripts are positions and superscripts are unique refer-

ences to the structure of subterms. For instance t1 corresponds to f (a, a), which

appears at positions 1 and 2.

Let us go back quickly over the conditions which must be satisfied in order

for our term t to be accepted by A: First, we need a run ρ for the underlying

tree automaton A′ = (Σ,∆,Q, F). Second, we need ρ to be successful for A′.
Third, it must satisfy the global constraints ofA. We shall encode each of these

constraints separately, starting with the least restrictive: we must have a run ρ.

So what is a run? First off, it is a relation between a position and a state. So

the building blocks of our formula will be variables of the form, say, Xα
q , which

will have the intuitive meaning that at a position α ∈ Pos(t), we end up in the

state q ∈ Q. This corresponds to the statement “ρ exists and ρ (α) = q”. More

precisely, we need ρ to be a function; let us encode, using the above variables,

the fact that ρ is a partial function, that is to say, given α ∈ Pos(t) and p , q ∈ Q,

we cannot have Xα
p and Xα

q at the same time: (a)

(a)Article version: Let us enumerate the conditions which must be satisfied in order for our

term t to be accepted by A through a run ρ, and break them down in sub-conditions until we
can encode them.

1. The run ρ is a successful run for the underlying tree automatonA′ = (Σ,∆,Q, F).

(a) The run ρ is a function mapping positions of t to states ofA.

i. ρ ⊆ Pos(t) ×Q

ii. ∀α ∈ Pos(t), p , q ∈ Q, (α, p) ∈ ρ =⇒ (α, q) < ρ

iii. ∀α ∈ Pos(t),∃q ∈ Q, (α, q) ∈ ρ
(b) The run ρmust be compatible with the transition rules of ∆.

(c) The run ρmust be accepting, ie. ρ (ε) ∈ F.

30

Definition 13 (Partial function constraint Θ9).

Θ9
def
=
∧

α∈Pos(t)
q∈Q

Xα

q =⇒
∧

p∈Q
p,q

¬Xα
p

Applied to our minimalist example this yields {Xǫ
q ⇒ [¬Xǫ

q̂ ∧ ¬Xǫ
q f
]} ∧ {Xǫ

q̂ ⇒
[¬Xǫ

q ∧ ¬Xǫ
q f
]} ∧ · · · ∧ {X22

q f
⇒ [¬X22

q ∧ ¬X22
q̂]}. We also need ρ to be compatible

with the transition rules of A′ (b). Let us translate the fact that a transition rule

applies at a given position α by:

Definition 14 (Rule application constraint Ψα(r)). We define, for any α ∈ Pos(t),
and any transition rule f (q1, . . . , qn)→ q ∈ ∆,

Ψα
(
f (q1, . . . , qn)→ q

)
def
= Xα

q ∧
n∧

k=1

Xα.k
qk
.

This is fairly straightforward: we are stating that the rule f (q1, . . . , qn)→ q ∈ ∆
applies at position α. Therefore we have “ρ (α) = q” as a result of the application

of the rule, and the kth direct subterm is accepted by the state qk, as the transition

rule requires. Now, in order to express the notion of compatibility with the

transition rules, we assert that, at each position in the term, a transition rule

applies.

Definition 15. For any f ∈ Σ, we denote by ∆ f =
{
f (. . .)→ · · · ∈ ∆ } the set of

transition rules which apply to f .

Definition 16 (Rules compatibility constraint Φε(t)).

Φε(t)
def
=
∧

α∈Pos(t)

[∨

r∈∆t(α)

Ψα(r)

]
.

2. It must satisfy the global equality constraints in =A.

3. It must satisfy the global disequality constraints in ,A.

Condition (1(a)i) guides the choice of the building blocks of our formula: they will be variables
of the form, say, Xα

q , which will have the intuitive meaning that at a position α ∈ Pos(t), we end

up in the state q ∈ Q. This corresponds to the statement “ρ exists and ρ (α) = q”. Let us now

encode, using the above variables, the fact that ρ is a partial function (1(a)ii), that is to say, given
α ∈ Pos(t) and p , q ∈ Q, we cannot have Xα

p and Xα
q at the same time:

(b)Article version: (1b)

31

For instance, on our small example this would be ([Xǫ
q f
∧X1

q̂∧X2
q̂]∨[Xǫ

q∧X1
q∧X2

q]∨
[Xǫ

q̂∧X1
q∧X2

q])∧· · ·∧ (X22
q ∨X22

q̂). Note that ifΦε(t) satisfies (c), then clearly ρmust

be a total function (d), since at every position α ∈ Pos(t), we must be in some state

q resulting from the application of some transition rule. Note also that if both

Θ9 and Φε(t) are satisfied simultaneously, then exactly one rule applies at each

position. The last thingweneed to encode an accepting run for a tree automaton,

is to specify that the run must end up in a final state at the root of the term (e);

this is directly translated into
∨

q∈F X
ε
q. Now we must add further restrictions

to ensure compatibility with the global equality and disequality constraints (f).

The variables we have already defined are not sufficient to translate statements

of the form “such subtree does (or does not) evaluate to such state”; therefore

we need to introduce new variables to link states and subterms by a relation.

Let us use T
q
u to denote “the subterm u evaluates to q”, for any u E t and q ∈ Q.

Of course, we need to “glue” these new variables to the old ones: if we are in a

certain state q at a position α, then it follows that the subterm t|α evaluates to q:

this is straightforwardly translated into the next formula.

Definition 17 (Structural glue: Θ⇆).

Θ⇆
def
=
∧

α∈Pos(t)
q∈Q

[
Xα

q =⇒ T
q

t|α

]
.

On our example, we have: {Xǫ
q ⇒ T

q

2
}∧{Xǫ

q̂ ⇒ Tq̂
2}∧{Xǫ

q f
⇒ T

q f
2
}∧· · ·∧{X22

q f
⇒ T

q f
0
},

where the subscript “2” of T
q

2
designates the subtree f

(
f (a, a), f (a, a)

)
, as given

in the definition of t. Now different kinds of variables being linked, let us

encode the equality constraint. Supposing again that ρ (α) = q, for the run to

be compatible with the equality constraint, it must be such that no subterm

different from t|α can evaluate to p, where p =A q. Note that =A is reflexive by

definition, so this includes q itself.

Definition 18 (Compatibility with =A: Θ=A).

Θ=A
def
=
∧

α∈Pos(t)
q∈Q

X

α
q =⇒

∧

p∈Q
p=Aq

∧

uEt
u, t|α

¬Tp
u

(c)Article version: (1b)
(d)Article version: (1(a)iii)
(e)Article version: (1c)
(f)Article version: (2 and 3)

32

For instance: {Xǫ
q̂ ⇒ [¬Tq̂

1
∧¬Tq̂

0]}∧{X11
q̂ ⇒ [¬Tq̂

2∧¬Tq̂
1
]}∧· · ·∧{X22

q̂ ⇒ [¬Tq̂
2∧¬Tq̂

1
]}.

There remains to encode the compatibilitywith the disequality constraint. Let us

deal with the case where either ,A is assumed to be irreflexive (as in [FTT08b]),

or the states involved are different. Suppose that we are at position α, and that

ρ (α) = q; then we cannot have any subterm t|α evaluate to any p, when p ,A q.

Definition 19 (Compatibility with ,A (p , q): Θ,A).

Θ,A
def
=
∧

α∈Pos(t)
q∈Q

Xα

q =⇒
∧

p∈Q
p,Aq
p,q

¬Tp

t|α

For instance: {Xǫ
q̂ ⇒ ¬T

q f
2
} ∧ {Xǫ

q f
⇒ ¬Tq̂

2} ∧ · · · ∧ {X22
q f
⇒ ¬Tq̂

0}. However, for the

needs of our test examples, we chose to alter the definition of ,A by removing

its irreflexivity. The idea is to be able to write statements such as p ,A p, with the

meaning that no two distinct subtrees which evaluate to p may be structurally

identical. Formally, ρ satisfies ,A iff ∀α, β ∈ Pos(t), (α , β ∧ ρ (α) ,A ρ
(
β
))
=⇒

t|α , t|β. This cannot be done solely in Θ,A , because the formula will not

differentiate between two distinct subterms and the same subterm, taken twice,

which is why the case where q ,A qmust be dealt with separately. Indeed, as we

do not yet have any means for linking subterms with positions, a new kind of

variables is needed, of the form Sαu, which encodes the statement “the subterm

u is rooted in α”. The above property is then encoded using this variable, as

follows:

Definition 20 (Compatibility with ,A (non-irreflexive; q ,A q): Ω,A).

Ω,A
def
=
∧

α∈Pos(t)
Sαt|α ∧

∧

α,β∈Pos(t)
q,Aq

[
Xα

q ∧ X
β
q =⇒ ¬Sαt|β

]

We can now state our main result:

Definition 21 (SAT encoding of TAGED membership problem ∆A (t)). Let A =
(Σ,∆,Q, F,=A,,A) be a TAGED and t ∈ T (Σ); then we define

∆A (t)
def
= Θ9 ∧ Φε(t) ∧

∨

q∈F
Xε

q ∧Θ=A ∧Θ,A ∧Ω,A .

Theorem 22 (TAGED membership, correctness and soundness). There exists a

successful run ρ of the TAGED A on a term t iff ∆A (t) is satisfiable. Moreover, if

I |= ∆A (t), then for any α ∈ Pos(t) we have ρ (α) = q ⇐⇒ I |= Xα
q .

The above encoding has been simplified, implemented and tested. This is the

matter of the next section.

33

4.2 Complexity, implementation and experiments

In the first part of this section we will quickly go over some ways in which the

formula can be lightened through simple observations, before discussing some

of our experimentations in the second part.

The above SAT encoding, though sizeable, remains polynomial in the size of our

input automatonA and the term t: the size of ∆A (t) (as number of literals) is a

O(|t|2 |Q|2). In practice however, this can often be trimmed down considerably.

Let ρ be a successful run of the underlying tree automatonA on t, and consider

for instance the structural glue: Θ⇆ =
∧
α∈Pos(t),q∈Q[X

α
q =⇒ T

q

t|α
]. The formula

considers all possible couples (α, q), but in general this is unnecessary because

not all states are obtainable at any given position. In order to ever have Xα
q , that

is to say, ρ (α) = q, there must be some transition rule of the form t (α) (. . .) → q

in ∆, at least. Thus we let σ (α) be the set of possibly obtainable states at position

α: σ (α)
def
=
{
q ∈ Q/ ∃t(α)(. . .)→ q ∈ ∆ } and, given a position α, we only need to

deal with q ∈ σ(α). Another observation which can be made a priori is that the

only occurrences of negations of the form ¬Tq
u occur in Θ=A and Θ,A , when q is

in the domain of either ,A or =A. It follows that literals of the form T
q
u can only

alter the satisfiability of ∆A (t) when q is in dom (,A) ∪ dom (=A). Thus we can

reduce the formula toΘ⇆ =
∧
α∈Pos(t),q∈σ(α)∩(dom(,A)∪dom(=A))[X

α
q =⇒ T

q

t|α
]. The same

observations can be made in Θ,A , Ω,A and Θ=A . In the case of Θ=A , we can also

argue that in the subformula
∧

uEt,u, t|α ¬T
p
u it is unnecessary towrite¬Tp

u whenwe

know that the subtree u cannot possibly evaluate to the state p. This is clearly the

case if the root symbol u(ε) is not used in any transition rule leading to p. Thus

we let τ(q)
def
=
{
f ∈ Σ | ∃ f (. . .)→ q ∈ ∆ } be the set of symbols which a subterm

may be rooted in, given that it evaluates to the state q, and we lighten the above

subformula into
∧

uEt,u, t|α,u(ε)∈τ(p) ¬T
p
u. Lastly, in the revised formulaΩ,A , it is clear

that the variables Sα
t|α
serve no purpose whatsoever when the subtree in α cannot

evaluate to a state q such that q ,A q. Thuswe letµ(q)
def
=
{
α ∈ Pos(t) | t(α) ∈ τ(q) }

be the set of positions at which the subtree may evaluate to the state q, and

reduce the first part of the subformula to
∧
α∈
⋃

q,Aq µ(q)
Sα
t|α
. In its second part, we

arbitrarily order positions and regroup couples of implications with the same

premises:
∧
α<β∈µ(q),q,Aq[X

α
q ∧ X

β
q =⇒ ¬Sα

t|β
∧ ¬Sβ

t|α
]. Note that reducing Θ9 is

muchmore problematic, but it is possible to simply do awaywith this part of the

formula altogether if one replaces
∨

q∈F X
ε
q by
∧

q<F ¬Xε
q, provided that the term is

accepted by the underlying tree automaton. This can be checked separately by

other, less expensive means, since the membership problem for tree automata

is polynomial. Of course in that case the second result of theorem 22 does not

34

apply anymore. While computationally inexpensive, these simplifications can

yield significant savings on TAGEDs with low density and where few states are

involved in the global constraints, which are fairly reasonable assumptions in

the context of XMLdocuments processing. Note that one could findmore drastic

simplifications by examining the tree automaton more closely; for instance one

could remove, at each position, any state which cannot appear in a successful

run. Simplifications of this kind would certainly yield better results on sizeable

and complex TAGEDs, but it is not certain that the overhead of implementing and

computing themwould be compensated by the SAT solving performance gains.

For our tests we implemented the static simplifications described above, which

divided the size of the generated formula by 36 in the case of our Laboratory

example automaton.

In order to test our encoding, we have been developing a tool which takes as

input a TAGED (in a syntax close to that of Timbuk [FGT04]) and a term, and gener-

ates the corresponding formula ∆A (t). However, most modern SAT solvers take

input in the DIMACS CNF format, and naive conversion to Conjunctive Normal

Form (using DeMorgan’s laws, distributivity and removal of double negations)

could lead to an explosion of the size of the formula. In order to avoid running

into this problem we used an existing tool to handle linear-size conversion to

CNF and generation of DIMACS CNF files: the BAT (g) [MSV07], which imple-

ments an efficient CNF conversion algorithm [MV09]. Experiments were run

on an 2.53GHz Intel Core2 Duo machine with 2Gb of RAM running Linux. Fig-

ure 4.1 shows the respective running times of the two SAT solvers picoSAT and

MiniSAT2 on an implementation of our Laboratory example. Accepted trees

of varying sizes have been generated with random member names of random

length. In the figure the size of the generated trees is given in terms of the

number of teams in the university; the size in terms of the number of nodes is

proportional to these data. The test shows that while both solvers perform very

well on this query, MiniSAT2 tends to outperform picoSAT as the terms grow,

which suggests that the heuristic used for SAT solving may significantly impact

the overall efficiency of our queries. Figure 4.2 shows the same experiment, this

time with the small TAGED accepting { f (t, t) | f ∈ Σ, t ∈ T (Σ) } (introduced at the

beginning of section 4.1), and for both accepted and rejected terms. The size of

the terms designates the number of nodes of the tree. Both solvers display sim-

ilar performances for this experiment, with MiniSAT2 being about twice as fast

as picoSAT on accepted terms. On rejected terms however both solvers show

roughly the same performances, and take less time than on accepted terms, by

(g)Bit-level Analysis Tool, version 0.2

35

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 20 40 60 80 100

S
A
T

s
o
l
v
i
n
g

t
i
m
e

(
s
)

Number of elements

picoSAT
MiniSAT2

Figure 4.1 — CNF solving time, Laboratory example

a factor of 3 (picoSAT) and 5 (MiniSAT2) on large terms.

It would have been interesting to increase the size of our terms until both solvers

timed out, but we were unfortunately limited by the software we used. Our

own tool is not optimised for speed, and CNF conversion with BAT took about

4.5 times as much time as formula generation. Moreover, BAT fails with a stack

overflow when the input formula becomes too large. Despite these practical

setbacks, the results remain fairly encouraging, as the current bottleneck lies on

the least computationally expensive parts of the process: both the generation

of the formula and the conversion to CNF are quadratic in the worst case. On

the other hand, SAT solving proves quite efficient, even on fairly large formulæ:

the order of magnitude of the largest tested formulæ is of approximately 70′000

variables, 120′000 clauses and 250′000 literals (in CNF), for a solving time well

under one second.

36

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 2000 4000 6000 8000 10000 12000 14000 16000

S
A
T

s
o
l
v
i
n
g

t
i
m
e

(
s
)

Size of term

picoSAT (accepted)
MiniSAT2(accepted)
picoSAT (rejected)
MiniSAT2(rejected)

Figure 4.2 — CNF solving time, { f (t, t) | f ∈ Σ, t ∈ T (Σ) }

37

Chapter 5
Full version

This chapter presents in section 5.1 the full version, with proof, of our proposed

propositional encoding. In section 5.2[p47] the readerwill find some experimental

results and implementation details which were not covered in the article.

The reader may refer to the introduction to chapter 4[p29] for more information

concerning the practical relationship between sections 5.1 and 4.1.

5.1 Propositional encoding and proof

Let us go back quickly over the conditions which must be satisfied in order for

our term t to be accepted by A: First, we need a run ρ for the underlying tree

automatonA′ = (Σ,∆,Q, F). Second, we need ρ to be successful forA′. Third, it
must satisfy the global constraints ofA.

But howcanwe express those fairly complex conditionsusingonlypropositional

variables? The directing idea which we will follow is to focus on the notion of

run, and to translate the above constraints into propositional logic, step by step.

We will start from the simplest, least restrictive notion, which is that of a run

onA′, to the full notion of TAGED-accepting run, progressively introducing new

restrictions in the form of constraint formulæ which we append to (that is to say,

put in conjunction with) our propositional formula.

Let us start at the very beginning, then: what is a run ? First off, it is a relation

between a position and a state. So the building blocks of our formula will be

variables of the form, say, Xα
q , which will have the intuitive meaning that at a

position α ∈ Pos(t), we end up in the state q ∈ Q. This corresponds loosely to the

statement “ρ exists and ρ (α) = q”. So in everything that follows, we will think

38

of the propositional formula which we are building in terms of the inferred run

relation ̺, which translates this idea. Note that nearly every definition from that

point forward depends on both our given TAGED A and the term t mentioned

above, which are omitted from the notations so as to keep things somewhat

legible.

Definition 23 (State variables). For any α ∈ Pos(t) and q ∈ Q, we let Xα
q be a

propositional variable. We call these variables state variables, and we denote

X
def
=
{
Xα

q | α ∈ Pos(t) and q ∈ Q
}

the set of all state variables.

Definition 24 (Inferred run relation from I on ϕ). Let ϕ be a satisfiable proposi-

tional formula, and I an arbitrary model of ϕ. Then we call inferred run relation

from I on ϕ the relation [I]̺ ⊆ Pos(t) ×Q such that (α, q) ∈ [I]̺ ⇐⇒ I |= Xα
q .

Definition 25 (Set of inferred run relations on ϕ). Let ϕ be a propositional for-

mula, thenwedenote byR(ϕ) = { [I]̺ | I |= ϕ } the set of all inferred run relations

on ϕ.

In everything that followswewill often slightly abuse this notation in statements

such as “let ρ = [I]̺ ∈ R(ϕ)”. This is to be understood as shorthand for “let

ρ ∈ R(ϕ), and let I a model of ϕ such that ρ is the inferred run from I on ϕ”.

Such an I exists by definition; there is even an infinity of them, since only their

restriction to X influences the inferred run.

The following results are merely rather straightforward consequences of the

above definitions, but they will be the very backbone of our reasoning in this

section, since they provide the formal glue which justifies the intuitive notion

we mentioned earlier of building the formula as a conjunction of constraints.

Lemma 26 (X-Restriction lemma). Let I and J be two valuations of all propositional

variables; then [I]̺ = [J]̺ iff I|X = J|X.

Proof. Suppose I|X = J|X; then for all (α, q) ∈ Pos(t) ×Q, (α, q) ∈ [I]̺ ⇐⇒ I |= Xα
q

and since Xα
q ∈ X, I |= Xα

q ⇐⇒ J |= Xα
q ⇐⇒ (α, q) ∈ [J]̺. Thus [I]̺ = [J]̺.

Conversely, assume that I|X , J|X. Then there exists a Xα
q ∈ X such that I |= Xα

q

but J |=/ Xα
q (resp. I |=/ Xα

q but J |= Xα
q) and it follows that (α, q) ∈ [I]̺ and

(α, q) < [J]̺ (resp. (α, q) < [I]̺ and (α, q) ∈ [J]̺) and so [I]̺ , [J]̺. �

Lemma 27 (Chain lemma). Letϕ andψ be propositional formulæ. Then the following

statements are true:

39

1. R(ϕ ∧ ψ) ⊆ R(ϕ) ∩ R(ψ) ⊆ R(ϕ)

2. R(ϕ) ⊆ R(ϕ) ∪ R(ψ) ⊆ R(ϕ ∨ ψ)

3. If FreeVars
(
ϕ
) ∪ FreeVars

(
ψ
) ⊆ X then R(ϕ) ∩ R(ψ) = R(ϕ ∧ ψ)

4. R(ϕ) ∪ R(ψ) = R(ϕ ∨ ψ)

Proof. Let us prove the four points separately:

1. Ifϕ∧ψ is not satisfiable thenR(ϕ ∧ ψ) = ∅ and the inclusions hold trivially.

Assuming that it is satisfiable, let ρ = [I]̺ ∈ R(ϕ ∧ ψ); then I |= ϕ ∧ ψ and

necessarily I |= ϕ and I |= ψ, so ρ ∈ R(ϕ) and ρ ∈ R(ψ), that is to say

ρ ∈ R(ϕ) ∩ R(ψ).

2. If ϕ is not satisfiable then trivially R(ϕ) = ∅ ⊆ R(ϕ ∨ ψ); else let ρ =

[I]̺ ∈ R(ϕ); then, since I |= ϕ, we also have I |= ϕ ∨ ψ and it follows that

ρ ∈ R(ϕ ∨ ψ). By the same arguments, we have also R(ψ) ⊆ R(ϕ ∨ ψ).
Thus R(ϕ) ∪ R(ψ) ⊆ R(ϕ ∨ ψ).

3. Let ϕ and ψ be propositional formulæ such that FreeVars
(
ϕ
) ⊆ X and

FreeVars
(
ψ
) ⊆ X. We only need to prove the inclusion R(ϕ) ∩ R(ψ) ⊆

R(ϕ ∧ ψ). If either ϕ or ψ is not satisfiable we have trivially R(ϕ)∩R(ψ) =
∅ ⊆ R(ϕ ∧ ψ). Assuming that both are satisfiable, if R(ϕ) ∩R(ψ) = ∅ then

we have the trivial inclusion again, else let I and J be two valuations such

that I |= ϕ and J |= ψ and ρ such that ρ = [I]̺ ∈ R(ϕ) and ρ = [J]̺ ∈ R(ψ).
By lemma 26 we can define Ĩ = I|X = J|X. Since FreeVarsϕ ⊆ X and I |= ϕ,
any extension of Ĩ = I|X models ϕ. The same goes for ψ. So any extension

of Ĩ models both ϕ and ψ. So we have ρ = [̃I]̺ ∈ R(ϕ ∧ ψ). Therefore the

inclusion R(ϕ) ∩ R(ψ) ⊆ R(ϕ ∧ ψ) holds.

4. We only need to prove the inclusion R(ϕ ∨ ψ) ⊆ R(ϕ) ∪ R(ψ). If neither ϕ
nor ψ are satisfiable, then the inclusion holds trivially; else let us take any

ρ = [I]̺ ∈ R(ϕ ∨ ψ). Then we have, say, I |= ϕ; therefore ρ ∈ R(ϕ) and a

fortiori ρ ∈ R(ϕ) ∪ R(ψ). The same holds if I |= ψ.

�

Lemma 28 (Partition lemma). Let ϕ be a propositional formula. Then the following

statements hold:

1. If FreeVars
(
ϕ
) ⊆ X then R(ϕ) ∩ R(¬ϕ) = ∅

40

2. R(ϕ) ∪ R(¬ϕ) = Pos(t) ×Q

Proof. This is a direct corollary of the chain lemma:

1. If FreeVars
(
ϕ
) ⊆ X then R(ϕ) ∩ R(¬ϕ) = R(ϕ ∧ ¬ϕ) = R(⊥) = ∅.

2. R(ϕ) ∪ R(¬ϕ) = R(ϕ ∨ ¬ϕ) = R(⊤) = Pos(t) ×Q.

�

Now we have the building blocks of our formula, and have linked them to a

notion of relation; but a run is more than just a relation, it is a function from

Pos(t) to Q, which forbids situations in which we get in more than one state at

one given position. So let us write the formula which formalises this constraint,

making our relation a partial function:

Definition 29 (Partial function constraint Θ9).

Θ9
def
=
∧

α∈Pos(t)
q∈Q

Xα

q =⇒
∧

p∈Q
p,q

¬Xα
p

Lemma 30 (Partial functions). The setPos(t)9 Q of all partial functions fromPos(t)
to Q is equal to the set of all inferred run relations on the partial function constraint:

Pos(t)9 Q = R(Θ9).

Proof. Let ρ = [I]̺ ∈ R(Θ9). Let us assume that there exists p, q ∈ Q, p , q

and α ∈ Pos(t) such that (α, q) ∈ ρ and (α, p) ∈ ρ, that is to say ρ is not a

partial function. Then I |= Xα
q ,X

α
p . But by definition I |= Θ9, and it follows that

I |=
∧

q′,q ¬Xα
q′ , and consequently I |= Xα

p ∧ ¬Xα
p , which is absurd. Therefore ρ is

a partial function. Conversely, let ρ < R(Θ9); then by the partition lemma 28,

given that FreeVars (Θ9) ⊆ X, it follows that ρ = [I]̺ ∈ R(¬Θ9). Since we have

¬Θ9 =
∨

α∈Pos(t)
q∈Q

Xα

q ∧
∨

p∈Q
p,q

Xα
p

there exist α ∈ Pos(t), q ∈ Q and p ∈ Q, p , q such that I |= Xα
p ∧ Xα

q , and so ρ is

not a partial function. Finally we have ρ ∈ R(Θ9) ⇐⇒ ρ ∈ Pos(t)9 Q. �

We need more work in order to make this partial function into a run: it must be

compatible with the transition rules of A′. Let us translate into propositional

logic the fact that a transition rule applies at a given position α. . .

41

Definition 31 (Rule application constraint Ψα(r)). We define, for any α ∈ Pos(t),
and any transition rule f (q1, . . . , qn)→ q ∈ ∆

Ψα
(
f (q1, . . . , qn)→ q

)
def
= Xα

q ∧
n∧

k=1

Xα.k
qk
.

This is fairly straightforward: we are simply stating that the rule f (q1, . . . , qn)

→ q ∈ ∆ applies at position α. Therefore we have ̺ (α) = q as a result of

the application of the rule and the direct subterms are in the states qk, as a

requirement of said rule. Now, in order to express the notion of compatibility

with the transition rules, we will recursively apply this function on the tree t,

stating that at each position, one of the rules which can apply does so, unless of

course there is no run over that term.

Definition 32. For any f ∈ Σ, we denote by ∆ f =
{
f (. . .)→ · · · ∈ ∆ } the set of

transition rules which apply on a symbol f .

Definition 33 (Rules compatibility constraint Φα(u)). Wedefine, for any subterm

f (u1, . . . , un) E t

Φα
(
f (u1, . . . , un)

)
def
=
∨

r∈∆ f

Ψα(r) ∧
n∧

k=1

Φα.k(uk) .

Now let us see how we can use these new constraints to restrain ourselves to

accepting runs for the underlying tree automaton A′. We need ̺ ∈ R(Θ9) to
satisfy three more properties:

1. ̺ must be a total function. We shall see in the next lemma that if ̺ is

compatible with the transition rules, it must be total.

2. ̺must be compatible with the transition rules.

3. ̺must associate a final state to the root ε.

We shall deal with those three requirements in the three next lemmas.

Lemma 34. The following set inclusion holds: R
(
Θ9 ∧ Φε(t)

)
⊆ QPos(t).

Proof. Let ρ = [I]̺ ∈ R
(
Θ9 ∧Φε(t)

)
. Then by lemma 30 and the chain lemma 27

we have ρ ∈ Pos(t) 9 Q. Let us prove that its domain is in fact the whole of

Pos(t). We have by definition

Φε(t) =
∧

α∈Pos(t)

[∨

r∈∆t(α)

Ψα(r)

]
.

42

Let α ∈ Pos(t) and let us note f = t(α); then I |=
∨

r∈∆ f
Ψα(r) and therefore there

exists a transition rule r = f (q1, . . . , qn) → q ∈ ∆ such that I |= Ψα(r), which in

turn implies that I |= Xα
q , that is to say ρ is defined on α and ρ (α) = q. �

Lemma 35 (Tree automaton runs). The set of all runs over the term t for the under-

lying tree automatonA′ is R
(
Θ9 ∧Φε(t)

)
.

Proof. Letρ = [I]̺ ∈ R
(
Θ9 ∧Φε(t)

)
. Thenρ ∈ QPos(t) by lemma34. Let us suppose

that ρ is not a run, that is to say that there exists a position α ∈ Pos(t) where ρ

is incompatible with the transition rules: in other words, for all f (q1, . . . , qn) →
q ∈ ∆ we have f = t (α) =⇒ q , ρ (α) ∨ ∃k ∈ ~1, n� | qk , ρ (α.k), and so there is

no r ∈ ∆t(α) such that I |= Ψα(r). Therefore I |=/ Φε(t) and a fortiori I |=/ Θ9 ∧ Φε(t)
which is absurd. This proves that ρ is a run. Conversely, let ρ be a run. Then

ρ ∈ QPos(t), but QPos(t) ⊆ R(Θ9) so there exists I such that ρ = [I]̺ ∈ R(Θ9). Let us
show that ρ ∈ R

(
Φε(t)

)
. By definition of a run, for all α ∈ Pos(t), there exists a rule

t (α) (q1, . . . , qn)→ q ∈ ∆ such thatρ (α) = q (ie. I |= Xα
q) and∀k ∈ ~1, n� , ρ (α.k) = qk

(ie. ∀k ∈ ~1, n� , I |= Xα.k
qk
). So for all α there is a rule r such that I |= Ψα(r), and thus

I |= Φε(t). Finally, we have ρ ∈ R(Θ9) ∩ R
(
Φε(t)

)
, and we conclude by applying

the chain lemma that ρ ∈ R
(
Θ9 ∧ Φε(t)

)
. �

Lemma 36. The set of all successful runs over the term t for the underlying tree

automatonA′ is R
(
Θ9 ∧Φε(t) ∧

∨
q∈FX

ε
q

)
.

Proof. Let ρ ∈ R(Θ9 ∧ Φε(t) ∧
∨

q∈F X
ε
q). Then by the chain lemma ρ is a run, and

ρ ∈ R
(∨

q∈FX
ε
q

)
, thus there exists a q ∈ F such that ρ (ε) = q. This make ρ and

accepting run. Conversely, let ρ be a successful run. Since it is a run, we have

ρ = [I]̺ ∈ R
(
Θ9 ∧Φε(t)

)
. And since it is accepting, ρ (ε) ∈ F, thus there exists a

final state q ∈ F such that ρ (ε) = q (ie. I |= Xε
q). It follows that I |=

∨
q∈F X

ε
q and so

ρ ∈ R
(∨

q∈FX
ε
q

)
. We conclude by applying the chain lemma. Again. �

Definition 37 (Accepting tree automaton run constraint: Θ⋆). For short, we

define Θ⋆
def
= Θ9 ∧Φε(t) ∧

∨
q∈FX

ε
q

So in terms of satisfiability, this means that a term t is accepted by A′ if and
only if Θ⋆ is satisfiable. The perceptive reader will have noticed that until now,

all we have done is to “reduce” a relatively simple problem – membership for

tree automaton is ALOGTIME (a)-complete – to a relatively hard one: despite

(a) Logarithmic time alternating RAM. ALOGTIME is the class of languages decidable in

logarithmic time by a random access alternating Turing machine.

43

the existence of highly optimised solvers, the SAT problem remains a canonical

NP-complete problem. So let us remind ourselves that our aim was (and still is)

to find a formula for TAGED, and not merely for traditional tree automata. An

accepting run for a TAGED is an accepting run for the underlying tree automaton

which is compatible with the global state equality and difference constraints =A
and ,A. Therefore we need additional propositional formulæ to enforce these

conditions. However we see that wewill need to express constraints concerning

terms (or rather, subterms) and states, regardless of position, which is new since

until nowwehad justneeded to express constraints onpositions and states. Thus

it appears that we need new building blocks for our propositional formula.

Definition 38 (Terms variables). For any q ∈ Q and u E t, we let T
q
u be a

propositional variable. We call these variables term variables, and we denote

T
def
=
{
T
q
u | q ∈ Q and u E t

}

the set of all term variables.

The idea here is that if we have two subtrees u and vwhose roots are in the same

state q, T
q
u and T

q
v will be the same variable if and only if u and v are, structurally,

the same tree, for instance u = v = f (a, g(b)). But of course, this can only be

of use if we link, somehow, the notion of run to the structure of the term, by

putting the subtrees in relation with the states of the run. This is the object of

the next definitions and lemmas.

Definition 39 (Structural glue: Θ⇆).

Θ⇆
def
=
∧

α∈Pos(t)
q∈Q

[
Xα

q =⇒ T
q

t|α

]
and Θ⋆

def
= Θ⋆ ∧Θ⇆

The idea which this formula formalises is simply this: let us suppose that at a

certain position α in our term t, we are – by an accepting run for the underlying

tree automaton – in a certain state q. Thenwe simply assert that we have seen the

current subtree u = t|α in state q, which the term variable T
q

t|α
= T

q
u symbolises.

Keeping this in mind, we will from now on assume that this formula is satisfied

(in the informal explanations), and translate ,A and =A into propositional logic.

We decide to start with ,A since the formula is simpler.

Definition 40 (Compatibility with ,A: Θ,A).

Θ,A
def
=
∧

α∈Pos(t)
q∈Q

X

α
q =⇒

∧

p∈Q
p,Aq

¬Tp

t|α

44

Through this formula, we assert that none of the states pwhichmust be different

from q – as defined in ,A – can have the same subtree as q. We are assuming the

structural glue here, so at each position we have already stated which subtree

we have using the appropriate term variable. Then if, at another position β in

one of those states p ,A q, we ever run across a subterm t|β = t|α = u, we will

immediately have the contradiction T
p
u∧¬T

p
u, and we will reject t. This informal

argument outlines the proof of lemma 45.

We will need the same sort of gymnastic to obtain compatibility with =A, but

it will be slightly more costly since we need to translate the idea that “if we

are in state q at a certain subtree u, then, for all states p =A q we must have

this same subtree and no other”. How is this more costly? Because this time

around we need to enumerate not only a group of states, but for each state we

need to specify all the terms which we cannot have. Let us be reminded that,

since the property which interests us is satisfiability, the only tool we have is the

introduction of contradictions. It is not enough to say for instance “for all p in

the equivalence class of q, T
p
u”, because even if we got, say, T

p
v, for v , u, then the

formula would stay satisfiable. It is therefore necessary to state preemptively

that for any v , u, ¬Tp
v. With this in mind, let us introduce the last formula (for

this section, at least).

Definition 41 (Compatibility with =A: Θ=A).

Θ=A
def
=
∧

α∈Pos(t)
q∈Q

X

α
q =⇒

∧

p∈Q
p=Aq

∧

uEt
u, t|α

¬Tp
u

We shall now prove our informal claims that these formulæ translate the notion

of compatibility with the global constraints.

Definition 42 (Canonical valuation). Let ρ ⊆ Pos(t) × Q; then its canonical

valuation V(ρ) is a valuation such that ρ =
[V(ρ)]̺ and for any T

q
u ∈ T,

V(ρ) |= T
q
u ⇐⇒ ∃α ∈ Pos(t) | (α, q) ∈ ρ and u = t|α.

Lemma 43 (Structural glue). Letϕ be any propositional formula such thatFreeVars
(
ϕ
) ⊆

X; then for any ρ ∈ R(ϕ) we have V(ρ) |= ϕ ∧ Θ⇆, and furthermore R(ϕ) =
R(ϕ ∧Θ⇆

)
.

Proof. Let ρ = [I]̺ ∈ R(ϕ). By the X-restriction lemma we have I|X = V
(
ρ
)∣∣∣
X
.

But since FreeVars
(
ϕ
) ⊆ X it follows that V(ρ) |= ϕ and thus we can write

45

ρ =
[V(ρ)]̺ ∈ R(ϕ). Let us show thatV(ρ) |= Θ⇆. Suppose thatV(ρ) |= ¬Θ⇆;

then

V(ρ) |=
∨

α∈Pos(t)
q∈Q

[
Xα

q ∧ ¬T
q

t|α

]

and there exist α, q such thatV(ρ) |= Xα
q ∧¬T

q

t|α
. But this is in contradiction with

the way in whichV(ρ) has been defined. Thus ρ =
[V(ρ)]̺ ∈ R(ϕ ∧Θ⇆

)
. The

reciprocal inclusion is a direct application of the chain lemma. �

This might seem strange at first glance: we are adding a new constraint yet we

still get exactly the same set in the end. . . What then is the point of doing such a

thing? The point is simply to have a memory of the structure of the term; we get

exactly the same set of inferred run relations, yes, but we do know something

new about them: we know that the valuations they are inferred from aremodels

to Θ⇆, and therefore we have a “memory” of visited subterms. What we are

doing in this lemma is simply state that having such a memory does not change

anything so long as we did not have any preexisting structural constraint, that

is to say so long as our formula did not use any term variable. Incidentally, this

is the case for Θ⋆.

Corollary 44 (Glued tree automaton accepting runs). The set R(Θ⋆) of all suc-
cessful runs over the term t for the underlying tree automaton A′ is equal to the set

R(Θ⋆ ∧Θ⇆) = R(Θ⋆).

Proof. Consequenceof lemmas36and43. The latter applies becauseFreeVars(Θ⋆) ⊆
X. �

Lemma 45. The set of all successful runs over the term t for the underlying tree

automaton A′ which are also compatible with the global disequality constraint ,A is

equal to R(Θ⋆ ∧Θ,A
)
.

Proof. Let ρ = [I]̺ ∈ R(Θ⋆ ∧Θ,A
)
. Then by the chain lemma and the above

corollary ρ is an accepting run for A′ and ρ ∈ R(Θ⇆ ∧Θ,A
)
, which means that

I |= Θ⇆ ∧Θ,A . Let us now assume that it is not compatible with ,A. Therefore

there exists α, β ∈ Pos(t) such that ρ (α) ,A ρ
(
β
)
and t|α = t|β. Let us take the

following notations: p = ρ (α) , q = ρ
(
β
)
, u = t|α = t|β. Since I |= Θ⇆ ∧ Θ,A we

have

I |= T
p
u ∧
∧

p′,Ap

¬Tp′

u and I |= T
q
u ∧
∧

q′,Aq

¬Tq′

u .

And because p ,A q, it follows that

I |= T
p
u ∧ ¬T

q
u and I |= T

q
u ∧ ¬T

p
u,

46

which is contradictory in both cases. So ρ must be compatible with ,A. Con-

versely, letρbe a successful runover the term t for the underlying tree automaton

A′ which is also compatible with the global disequality constraint ,A. Let us

show that ρ ∈ R(Θ⋆ ∧Θ,A
)
, that is to say that there exists a valuation I such that

I |= Θ⋆ ∧ Θ,A and ρ = [I]̺. Let us show that the canonical valuation V(ρ) is
suitable. By its definition, we have ρ =

[V(ρ)]̺, so it only remains to show that

V(ρ) |= Θ⋆∧Θ,A . By lemma 43 and its corollary 44 we have directlyV(ρ) |= Θ⋆,
hence there only remains to show thatV(ρ) |= Θ,A . Assume that this is not the

case. We have

V(ρ) |= ¬Θ,A =
∨

α∈Pos(t)
q∈Q

X

α
q ∧
∨

p∈Q
p,Aq

T
p

t|α

and so there exist α ∈ Pos(t), q = ρ (α) ∈ Q and p ,A q such thatV(ρ) |= Xα
q ∧ T

p

t|α
.

Since ρ (α) = q, and the irreflexivity of ,A implies that p , q, by our definition

of V(ρ)
∣∣∣
T
there must exist β , α ∈ Pos(t) such that p = ρ

(
β
)
and t|α = t|β. But if

this is the case, then ρ is not compatible with ,A; this is absurd. It follows that

V(ρ) |= Θ⋆ ∧Θ,A , which concludes the proof. �

[TODO] similar proof for Θ=A
[TODO] Glue all that and conclude

5.2 Some implementation details

This section lists some experimental details, which were too lengthy or distract-

ing from the main ideas to be put elsewhere.

5.2.1 External tools and file formats

As mentioned in the previous sections, we made use of external tools, namely

picoSAT: http://fmv.jku.at/picosat/

A SAT solver. It takes input in the DIMACS CNF file format.

MiniSAT2: http://minisat.se/

Another SAT solver, which proved to be generally faster than the former

in our experiments. It also takes input in the DIMACS CNF file format.

This is the case for most modern SAT solvers.

47

http://fmv.jku.at/picosat/
http://minisat.se/

The BAT: http://www.ccs.neu.edu/home/pete/bat/index.html

A converter to CNF, which generates output in the DIMACS CNF file

format, from an input in S-expression-like syntax. The CNF conversion

algorithm and the tool are described in [MV09, MSV07].

The DIMACS CNF format is a de-facto standard for representing propositional

formulæ in CNF. Its syntax is extremely compact and basic. Comment lines

are indicated by a leading ’c’. Free variables of the formula are numbered,

starting from 1, and the first (significative) line, which starts with ’p’, indicates

the number of variables and the number of clauses in the formula, in this order.

The following lines each represent a clause, where a literal is denoted by the cor-

responding positive number if it is an atom, and by the corresponding negative

number if it is a negation of the atom. Each line is terminated by a zero. Let for

instance ϕ be the following CNF boolean formula:

ϕ = (X ∨ ¬Z) ∧ (Y ∨ Z ∨ ¬X).

Then it is encoded by the following DIMACS CNF file:

c DIMACS CNF for ϕ

p cnf 3 2

1 -3 0

2 3 -1 0

5.2.2 Notes about the implemented tool

Our tool has been mentioned in section 4.2[p34]. Here we give some more ele-

ments about it.

We chose to implement it in the Objective Caml programming language, which

is quite efficient and allows us to stay quite close to mathematical syntax. We

favoured readability of the code over time and space optimisations. SAT solving

is the hard part of the process, not formula generation and conversion, which

are both polynomial (more precisely, quadratic in the worst case). Having an

optimised implementation of those steps is a different problem, but one which

remains – at least theoretically – easy. So we focused on SAT solving time in our

experiments.

The tool takes as input a TAGED in a syntax close to that of Timbuk [FGT04], and

a term, and generates the corresponding formula in the BAT’s input format.

Example inputs of our tools are given in figure 5.1.

48

http://www.ccs.neu.edu/home/pete/bat/index.html

(** TAGED Automaton for {f(x,x)} *)

Taged fxxA

Alphabet f a b

States q qq qf

Final qf

Rules

f qq qq : qf

f q q : q

f q q : qq

a:q a:qq

b:q b:qq

Equal

qq qq

Different

qq qf

f(f(a,a), f(a,a))

// in a_fxx

Figure 5.1 — Input syntax of the tool (see 5.2[p50])

The default mode of operation is of course to generate BAT input and to run

BAT and a SAT solver immediately. But there is also the possibility, introduced

mainly formy own benefitwhile Iwas implementing the formulæ, of outputting

a LATEX file detailing, in a user-friendly format, the input automaton, term and

the corresponding generated formula. Figure 5.2[p50] gives the LATEX output

corresponding to the input of figure 5.1. Note that the tool indexes both subterms

and and positions, in an effort to keep the formula somewhat readable even on

high trees.

The tool is also capable of automatically generating (randomised or not) terms

recognised by some of our test TAGEDs. This has been used for the experiments

described in section 4.2[p34].

An experiment which was omitted in the paper is presented in figure 5.3[p51]. It

shows that, in some cases, with full static optimisations as described in section

4.2, the generated CNF formula can grow linearly in the size of the input term.

The reason why this was not mentioned in the article is that experiments are

not needed to show that kind of result. It is certainly possible to determine, in

theory, the class of inputs which satisfy this property. We have not yet gotten

around to doing that, though.

Other experiments were done, but they bring nothing new compared to those

49

Figure 5.2 — Example LATEX output of the tool (see 5.1[p49])

50

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 2000 4000 6000 8000 10000 12000 14000 16000

S
i
z
e

o
f

C
N
F

S
A
T

f
o
r
m
u
l
a

Size of term

Literals

Figure 5.3 — Size of the formula for { f (t, t) | f ∈ Σ, t ∈ T (Σ) }

51

which have already been mentioned.

52

Chapter 6
Conclusion

As part of this project we have proposed a SAT encoding for the NP-complete

TAGED membership problem, which we have proved, trimmed down, and im-

plemented. Though experiments were limited, mainly by factors outside of our

control and of the scope of this project, such as CNF generation, they remain

fairly encouraging (see section 4.2[p34]). Indeed, despite the respectable size of

the generated formulæ, SAT solving remains surprisingly fast.

There remain, of course, many paths to explore, notably to quicken formula

generation in practice – which is for now the weak point of the process. As

stated in sections 4.2 and 5.2.2[p48], given that those weak points are in theory by

far the least computationally expensive, we feel confident that these steps can

be implemented quite efficiently. An obvious practical optimisation would be

to do away with the lengthy process

input −→ formula generation BAT −→ CNF generation SAT −→ solving y/n

and generate the CNF formula on-the-fly, while interfacing with a SAT solver.

This would remove the need for the two intermediary file formats, and allow

quicker detection of contradictions.

Another observation which could have a practical impact is that the formula,

such as we have defined it, is already mostly in CNF, the exception being the

subformula Φε(t). If this could be recoded directly in (reasonably sized) CNF,

this would remove the need for the supplementary conversion step.

Overall we feel that our objectives have been reached, and that the fundamental

difficulty of the problem (its NP-completeness) has been overcome – inasmuch

as we could hope – by the chosen approach.

53

Part III

Generating Interesting TAGEDs

Randomly

54

Chapter 7
Introduction and related work

Our aimduring the internshipwas to develop efficient algorithms andheuristics

to render the emptiness problem for TAGEDs tractable in as many cases as pos-

sible, in spite of its inherent complexity (EXPTIME-complete). However, while

creating new algorithms in purely theoretical spheres is all well and good, at

some point one has to confront one’s ideas to experimental realities, especially

when the goal one sets out to achieve is efficiency.

Unfortunately we could not find in the literature any well-established exper-

imental protocol or test suite for tree automata with constraints; or even for

vanilla tree automata. In an ideal world, we would have found and used a

large database of “real-world” TAGEDs on which to evaluate our algorithms’

efficiency. Since no such database exists, we had to generate our test TAGEDs

randomly. While work has been done on generating non-deterministic finite

automata [TV05] and deterministic top-down tree automata [HNS09], random

generation of non-deterministic bottom-up tree automata did not seem to have

been studied at all. Therefore, we had to come up with our own approaches to

this problem.

Random generation of automata is not a trivial subject; there are many arbitrary

probabilistic models which can be chosen; how relevant they are depends on

what is expected of “real-life” applications. For us, it was not simply a question

of generating any TAGEDs randomly; we also had to generate automata which

were actually interesting, in the sense that it was necessary that they should

allow us to discriminate between different algorithms for testing emptiness.

Generating thousands of automata, all trivially empty or non empty, would be

a complete waste of time. As we will see in the following sections, meeting this

requirement proved to be a tad more tricky than anticipated. It was a mostly

55

iterative process where we would define a probabilistic model or a generation

algorithm, then implement and test it against our emptiness algorithms and

heuristics. Most of the time, it turned out that the generated automata were

either not representative of real-world applications at all, or much too easily

tractable to be of any value in our experiments. So we would go back to the

drawing board and repeat the cycle with another approach. Fortunately, we

managed to find an approach which was both efficient and satisfying enough,

and a bit of an hybrid of our earlier attempts.

Organisation of this part: There are two logical steps to generating a TAGED: first,

wemust generate a random tree automaton. This is the object of the first chapter,

while the second deals with the random generation of global constraints to turn

our random tree automata into TAGEDs. Note that we only concern ourselves

with global equality constraints, as our algorithms deal exclusivelywith positive

TAGEDs.

Note that this part and the next (which concerns our algorithms for deciding

the emptiness problem) are heavily cross-referenced. It is probably best to skim

through this part at first, and come back to it as needed in order to make sense

of the experimental result of the next part.

Implementation note: Our OCaml implementation of these generation methods

used, unless otherwise specified, OCaml’s standard Pseudo-Random Number

Generator (PRNG), which is described as a Linear feedback shift register (a)

(a) (References: Robert Sedgewick, "Algorithms", Addison-Wesley). It is seeded by a MD5-

based PRNG.

56

Chapter 8
Generating random Tree Automata

In this chapter we propose and discuss four different approaches for generating

random vanilla tree automata.

8.1 First model: dense generation

Our first approach was to try and adapt existing work; in the article [BHH+08a],

the authors generate random TAGEDs in a way close to that described in [TV05]

for non-deterministic finite automata. Let us first summarise their respective

contributions:

⋄ The article [TV05] introduced a probabilistic model for random generation

of Nondeterministic Finite Automata (NFA), focused on the universality

problem. Roughly, in order to generate a NFA (Σ,Q,Q0, F, δ), they choose

the alphabet Σ fixed to Σ = { 0, 1 }, one initial state, an arbitrary number of

states |Q| = 30 – which can be considered a parameter of the model – and

generate the transitions and final states according to the two metrics

r = rσ =

∣∣∣{ (p, σ, q) ∈ δ }
∣∣∣

|Q| ,∀σ ∈ Σ and f =
|F|
|Q| .

The value r can be thought of as the expected out-degree of each node of

the associated graph, for each symbol σ. They argue that those twometrics

r and f , called respectively transition density and final state density, cover

interesting behaviours as they vary. This model has been used for instance

in [DWDHR06], also for the universality problem.

57

⋄ In [BHH+08a], experiments on random Tree Automata were performed

in a manner which was a straightforward translation of [TV05] (a) to the

context of Tree Automata, with |Q| = 20. In this context, they defined the

transition and final state densities as follows:

r =
|∆|{

f (q1, . . . , qn) | ∃q ∈ Q : f (q1, . . . , qn)→ q ∈ ∆ } and f =
|F|
|Q| .

In other words, the transition density is defined as the average number of

different right-hand side states for any given left-hand side of a transition

rule.

This being said, the exact experimental protocol which they followed is

not detailed in the article, and those metrics do not cover all possible

axes; for instance, it is unknown what alphabet Σ they used, and more

importantly, the number of transition rules |∆| is unspecified. Given that

their definition of the density of transitions does not depend directly upon

|Q|, there is no way to deduce it from the other parameters; it could be

pretty much anything.

For the reasons given above, we will not follow exactly the same experimental

protocol as in [BHH+08a] – in particular because, as mentioned, some aspects of

it are undefined in the paper – but we will still retain the ideas of transition and

final state densities introduced in [TV05], which we will adapt to the context of

tree automata.

In this first probabilistic model, hereafter referred to as “generation 1” or

“Gene1” for brevity, we generate a random Tree Automaton by first taking a

fixed alphabet Σ =
{
a, b, c/0, f , g, h/2

}
, and a number of states |Q|, which is a

parameter of our model. Considering that a rule f (q1, . . . , qarity(f)) → q ∈ ∆ is

nothing more than a tuple (f , q1, . . . , qarity(f), q) ∈ Σarity(f) ×Qarity(f)+1, we have

∆ ⊆ ∆ with ∆
def
=
⊎

k∈NΣk ×Qk+1,

and we shall determine ∆ by choosing each rule in the space of all possible rules

∆with probability p∆, another parameter of the model. Lastly, the final states of

F are chosen in the same way: each state q ∈ Q becomes final with probability

pF.

Note that our choice of using probabilities instead of densities was made purely

(a)Though, strangely, they do not cite it.

58

to simplify implementation a bit, and does not change anything when a large

enough number of automata are generated. For instance, in the case of the final

states, if we take X to be the random variable corresponding to the number of

final states chosen, wehaveX ∼ B(|Q| , pF) (whereB is the Binomial distribution),

and so the expected value of X (as well as the median, in fact) is pF |Q|. So on

average we have |F| ≈ pF |Q| and thus pF ≈ |F|/|Q|. Similarly, we have on average

|∆| ≈ p∆
∣∣∣∆
∣∣∣,ie. p∆ ≈ |∆|/|∆|. In other words, for a sufficient number of generated

automata, using probabilities or densities amounts to the same results. The

reader will have noticed that our notion of transition density is different from

that of [BHH+08a]; in our work, it corresponds to the proportion of rules chosen,

out of all possible rules, and not to the average number of right-hand states for

a given left-hand side as in the aforementioned article.

To approximate the probability p∅ that a tree automaton recognises the empty

language as a function of the parameters p∆ and pF, we test emptiness for 200

such generated automata. Experimental results are presented as a collection

of contour plots in figure 8.1, where the different plots correspond to different

values of |Q|, and where darker colours indicate a lesser probability of being

empty. In each graph, p∅ takes values between 1 (white) and 0 (deepest blue).

Let us examine the influence of each parameter of our model – and justify the

choice which we have made of freezing other axes.

⋄ Transition probability p∆: This is the parameter which exerts the most

influence on the results: p∅ diminishes extremely fast as this parameter

grows between 0 and approximately 2
10
, and stagnates afterwards.

⋄ Final state probability pF: This parameter has almost as much influence as

p∆, acting in pretty much the same way, and also seems to stagnate after

approximately 2
10
.

⋄ Size of the states space |Q|: As this grows, the effects of the two previous

parameters grow even more visible. It seems that the problem converges

to a very sharp dichotomy, for |Q| large enough: an automaton with p∆
and pF below a certain threshold – approximately 3

20
– are almost certainly

empty, and beyond that, almost certainly non-empty.

⋄ The ranked alphabet Σ: This was not a parameter of our model, chosen

fixed to Σ =
{
a, b, c/0, f , g, h/2

}
. However, we have conducted similar tests

for the simpler Σ =
{
a/0, f/2

}
, and observed that this does not change the

results in any fundamental way; this parameter seems to have prettymuch

59

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.1 — x = p∆, y = pF, z = p∅, |Q| = { 3, 8, 10, 13, 15, 20 }

60

the same effects as |Q|. Overall, it seems sane to fix this and deal only with

other parameters.

For information, given our choice of Σ, the total possible number of transition

rules
∣∣∣∆
∣∣∣ in the automata is given by the formula

∣∣∣∆
∣∣∣ = 3

(
|Q| + |Q|3

)
, which

yields { 90, 1560, 3030, 6630, 10170, 24060 } for our selection of values of |Q|; so
even for the relatively low values of |Q|which we have used here, our automata

can end up having lots of transitions. This is the main weakness of this first

model: it generates automata which are very dense, and therefore are not very

good representatives of real-world tree automata, which are rarely so. Another

related weakness lies in the fact that rules for symbols of high arity are overly

represented, simply because there are many more possible rules dealing with

high arity symbols than with low arity ones. Given our choice of Σ, this simply

means that we will have comparatively few leaf rules, which is not too bad.

Another choice of Σ, for instance by adding a symbol σ of arity 10, would

generate a set of rules where the numbers of σ-rules completely dwarfs the rest.

Again, this is probably not really representative of real-world automata.

8.2 Second model: sparse generation

We shall try and address some of the weaknesses of the first model in this sec-

ond approach: every notion defined in the previous section still applies unless

explicitly specified otherwise.

The main problems with the high-density model were the high density of gen-

erated automata, and the overwhelming high-arity rules. Our intent is therefore

to alleviate those problems by generating far less rules, and favouring small-

arity rules among them. We shall still select our rules in ∆, but this time instead

of using a fixed probability p∆, we shall make p∆ a function of the arity of the

rules. Furthermore, we shall express the density of the automaton in terms of

the expected in-degree δ, which we define as the expected number of rules which

yield q, for any state q ∈ Q. Thus we define (b)

∀k ∈ N, p∆(k) =

δ

|ArΣ| · |Σk| · |Q|k
if Σk , ∅

0 if Σk = ∅

.

(b)The definition of ArΣ can be found at section 2.1.1[p11], should you need it.

61

We build ∆ in the same way as before, with this new definition: we select each

rule f/n(p1, . . . , pn) → q ∈ ∆ with probability p∆(n). We compute the expected

number of transitions :

|∆| =
∑

k∈N p∆(k) · |Σk| · |Q|k+1 =
∑

k∈ArΣ

p∆(k) · |Σk| · |Q|k+1 = |Q|
∑

k∈ArΣ

p∆(k) · |Σk| · |Q|k

= |Q|
∑

k∈ArΣ

δ · |Σk| |Q|k

|ArΣ| · |Σk| |Q|k
= |Q|

∑

k∈ArΣ

δ

|ArΣ|
= δ |Q| ,

which is coherent with our definition of δ as the expected in-degree of each state,

since we obtain on average δ rules for each state of Q. The in-degrees are nicely

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14

S
t
a
t
e
s

In-Degree

Interpolated distribution
Experimental data points

Figure 8.2 — In-degree distribution, δ = 5

distributed (c), as is shown in figure 8.2[p62]. Each data point (x, y) corresponds

to the number y of states which have an in-degree of x, for 1200 generated Tree

Automata of 20 states each, and for δ = 5. A spline-interpolated curve joining

(c) The exact distribution is difficult to compute in practice, as it is a sum of binomial random

variables. This would be easy to compute if the probabilities were the same, as it is well-
known that if Xk ∼ B(nk, p), then

∑
k Xk ∼ B

(∑
k nk, p

)
, however in this case they have differing

probabilities and this does not apply. Exact and approximate methods for computing this
distribution are discussed in [BSS93]. We have not done it since the result is not important to

this study.

62

the data points has been added as a visual guide. Figure 8.3[p63] shows the

probability that a generated tree automaton be empty, as a function of δ, for

various values of |Q|. Each datapoint was obtained through computation of 500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

P
r
o
b
a
b
i
l
i
t
y

o
f

E
m
p
t
i
n
e
s
s

In-Degree

|Q| = 5
|Q| = 10
|Q| = 15
|Q| = 20
|Q| = 25
|Q| = 30
|Q| = 35

Figure 8.3 — Probability of emptiness as a function of δ

generated automata, for the indicated value of δ and |Q| and a fixed value of

pF =
1
5
.

While more faithful to real-life tree automata in the sense that generated au-

tomata have reasonable density, and balanced rules with respect to arities, this

model proved to be unsatisfactory for our purposes, for two main reasons.

1. Dead branches: Let us anticipate a little bit and jump forward to figure

12.2[p103], ignoring for now its abscissa, which represents a certain density

of global equality constraints. Since we are only interested in vanilla tree

automata for now, we need only read the values for a “corrected base

probability” of zero, that is to say, when no constraints are generated. The

figure shows the ratio

R =
size of generated automata

size of the same, reduced
,

63

where “reduced” means here that the standard reduction algorithm de-

fined in [CDG+07] has been applied, and that useless states have been

removed as per theorem 53[p91]. Note that these two operations are the

only components of the “cleanup” operation which apply on vanilla tree

automata. What this ratio R tells us is in essence how much of the gen-

erated automata is “dead”, that is, unreachable or unconnected to any

final state. R = 30 means that only 1/R = 1/30 of all the states and rules

we generate is actually useful. Needless to say, it is in our best interests

to keep R as close to 1 as possible. But, as we see looking at figure 12.2,

depending on the parameters of the model, R can become quite large,

which greatly biases the results. Indeed, if the size of the underlying tree

automata is cut down considerably by our simplest reduction methods,

without even needing to look at the global constraints, then the efficiency

of the TAGED-specific algorithms risks being grossly overestimated. To alle-

viate this concerns somewhat, we attempted generating raw tree automata

R as large as possible, reducing them, and selecting the first one such that

|Q| comes – after reduction – within acceptable range of our initial aim.

However, this method does nothing against the second criticism we have

against this model:

2. Way too easy. . . As we mentioned in the introduction, our aim is to

generate interesting automata, that is to say difficult cases for our algorithms.

We will see later on that one variable which influences this perceived

difficulty very heavily is the height of the smallest accepted term of the

automaton, if any such term exists. It is clear that if any “leaf-term” is

accepted by the tree automaton, then it is very easy to find (it is a matter

of finding a rule a→ q f , with q f ∈ F, which is trivially done in linear time)

and it is also accepted by any TAGED which extends the tree automaton

(since there is just one node, none of the constraints applies). Therefore,

the probability that a random TAGED be non-empty is at least as great as

the probability that the underlying tree automaton accepts a leaf-term.

So, let us ask ourselves the following question: with this model, what is

the probability that a random tree automaton accepts a leaf-term? Let us

denote L the expected number of generated leaf-rules – that is to say, rules

of arity zero: since the rules are distributed evenly across all arities, we

have

L =
δ |Q|
|ArΣ|

.

By definition, the probability that a given leaf-rule is final if pF. We are

64

looking for the probability that “there exists a final leaf-rule”, ie. “not all

leaf-rules are non-final”. So the probability P which we are looking for is

P = 1 − (1 − pF)
L = 1 − (1 − pF)

δ|Q|
|ArΣ| .

For the value of Σ which we have chosen, we have |ArΣ| = |{ 0, 1 }| = 2 and

let us take, for the sake of example, δ = 2, and as usual pF =
1
5
. Then we

have P = 1 − (4
5
)|Q|. In table 8.1[p65] we compute the values of |Q| required

to achieve certain key values of P: We see that, even for relatively low

P 0.5 0.75 0.9 0.99 0.999

|Q| 3 6 10 20 30

Table 8.1 — Probability of final leaf-rules

values of |Q|, the chances that the generated automaton accepts some leaf

is overwhelming. This is a symptom of a more general problem with

the chosen approach: the generated automata tend to accept very small

terms, if any. We made a doomed attempt to sidestep the problem by

removing all final leaf-rules from the generated automaton, but this was

clearly not enough, as the tests showed that even themost trivial emptiness

algorithms were highly successful on test bases thus generated. In fact,

the failure rate of the brutal algorithm was nearing 0%, regardless of the

size of |Q|.

For the two reasons explained above, the second generation was deemed unsat-

isfactory.

8.3 Third model: skeleton-driven generation

For our third approach to random generation of tree automata, we tried to avoid

the shortcomings observed in the previous generation; it occurred to us that we

had, perhaps, attempted to address the question from the wrong angle. In

the previous approaches, we had focused on defining properties of the random

automatawhichwewere buildingwhile in fact, whatwewere really interested in

were properties of the termswhich they accepted. Recall that themost important

of those properties was the height of the smallest accepted term.

And so, instead of trying to generate automata based on criteria such as |Q|,
δ, etc, we started by randomly generating “shapes”, of “skeletons”, and then

65

only did we generate automata whose recognised terms fit to those skeletons

(ie. are isomorphic to the skeletons). Instead of having a model parametrised by

quantities affecting the automata directly, we built an algorithm parametrised

mainly by the quantities affecting the aspect (width, height,. . .) of the generated

skeletons.

Let us explain in more detail what the skeletons are and how we generate them.

Since we will present snippets of code from the prototype in this section, we

need to begin by introducing the data type we use to represent trees – which is

rather obvious:

1 type α tree = Leaf of α | Node of α × α tree list

2

3 let rec Hei = λ L Height of a tree M

4 | Leaf ⊥ → 1

5 | Node (⊥,nl) → succ ~ L.fold→ max (L.map Hei nl) 0

As an example of using this data type, we have given the definition of the height

of a tree, which is a direct adaptation of the definition given in [CDG+07]. Now,

let us define what we meant by the “width” of a tree:

6 let rec width = λ L Width of a tree M

7 | Leaf ⊥ → 1

8 | Node (⊥,nl) → L.fold→ (+) (L.map width nl) 0

Note that unlike “height”, this is not the only way we could have written this

definition (d). Consider for instance the following tree (e)

x

x

x x

x

x x

x

x x
x

x x
x

x

By our definition, it has a width of 6, but one could observe that at no point

does any level of the tree have a width greater than 2, and this could be the basis

for another definition of “width”. In our experiments, we will stick with the

definition which we have initially chosen though.

(d)Although in the case of height, one could legitimately choose a height of either 1 or 0 for
leaves.

(e)This particular shape of trees is called a peigne in French, but the English equivalent escapes

me for now.

66

With this in mind, a skeleton is a tree which we generate within certain con-

straints of height and width. In theory we do not need to decorate the nodes at

all, but in practice we will use the nodes to store their number of children (or

arity). So for instance the following tree ts

ts = 2

3

1

0

0 0

1

0

is a skeleton, of height and width equal to 4. In order to generate our skeletons,

we use the simple, ad-hoc algorithm reproduced below. A few parameters and

functions deserve some explanations:

⋄ Parameter depth: the required height for the tree

⋄ Function random_breakdown x n: function which returns a list [x1, . . . , xn]

such that
∑n

k=1 xk = x. The exact values of each xk are chosen randomly

within those parameters. Of course the function assumes the precondition

n > 0 ∧ x 6 n.

⋄ Parameter girdle: an upper bound on the width of the generated tree.

During the generation, which is done recursively, this quantity is split at

random between the children after the arity of the current node is chosen.

⋄ Parameter looseness: [default=1]: determines how many branches must

be protected, that is to say, cannot be cut before reaching the appointed

height. Unprotected branchesmaybe cut prematurely, if they have a girdle

of 1 (that is to say they cannot branch off, and none of their children, if

they have any, will branch off) and an arity 0 is selected for them.

9 type skeleton = int tree

10 let build_skel looseness girdle depth =

11 let rec flag_protect n = λ

12 | a :: l → (a, n > 0) :: flag_protect (pred n) l

13 | ∅ → ∅

67

14 in let rec build depth (girdle, protected) =

15 assert (girdle > 1 ∧ depth > 0);

16 match depth with 0 → Leaf 0 | ⊥ →

17 let arity = min 3 (

18 if girdle = 1 ∧ ¬protected

19 then Random.int (girdle + 1)

20 else 1 + Random.int girdle

21) in

22 L split remaining girdle between children at random M

23 let girdles = flag_protect looseness (random_breakdown girdle arity) in

24 if arity = 0 then Leaf 0 else

25 Node (arity, L.map (build(depth − 1)) girdles)

26 in build depth (girdle,true)

Now that we can generate skeletons within our specifications, let us see howwe

can generate tree automata based on them. As for the previous generations, we

first need to define the alphabet which we will be working with. Let us define

Σn def
=
{
a1, . . . , an/0, f1, . . . , fn/1, g1, . . . , gn/2, h1, . . . , hn/3

}
.

In practice, we have chosen to take five symbols for each arity, sowe areworking

with Σ5. With this in mind, the following algorithm generates a random set of

rules, based on a skeleton. The rules which we generate, once integrated to a

tree automaton, enable it to accept a number of terms isomorphic to the input

skeleton. For instance, taking again our example skeleton ts, we can generate

rules to recognise the terms t1, t2, t3, and potentially many others.

ts = 2

3

1

0

0 0

1

0

t1 = g1

h3

f2

a2

a1 a5

f4

a4

t2 = g2

h3

f2

a3

a1 a2

f1

a2

t3 = g5

h5

f2

a2

a3 a3

f2

a1

Again, a few explanations are warranted for some of the algorithm’s parameters

and functions (f):

(f) And, in case any OCaml programmer wonders where the return keyword comes from, it is
of course just syntactic sugar – a synonym to the identity function, in fact – to emphasise that

we are returning the fresh state qx.

68

⋄ Parameter δ: this is a bit similar to the δ fromgeneration 2, where it denoted

the average in-degree of the states, in that it determines the (maximum)

number of rules which we generate for each state. In practice we have

chosen δ = 2.

⋄ Function fresh_state: generates a new state for use in the automaton, never

used before – hence fresh.

⋄ Function gene_symbol k : returns a symbol in Σ5
k
, uniformly at random.

27 let conversion δ skel =

28 let ∆ = ref ∆.∅ in

29 let make_rules ar [q1, . . . , qn] q m = for k = 1 to m do

30 let σ = gene_symbol ar in ∆.←֓ (σ,[q1, . . . , qn],q) ∆

31 done in let rec f = λ

32 | Leaf 0 →

33 let qx = fresh_state() in make_rules 0 ∅ qx δ; return qx

34 | Node (ar, subs) →

35 let qx = fresh_state() and [q1, . . . , qn] = L.map f subs in

36 make_rules ar [q1, . . . , qn] qx δ; return qx

37 in let head = f skel in (!∆, head)

Note that the algorithm yields a couple (∆, qh), where ∆ is the set of rules we

wanted, and qh is the “head state”, that is to say the state to which the accepted

terms evaluate. It is intended to be used as a final state of the final automaton.

So, to sum it up, we generate tree automata thusly:

1. First, we generate a number of random skeletons, within some constraints

of height, maximumwidth etc. Let us denote S = { s1, . . . , sn } the set of our
skeletons.

2. Second, we convert each skeleton into a set of transition rules using the

above conversion function. We obtain a set of rule sets R = {∆1, . . . ,∆n };
we make it so that the states used each ∆i do not appear in any ∆ j, for

i , j ∈ ~1, n�.

3. We put all those rules together, ie. ∆ =
⋃

R, and extract the set Q of all

states which appear in at least one of the rules of ∆. As for the final states,

we take them to be the “head states” returned by the conversion function.

69

Note that, unlike previous generations, the generated automata are already

completely reduced – it is indeed clear that all the states are reachable, and there

are no useless states – as defined in theorem 53[p91], as all states actually serve to

build a final state.

In practice we took the height h to be the sole parameter of our model, and

generated three skeletons of depth taken randomly and uniformly in [h/2, 3h/2],

with girdles of h/4. Table 8.2[p70] gives statistics regarding the size of generated

automata. As is clear from the table, the automata become quickly very size-

Height |Q| Size Size/|Q| Rules Rules/|Q|

4 13.55 90.46 6.68 24.38 1.80

10 45.37 321.51 7.09 81.59 1.80

16 131.49 943.11 7.17 236.85 1.80

22 225.94 1620.27 7.17 406.52 1.80

28 389.99 2799.82 7.18 702.94 1.80

34 546.40 3928.71 7.19 982.75 1.80

40 835.23 6006.02 7.19 1504.01 1.80

46 1056.55 7606.87 7.20 1901.65 1.80

52 1403.94 10111.12 7.20 2526.44 1.80

58 1615.25 11633.75 7.20 2908.14 1.80

64 2145.28 15443.11 7.20 3861.08 1.80

70 2467.94 17767.11 7.20 4441.51 1.80

76 2968.86 21373.16 7.20 5344.01 1.80

Table 8.2 — Generation 3: size statistics

able, which turned out be be a major point against them. In our study of the

emptiness problem, we have developed both exponential decision algorithms

and polynomial methods (called “cleanup”) for reducing the size of TAGEDs

prior to using the more expensive algorithms. However, with underlying tree

automata as big as those, the cleanup algorithms became a bit of an overhead –

the “difficult” algorithms were equipped with timeout facilities; not so for the

“easy” cleanup. When generating a graphwith a few dozens data-points, where

each point must involve a few hundred generated automata in order to become

statistically significant, this overhead quickly became a deal-breaker.

Another, more serious point against this method is that, while it completely

solves the problem of accepting small termswhichwe suffered fromwhen using

the second generation, the generated automata have a very “rigid” structure,

with each state appearing at most once in accepted terms. Furthermore, for

70

any state q, all the rules in Rul(q) share the same signature. This last point was

a major drawback, as it made those automata trivial instances for one of our

emptiness algorithms. Thus this approach could not be considered to generate

interesting enough automata for our purposes.

8.4 Fourth model: hybrid generation

The fourth (and last) approach that we tried was something of a hybrid of pre-

vious generations, notably 2 and 3. While we did not continue using skeletons,

the idea of fixing the minimum height of recognised terms remained, as it was

essential to avoid the pitfalls of generation 2. However, the aim was also to

avoid having too rigid a structure, as opposed to generation 3.

So, the fourth generation is focused on two main parameters: the minimum

height of terms, and the aspect of the set of rules. This time, we tried to achieve

“difficult” cases by enabling the generation of all kinds of rules, for instance

rules with immediate cycles (f (. . . , q, . . .) → q), repetitions of the same state

(f (. . . , p, . . . , p, . . .) → q), and also rules of the form f (. . . , p, . . .) → q, where p

is an “old” state, as opposed to a freshly generated state. None of these kinds

of rules could be generated by the third generation: all generated rules were

of the form f (p1, . . . , pn) → q, where the pk were all distinct, and the terms in

Lng (A, pk
)
were all exactly of the same height h, and those inLng (A, q)were of

height h+ 1. As for the second generation, such rules could have been produced,

but the odds against them actually coming into play were overwhelming, given

the huge proportion of simple cases (leaf terms etc) which was characteristic of

the second generation. Another requirement was that for each q, the signatures

of the rules of Rul(q) were sufficiently varied. As stated in the previous section,

with the third generation, if you have a rule, say f (p1, . . . , pn) → q ∈ ∆, then it

follows that Rul(q) ⊆ { σ(p1, . . . , pn)→ q | σ ∈ Σn

}
, so any rule r ∈ Rul(q) is such

that Ant(r) =
{
p1, . . . , pn

}
. This property was not representative of real world

tree automata, andmade the automata trivial instances of one of our algorithms

for testing emptiness. We also wanted to avoid generating too many useless

branches, which would be cut off by trivial observations; that is to say, we

wanted to keep the ratio R, as defined for the second generation, to a low value.

And lastly, we wished to keep the automata to a reasonable size, focusing on

generating “difficult” instances, rather than “large” ones.

In short, the aim was to keep most of what we found interesting in the previ-

ous generations, without any of their shortcomings. Fortunately, the approach

71

which we will now discuss seems to manage that.

The fourth generation algorithm is not difficult in any way, but as it is a bit

long (about two full pages), we will not give the full implemented code but

instead draw and explain a very rough outline: see figure 8.4[p72]. Note that

we are working with the same alphabet as the third generation, namely Σ =

Σ5. Of course, this outline leaves many things in the dark: for instance,

Data: minimum height, a number of other parameters

Result: a random tree automaton

begin
pool← some head states from small Gene3 terms;

∆← rules from Gene3 for pool;
while minimum height not reached do

q← fresh state;

δ← random number of rules;

for δ times do
n← random arity;

σ← random symbol in Σn;

purge too old states from pool;
p1, . . . , pn← random states from pool;
add rule σ(p1, . . . , pn)→ q to ∆;

endfor

add q to pool;
endw

F← random states in pool;
return tree automaton based on ∆ and F;

end

Figure 8.4 — Rough outline of Generation 4 algorithm

each time something is selected at “random”, one can wonder about the exact

implementation of these random selections:

⋄ Random number of rules and arity are selected with a certain discrete

probability distribution, which is hard-coded in the algorithm using the

w_choice function described below.

⋄ Random symbols in Σn are selected uniformly.

⋄ Randomstates from thepool are selectedaccording toadiscreteprobability

distribution which is itself a function of the minimum height of terms

72

which evaluate to q. The distribution is biased to favour states which

recognise bigger terms. This is an important idea of the algorithm, which

allows the generated automata to keep an acceptable size while allowing

Height |Q| Size Size/|Q| Rules Rules/|Q|

4 6.89 43.49 6.31 11.30 1.64

10 18.14 119.84 6.61 27.12 1.50

16 29.58 196.94 6.66 43.13 1.46

22 41.31 276.70 6.70 59.67 1.44

28 52.58 353.26 6.72 75.47 1.44

34 64.47 434.65 6.74 92.36 1.43

40 75.38 507.81 6.74 107.55 1.43

46 87.00 588.54 6.76 124.14 1.43

52 99.45 672.86 6.77 141.87 1.43

58 110.41 745.74 6.75 156.70 1.42

64 122.41 826.10 6.75 173.27 1.42

70 133.68 903.50 6.76 189.26 1.42

76 145.09 981.29 6.76 205.39 1.42

Table 8.3 — Generation 4: size statistics

enough variety in their rules.

⋄ Old states to bepurged from thepool are stateswhose associatedminimum

height has become too low compared to the greatest associated height

which has been generated. In other words, if you are currently building

the top of the tree, you avoid reusing states from the bottom of the tree.

The degree of tolerance for old states is called cohesion, and is a parameter

of the procedure. Tighter cohesionmeans smaller, more focused automata.

Let us say a few more word about how the “pool” works. What we call pool

is the set of states for which we have generated rules so far. Initially, we create

a few sets of rules accepting small terms using the third generation. We store

those rules in ∆, and put the head states (g) of those rule sets into the pool. For

each q in the pool, we also keep track of the minimum height of terms which

evaluate to qwith respect to ∆. Let us denote it by m(q). Since Gene3 is directed

by the height, this quantity is known for the generated head states. Let us denote

the pool by P =
{
p1, . . . , pn

}
, and let b : N→ N be a function which we will call

(g)See previous section

73

“bias”. Then, when we want to get states out of the pool, we select a random

state X following the probability mass function:

∀i ∈ ~1, n� , P (X = pi
)
=

b ◦m(pi)∑n
k=1 b ◦m(pk)

.

The implementation of such a choice is straightforward:

1 let w_choice wlist =

2 let ⊥,weights = L.split wlist in

3 let totalW = L.fold→ (+) weights 0 in

4 let rec f dart = λ

5 | (item,w) :: tl → if dart 6 w then item else f (dart − w) tl

6 in λ()→f (1 + Random.int totalW) wlist

The call ofw_choice [(x1,w1), . . . , (xn,wn)] returns a functionwhich, when called,

returns xi with probability wi/
∑n

k=1 wk. The remaining point to discuss is the

choice of the bias b; it should be strong enough to favour states with a greater

minimum height, but not so much so as to completely forbid the use of older

states. We have chosen it to beb(w) = (w − h + d + c)2 ,

where

⋄ h = maxp∈P m(p) – in other words, it is the greatest minimum height asso-

ciated with the states we have generated so far.

⋄ c is the cohesion value, mentioned higher up. The cohesion requires the

property ∀p ∈ P : h − c 6 m(p) 6 h to be an invariant. Its default value in

our experiments was 2.

⋄ d is the “damping”. It follows from the cohesion invariant that∀p ∈ P : d 6

m(p)−h+d+c 6 c+d. The value d is chosen to be (an approximation of) the

solution to the equation (d + 2)2 = 2d2. So by taking d ≈ 2(1 +
√
2) ≈ 5, we

make it so that states two ranks higher than another have a twice greater

chance of being selected than that other state.

Note that actually, for the choice of final states, the bias is stronger than for an

ordinary choice: b(w) = (w − h + d + c)4.

To conclude this description of the modus operandi of the fourth generation, let

us give the distributions used in our tests for arities and number of rules:

74

7 let new_arity = w_choice [1,2 ; 2,3 ; 3,1] in

8 let new_delta = w_choice [1,70; 2,25; 3,2; 4,1; 5,1; 6,1] in

As it turned out, this method generates sufficiently interesting random tree

automata for our purposes – we will discuss that in the next part, and satisfies

the wishes expressed at the beginning of this section. See for instance table

8.3[p73] which shows that the size of generated automata is quite reasonable –

especially compared to table 8.2[p70]; and figure 12.4[p104] which shows a very

satisfactory ratio R = 1.15, regardless of height. Note that this ratio is due solely

to useless states (53[p91]), since the generated automata are reduced by design.

On a side-note, this generation proved to be useful for generating good “human-

readable” examples of TAGEDs satisfying someproperties: we implanted a simple

procedure which, given a predicate p on TAGEDs and – optionally – a comparison

function ≺ between TAGEDs, yields the best (≺-wise) random TAGED satisfying

p which it could find in reasonable time. Fourth generation random TAGEDs

seem to be varied enough that this approach works quite well for pretty much

anything. For instance the example automata of section 12.4[p105] were generated

using this method.

A significant anecdote in that respect is that fourth generation automatawere the

only ones to trigger an assertion, buried deep into the code, which highlighted

a lurking bug in the implementation of the reduction algorithm (h). Before that

time many experiments had been done with the previous generations, and that

part of the code had been triggered at least several hundred thousand times,

without ever covering this – rather involved – edge case.

(h) The previous generations were useful in finding other bugs though, but nomore than Gene4

would have been.

75

Chapter 9
Generating random Constraints

In this chapter we discuss different methods for generating equality constraints

and bridging the gap between the random tree automata which we generate

through the four random generation approaches outlined in the previous chap-

ter, and random positive TAGEDs.

9.1 First model: dense generation

Jointly to our first random generation model, we shall take p∆ and pF fixed to

appropriate values p∆ =
11
100

and pF =
1
5
, which will ensure that a small propor-

tion of generated underlying Tree Automata are empty for most values of |Q|.
As for |Q|, it will be a parameter of our model, as it is a value which bounds

the running time of the algorithms, thanks to the pumping lemma for positive

TAGEDs [FTT08b, Lemma 2(Appendix)]. Another parameter which seems self-

evident is the density of equality constraints, which we would think of as a

value d=
def
= |=A |/|Q|2. In practice, we use a probability p. For each couple (p, q) ∈ Q2

such that p 6 q for an arbitrary ordering ofQ, we choose p =A qwith probabilityp, and compute the symmetric closure of this after all choices have been made.

Note that because of the additional requirement that the relation be symmetric,p and the hypothetic density d= appear to be fairly different metrics. However,

the probability that p =A q, for p, q ∈ Q chosen randomly (and uniformly), is stillp, and we shall make use of that fact.

With this model it is fairly easy to evaluate explicitly the impact of trivial op-

erations, for instance simplification by removal of spurious rules; see definition

76

57[p93]. We have, as an immediate consequence of the definition of ∆,

∣∣∣∆
∣∣∣ =
∑

k∈N |Σk| · |Q|k+1 and |∆| = p∆
∣∣∣∆
∣∣∣ = p∆

∑

k∈N |Σk| · |Q|k+1 ,

and bearing in mind that a rule f/n(p1, . . . , pn) → q will not be spurious if and

only if (pi, q) <=A, ∀i ∈ ~1, n�, and that those events are independent, and each

happenswith the same probability (1−p), it follows that the rule is non-spurious

withprobability (1−p)n. Finally, ifwedenote∆g the set of “good” (non-spurious)

rules, then we have on average

∣∣∣∆g

∣∣∣ = p∆
∑

k∈N(1 − p)k · |Σk| · |Q|k+1 .

Then if we are to randomly generate equality constraints for our first model of

random tree automata, we will obtain on average the following ratio between

good rules and all rules:

∣∣∣∆g

∣∣∣
|∆| =

1 + (1 − p)2 |Q|2
1 + |Q|2

.

This converges very quickly towards (1 − p)2 as |Q| grows. Notice that this

depends on neither p∆ (because it was simplified away), pF (because final states

are irrelevant to a rule being spurious or not), nor |Q| (because the convergence is
very quick, it makes virtually no difference beyond, say, |Q| = 10). Figure 9.1[p78]
shows the good rules ratio as a function of p. Four curves are shown – although

the naked eye may have difficulty in telling them apart: the theoretical limit

ratio (1−p)2, the theoretical ratio at |Q| = 15 – which is almost indistinguishable

from the limit – and the experimental ratios, obtained by averaging the actual

ratios for 200 generated TAGEDs, for two different PRNGs. The first curve was

obtained with the default LFSR, and the second with a Mersenne twister. As

expected, both curves follow the theoretical ratio very closely (a).

Note that the ratio was determined by our choice of Σ in this model; with

a different alphabet the limit theoretical ratio would be (1 − p)N, where N =

max f∈Σ arity(f). This is a consequence of the remarkmade about the high density

model, that high arity rules completely overwhelm rules of lesser arity.

(a)The experiment was unneeded given that the ratio was easy to compute exactly. It was

done nevertheless to ascertain that the implementation was not blatantly incorrect, and test the

PRNGs.

77

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

G
o
o
d

R
u
l
e
s

R
a
t
i
o

Probability of =A Constraint

theoretical limit ratio
theoretical |Q|=15 ratio
LFSR experimental ratio

Mersenne experimental ratio

Figure 9.1 — Theoretical |∆g|/|∆| ratio and experimental data at |Q| = 15

9.2 Second model: sparse generation

In the first model, we had taken constraints p =A q uniformly in Q2 – notwith-

standing symmetry. But in our experience, it seems that constraints of the form

q =A q are in fact slightlymore common than the general form. It seems therefore

pertinent to introduce a bias in favour of those constraints. Furthermore, we

have the same problem with constraints as we had with transition rules: too

high density. In practice, TAGEDs seem to require a rather small number of con-

straints; thus going through the full range of |=A| = 0 to |Q|2 seems like overkill.

With those two remarks in mind, we devise the following random model:

Let b ∈ R+ be the bias in favour of diagonal constraints – that is to say, con-

straints of the form q =A q – and p0 ∈ [0, 1/1+b] the base probability of choosing a

constraint. Then we define

∀p, q ∈ Q : p 6 q, p(p, q) = { p0 if p < q

(1 + b) · p0 if p = q

and proceed from there in the sameway as before: for (p, q) ∈ Q2 such that p 6 q,

we choose p =A q with probability p(p, q), and then compute the symmetric

78

closure. Overall we can expect on average a total number of rules of

|=A| = p0 · (|Q|2 − |Q|) + (1 + b)p0 · |Q| = p0 |Q| · (|Q| − 1 + 1 + b)
= p0 |Q| · (|Q| + b) ,

and the ratio of diagonal constraints among chosen constraints, which we will

denote Dr for short, becomes

Dr =

∣∣∣{ (q, q) ∈=A
}∣∣∣

|=A|
=

(1 + b)p0 · |Q|p0 |Q| · (|Q| + b) = 1 + b
|Q| + b

Note that in the case where b = 0, that is to say there is no diagonal bias, we end

upwith exactly the samemodel as before. Of course, we didn’t go to the trouble

of introducing b not to use it; the question is which value would be appropriate

for it? Suppose that we take it to be a constant; for instance b = 1. This means

that a diagonal constraint has twice as great a chance of being selected as a

non-diagonal one. Is this really as great an advantage as it sounds? We have

lim
|Q|→+∞

Dr = lim
|Q|→+∞

1 + b
|Q| + b = 0.

So, regardless of how huge a bias we decide on, so long as it remains a constant,

diagonal constraints are overwhelmed by non-diagonal ones, simply because

there are only |Q| diagonal constraints available, but |Q|2 constraints in all. What

we would like to do is to have a fixed ratio of diagonal rules, no matter the size

of the automaton; for instance, we would like for half of our constraints to be

diagonal. What bias do we need to get that? Let us denote bk the bias such that

Dr = 1/k, for some k > 0. It is solution to the equation

1 + bk

|Q| + bk

=
1

k
and so bk =

|Q| − k

k − 1
and p0 ∈

[
0,

k − 1

|Q| − 1

]
.

Note that, if we choose b = bk, then |=A| 6 k |Q|, the equality holding wheneverp0 is maximal. In other words, the expected number of constraints evolves

linearly with the size – whichwe take |Q| to be the indicator of – of the generated

automata. This is consistent with the spirit of the second, low-density model for

tree automata, where the number of rules were also proportional to the size of

the states space, and consistent with our practical observations as well. For our

tests, we take b = b2 = |Q| − 2 and p0 ∈
[
0,

1

|Q| − 1

]
.

79

Now that this is settled, we must concern ourselves with trivial cases, just as

we have done for the part of the model concerned with vanilla tree automata.

The trivial cases were then empty automata (ie. accepting the empty language).

Here, the trivial cases are diagonal positive TAGEDs, which, as we have seen, can

be dealt with quite easily. Figure 9.2[p80] shows the probability of generating a

diagonal TAGED, for different values of |Q|. Formally, this probability – which we

will denote Pd – can be computed as follows:Pd = (1 − p0)
1
2 |Q|·(|Q|−1).

Note that, although the expression does not appear to depend on the bias, it

depends on p0 whose range is dependent on the value of b. Looking at the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25

P
r
o
b
a
b
i
l
i
t
y

o
f

D
i
a
g
o
n
a
l
i
t
y

Base Probability

|Q| = 5
|Q| = 7
|Q| = 10
|Q| = 20
|Q| = 30

Figure 9.2 — Probability Pd as a function of p0

figure, one sees that simple configurations, that is, low values of |Q| and p0,

are very likely to generate diagonal automata, while less simple ones are very

unlikely to do so. This is coherent with intuition and observations. When one

writes a small, simple positive TAGED, it is very likely to be diagonal; in fact most

of those the author had to deal with in his work so far were diagonal. Figure

9.2 also shows a peculiarity of the model: the changing range of the probabilityp0. Since this value depends on b it also depends on |Q|, which tends make the

model a bit cumbersome to work with in practice. One would prefer to have

80

a parameter taking a fixed range of values. So instead of using p0 directly we

shall use the corrected base probability pb:pb = (1 + b) · p0 or equivalently p0 =
pb

1 + b .
The advantage of using pb is that it always lives in the range [0, 1]. Compare

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
o
b
a
b
i
l
i
t
y

o
f

D
i
a
g
o
n
a
l
i
t
y

Corrected Base Probability

|Q| = 2
|Q| = 3
|Q| = 5
|Q| = 7
|Q| = 10
|Q| = 20
|Q| = 30

Figure 9.3 — Probability Pd as a function of pb
figure 9.2 to figure 9.3[p81], which shows the same curves, but this time as func-

tions of pb.
In the end, there are two simple parameters to this model: b, which we have

conveniently fixed to the appropriate value b2 and will not need to touch again,

and pb ∈ [0, 1].
Experimental results of this model with respect to the cleanup operation are

presented in section 12.3[p102].

9.3 Third model: logarithmic generation

In practice, jointly with the fourth generation of random tree automata, we gave

up using the second model of constraints generation because we observed that

81

the resulting TAGEDs did tend to become more and more frequently empty as

their size grew, which we took to mean that there were too many constraints.

Furthermore, it is legitimate to suppose that real-world TAGEDs would not nec-

essarily see the numbers of constraints grow linearly in their size. For instance,

if a TAGEDs is the result of transformation effected under rewriting rules, the

number of constraints could remain constant, though the underlying tree au-

tomaton become increasingly large. As a compromise, we fell back on a number

of constraints logarithmic in |Q|. We believe this choice does not affect the com-

plexity class in which emptiness falls – ie. even with a logarithmic number of

constraints, the problem remains EXPTIME-complete. However some work

would be needed in order to confirm this intuition. The algorithm to generate

Data: set of states Q

Result: a set of random constraints

begin
Csts← ∅;
for max

(
1, log10 |Q|

)
times do

q, p, p′← random states in Q (uniform);

add
{
(q, q), (p, p′), (p′, p)

}
to Csts;

endfor

return Csts;
end

Figure 9.4 — Very simple constraints generation algorithm

the constraints is exceedingly simple, and given in the figure 9.4[p82]. Note that

we keep the same bias towards diagonal constraints whichwe had in the second

model: roughly half the constraints are diagonal.

In practice, this simple model proved to be sufficient, and used in conjunction

with the fourth generation of random tree automata, kept some balance between

emptiness and non-emptiness of the resulting TAGEDs, which is of course what

we aimed at.

82

Chapter 10
Conclusion

In this part we have explored ways of generating random TAGEDs, and in so

doing conceived, implemented and tested four methods for generating random

tree automata, and three for generating equality constraints.

From our experiments it appears that, while there are many possible ways of

generating random tree automata, making them actually interesting is not quite

as straightforward as one might have expected. Our initial attempts to adapt

established experimental methods from the world of word automata [TV05],

presented in sections 8.1[p57] and 8.2[p61] have turned out to generate absolutely

trivial tree automata, and therefore trivial TAGEDs, from the point of view of the

emptiness problem at the very least.

The aim of this study was in no way to be either exhaustive or profound, but

simply to create, withoutwasting toomuch time, an experimental protocol fit for

the evaluation of our own specific algorithms on our own specific problem, and

wedidnotpush this survey any further thanwe strictly needed to. Nevertheless,

it served to highlight the lack of coverage of this area in the literature, and the

dangers of being both the designer of an algorithm and that of the home-made

experimental system intended to test it. For instance, the experimental results

of the brutal algorithm (see 15[p131]) with the second generation were excellent,

and only the fact that this clashedwith our expectations for it lead us to question

the quality of our experimental protocol. In the absence of efficient reference

algorithms, test beds and implementations – which is the case for TAGEDs and

othernewflavoursof tree automata – andwithout any a priorinotions concerning

the practical efficiency of a new algorithm or heuristic, it is only too easy to

confuse bad protocols and good results.

In the light of this, we think that it would be both interesting and highly useful

83

to continue this study of random generation of tree automata and extended

tree automata in a more systematic way. Retrospectively, the time allocated to

the internship could have been better spent if this part had been done earlier –

instead of in the second half, as it happened. The ability to test ones algorithms

proved extremely helpful both as a source of inspiration for their development,

and as ameans of ensuring correctness of the implementation. Several lingering

bugs in the implementation, some of them rather severe, were indeed revealed

by randomly generated automata.

It would also certainly be educational to revisit the experiments regarding the

membershipproblemdoneduring the internship (see for instance section4.2[p34])

using random TAGEDs.

84

Part IV

TAGEDs and the Emptiness Problem

85

Chapter 11
Introduction

The main theme of the internship was to tackle the emptiness decision problem

for positive TAGEDs.

Definition 46 (Emptiness decision problem).
Input: A, an automaton (in this case a positive TAGED)

Output: Lng (A) = ∅ ?

This problem arises in many circumstances, for instance in model checking the

question of whether a “bad” state is reachable translates to emptiness of the

automaton accepting the intersection of the language of bad states and that of

reachable states. In the context of queries over tree languages (such as TQL),

for which TAGEDs have been initially created, decidability of query languages

reduces to emptiness of (sub-classes of) TAGEDs [Fil08].

Decidability of the emptiness problem for TAGEDs in general remained an open

problem for a while, but it recently turned out to be decidable, although the

precise complexity of the problem is still unknown. These findings are still

drafts though, and do not appear to have been officially published yet. The

draft of the article [GJV] is available online (a).

More is known about the two main subclasses of TAGEDs: positive and negative

TAGEDs. As shown in table 2.2[p19], the emptiness problem of in NEXPTIME

for negative TAGEDs, and EXPTIME-complete for positive TAGEDs – and this

is the best known lower bound for the complexity of emptiness of TAGEDs.

[Fil08, FTT08b, GJV].

(a) On http://www.lsi.upc.es/~ggodoy/papers/globalconstraints.pdf.

86

http://www.lsi.upc.es/~ggodoy/papers/globalconstraints.pdf

As mentioned before, in this work we will exclusively be interested in positive

TAGEDs, and our objectivewill be to find algorithms for solving it in “reasonable”

time, within the boundaries of the possible, of course.

Even though the problem is EXPTIME-complete, there are cases where sim-

ple observations can be enough to conclude, and if they are not, might still

give ways in which the automaton can be trimmed down without changing its

recognised language. If those operations remain fairly inexpensive compared

to a more general algorithm, using them before running more expensive tests

would appear to be a good strategy.

In the next chapter, we will introduce several such inexpensive tactics to reduce

the problem as much as possible (chapters 12[p88] and 13[p107]), detect and deal

with easy cases (chapter 14[p118]), and one – expensive – tactic (chapter 15[p131]) to

deal with the remainder. All those tactics are linked together through a global

strategy which is presented in chapter 16[p139].

Note that in every definition and theorem which follows, we will assume –

unless otherwise specified – that we are dealing with a reduced (b) TAGED A =
(Σ,Q, F,∆,=A,,A) (cf. definition 2[p17]), and we may use those notations without

reminders.

(b) By the standard reduction algorithm for tree automata. cf. [CDG+07] and algorithm 12.1[p91].

87

Chapter 12
Cleanup: hunting for spuriousness

In this chapter we will show that the presence of a global equality constraint

may render a number of transition rules and states visibly inoperative. Those

rules and states will be called spurious if it is clear that their use would fatally

be in contradiction with the equality constraint, and therefore that they can be

removed without altering the language recognised by the TAGED.

This chapter formalises and justifies this notion of spurious constructions and

presents algorithms to sanitise TAGEDs, that is to say, to remove all spurious

constructions from the automaton. This operation can be seen as an extension

of the reduction algorithm for vanilla tree automata to positive TAGEDs. The aim

is not yet to decide emptiness – though this might happen in trivial cases where

all final states are spurious, for instance – but to lighten the load of the general

algorithms which will. To this endwe will also introduce a simplification which

applies even on vanilla tree automata.

Of course, the computational cost of this sanitising operation remains negligible

compared to that of the general algorithms presented in the next sections.

The last section gives some experimental results obtained on random TAGEDs.

12.1 A theory of spuriousness

Let us begin with an observation which applies to vanilla tree automata as

well as TAGEDs; the classical reduction algorithm given in [CDG+07] removes

from the automaton all those states which are not reachable and thus contribute

nothing. However this does not mean that every reachable state does contribute

something; if a state has no possible use whatsoever in building an accepted

88

term, that is to say, if that state is neither final nor usable in a run which leads to

a final state, then it is useless and can safely be removed, even if it is reachable.

Of course, by “safely” we mean that the language accepted by the automaton is

not affected in any way by this operation. This is the object of theorem 53[p91];

first let us introduce two simple definitions for syntactic convenience:

Definition 47 (Associated rules). LetA be a TAGED and q ∈ Q. The the associated

rules of q are defined as Rul(q)
def
=
{
r ∈ ∆ | r = f (. . .)→ q

}
.

Definition 48 (Antecedents). Let A be a TAGED and r = f (q1, . . . , qn) → q ∈ ∆.
We call antecedents of r, and denote Ant(r), the set

{
q1, . . . , qn

}
.

With these definitions, let us express the idea that for each state, say, q, there are

a limited number of rules which could have produced it – the rules in Rul(q) –

and therefore in a run, q’s children can only be chosen among those states which

are antecedents to one one those rules. This is what we can potential requirements

of q: the set of states which can, potentially, appear as direct children of q in a

well-formed run.

Definition 49 (Potential requirements). Let A be a TAGED, and let q ∈ Q. The

potential requirements of state q are defined as

pReq(q)
def
=
⋃

r∈Rul(q)
Ant(r).

Now, we can generalise this notion: if only a few states, say, pk, can be q’s

children, then only the states which can be pk’s children for some k – ie. are a

potential requirement of pk – can be q’s grand-children. . . And thus we define

the set of all states which can appear under q, either as direct children, grand-

children, etc. We call these states “friends of q”.

Definition 50 (Friend states). Let A be a TAGED, and q ∈ Q. We define Frnd(q)

as the smallest subset of Q satisfying the two following properties:

1. pReq(q) ⊆ Frnd(q)

2. if p ∈ Frnd(q) then pReq(p) ⊆ Frnd(q)

The next lemma formalises and justifies what we have been saying informally:

it states and proves that if a certain state q appears in a well-formed run, then

we know that all the states which appear under q are its friends.

89

Lemma 51 (“Rely on your Friends” principle). LetA be a TAGED, t ∈ T (Σ) a term,

and ρ a run of the underlying tree automaton ta (A) on t. Then the following holds :

∀α, β ∈ Pos(t) : β ⊳ α =⇒ ρ(β) ∈ Frnd (ρ(α)).
Proof. We will prove the equivalent statement ∀α ∈ Pos(t),∀β ∈ Pos(t) : ∃n > 1 :

β ⊳n α, ρ(β) ∈ Frnd
(
ρ(α)
)
by induction on n. Let α ∈ Pos(t), fixed but arbitrary.

1. (base case) let β ⊳1 α; then β is a direct child of α. It follows immediately

from definition 49[p89] that we have p ∈ pReq(q) ⇐⇒ ∃ f (. . . p . . .)→ q ∈ ∆,
and thus if we were to assume that ρ(β) < pReq

(
ρ(α)
)
, it would follow that

there is no rule f (. . . ρ(β) . . .)→ ρ(α) ∈ ∆, which would imply that ρ is not

compatible with the transition rules and is therefore not a run. Since ρ is

in fact a run this is absurd, and ρ(β) ∈ pReq (ρ(α)) ⊆ Frnd (ρ(α)).

2. (inductive case) let us assume that, for some n, ∀β ⊳n α : ρ(β) ∈ Frnd (ρ(α)).
Letγ ∈ Pos(t) such thatγ ⊳n+1 α; then,Pos(t) beingprefix-closed, theremust

exists some β ∈ Pos(t) such that γ ⊳1 β ⊳n α. By the same reasoning as in

the base case we have ρ(γ) ∈ pReq (ρ(β)), it follows by the definition of the

friends states and our induction hypothesis that ρ(γ) ∈ Frnd (ρ(α)).
Thus we have proved the result by induction. �

Before moving on to the announced theorem, we need to formalise what we

meant by “removing a state from an automaton”, which we call restriction.

Since it is an operation which we will use quite frequently it deserves its own

notation. Note that this is a straightforward adaptation of the notion used

implicitly in [CDG+07], for instance when describing the reduction algorithm

(cf. figure 12.1[p91] for the algorithm and figure 12.2[p100] for our implementation

of it). We also introduce the projection, which consists simply in changing the

set of final states.

Definition 52 (Restriction by states, projection). LetA = (Σ,Q, F,∆,=A,,A) be a

TAGED, and let S ⊆ Q be a set of states. We call restriction of A to S and denote

Rst (A, S) the TAGED (Σ, S, F ∩ S,∆′,=A ∩S2,,A ∩S2) where

∆′
def
=
{
f (q1, . . . , qn)→ q ∈ ∆ | { q, q1, . . . , qn

} ⊆ S
}
.

We also call projection ofA on S the TAGED Prj (A, S) def
= (Σ,Q, S,∆,=A,,A).

With these new tools in hand, we can at last justify whatwe said at the beginning

of this section: only those states which can possibly be used to build a final state

– ie. which are friends of a final state – are of any real use for the automaton.

The others can be removed without altering its recognised language.

90

Data: A TAGEDA
Result: A TAGEDA′ such that Lng (A) = Lng (A′)
begin

Reach← ∅;
repeat

add q to Reach where r ∈ Rul(q),Ant(r) ⊆ Reach;
until no state can be added to Reach ;

return Rst (A,Reach);
end

Figure 12.1 — Reduction algorithm, from [CDG+07, page 25]

Theorem 53 (Removal of useless states). LetA = (Σ,Q, F,∆) be a tree automaton.

Then

Lng (A) = Lng (A′) with A′ def= Rst

A, F ∪

⋃

q f∈F
Frnd(q f)

 .

Furthermore, the accepting runs are the same forA andA′.
Proof. Let us show that some run ρ is an accepting run of A is and only if it is

an accepting run of A′. Since A′ is a restriction of A, it is clear that any run of

A′ is also a run of A. It remains to show that if ρ is an accepting run of A, it

is also an accepting run of A′. Suppose that this is not the case, that is to say,

there exists a term t ∈ T (Σ) such that A accepts t through the run ρ, but ρ is

not an accepting run of A′. This could happen if ρ was a run for A′, but not
an accepting one; that is to say ρ(ε) ∈ FA but ρ(ε) < FA′ . However by definition

of the restriction we have FA = FA′ = F. Thus if ρ was a run for A′, it would

have to be accepting. Therefore ρ is not a run for A′. It follows that ρ makes

use of one of the rules which were removed, and by definition each removed

rule makes use of a state which is neither final nor in
⋃

q f∈F Frnd(q f). So we can

conclude that there exists α ∈ Pos(t), p < F ∪
⋃

q f∈F Frnd(q f) such that ρ(α) = p.

On the other hand, we know by definition of an accepting run that ρ(ε) ∈ F, and
either α = ε, which is contradictory since ρ(α) = p < F, or α ⊳ ε. But in that case

lemma 51[p90] applies and p = ρ(α) ∈ Frnd (ρ(ε)). that is also in contradiction

with p <
⋃

q f∈F Frnd(q f). In all cases, we are faced with contradictions, and so

our assumption is disproved, and ρ is an accepting run forA′. �

The result applies only to vanilla tree automata so far. Fortunately the added

complication of global equality (or even disequality) constraints does not inval-

idate the result.

91

Corollary 54 (Removal of useless states). The same result as theorem 53[p91] holds

for TAGEDs.

Proof. By theorem 53 the accepting runs of ta (A) are those of ta (A′) and vice

versa. Since A′ is a restriction of A, its constraints are weaker and therefore

the accepting runs of the former are a superset of those of the latter. There

remains to show that every accepting run of A′ is also accepting for A. Let ρ

be a successful run of A′ on a term t ∈ T (Σ). So for all α ∈ Pos(t), we have

ρ(α) ∈ F ∪
⋃

q f∈F Frnd(q f). Let us suppose that ρ is not a successful run for A.

Then since it is an accepting run of ta (A), it must be incompatible with a global

constraint. So there exist p, q ∈ Q such that, say, p =A q, and two positions

α, β ∈ Pos(t) such that ρ(α) = p and ρ(β) = q and t|α , t|β. But ρ is compatible

with the constraints ofA′, therefore at least p or qmust be specific toA, that is,

be in Q \ F ∪
⋃

q f∈F Frnd(q f). This is a contradiction. Thus ρ is also an accepting

run forA. �

Now let us examine TAGEDs, or more specifically, positive TAGEDs in more detail,

and study some immediate consequences of the introduction of constraints to

the influence of some rules and states. It seldom hurts to state the obvious, so

let us do so in this next lemma:

Lemma 55. LetA be a TAGED. If Lng (ta (A)) = ∅ then Lng (A) = ∅.

Proof. We know that, trivially, Lng (A) ⊆ Lng (ta (A)), and this result follows.

�

Testing emptiness of a tree automaton is linear, so this is a very inexpensive test

– which is quite fortunate as we will be using it fairly often. In the particular

case when a positive TAGED is diagonal – that is to say, =A⊆
{
(q, q) | q ∈ Q }: all

its equality constraints are of the form q =A q – then this linear test is enough to

decide emptiness.

Theorem 56 (Diagonal testing). LetA be a diagonal positiveTAGED. ThenLng (A) =

∅ ⇐⇒ Lng (ta (A)) = ∅.

Proof. See beginning of proof of [FTT08b, Theorem 1]. �

Now that those preliminary observations are over and donewith, let usmove on

to what we announced earlier on: the observation of the contradictions which

the introduction of global equality constraints can create in a tree automaton.

We will see that some rules become absurd and some states unusable when

certain conditions are met. We call those rules and states “spurious”. We will

92

define those conditions and show that, just as was the case for useless states,

spurious elements can be removed from a TAGED without altering its accepted

language. We start by the most obvious observation:

Definition 57 (Spurious rule). LetA be a TAGED. A rule f (q1, . . . , qn) → q ∈ ∆ is

spurious if there exists k ∈ ~1, n� such that qk =A q.

It is clear that no spurious rule can actually be used in any run. If that was

the case then there would exist a term structurally equal to one of its strict

subterms, which is absurd. So it follows that spurious rules have no influence

whatsoever on the language recognised by a TAGED. This outlines the proof of

the next lemma.

Lemma 58 (Removal of spurious rules). Let A be a TAGED, and let S ⊆ ∆ be the

set of all the spurious rules of ∆. Then, if we letA′ def= (Σ,Q, F,∆ \ S,=A,,A), we have
Lng (A) = Lng (A′).

Proof. We have trivially Lng (A) ⊇ Lng (A′). Let t ∈ Lng (A) and let ρ be

the run by which t has been accepted. Being a run, ρ is compatible with the

transition rules, that is to say for any position α ∈ Pos(t), there exists a transition
rule

r = t(α)
(
ρ(α.1), . . . , ρ(α.arity(t(α))

)
→ ρ(α) ∈ ∆.

Suppose that r is spurious. Then there is a k such that ρ(α.k) =A ρ(α), and it

follows that t|α = t|α.k. Thus t is structurally equal to its own child, which is

absurd. Therefore r is not spurious: r ∈ ∆ \ S, and it follows that ρ is also a run

forA′. Finally we have Lng (A) ⊆ Lng (A′), which concludes the proof. �

We will now extend this notion of “spurious construction” to less direct cases,

where instead of having immediate spurious rules, we have two or more rules

leading to the same kind of contradictions. The watchful reader will notice an

uncanny similarity between the potential requirements introduced at the begin-

ning of the present chapter and the sure requirements which we are about to

define. While the former generously encompassed all the states which could

possibly be direct children of some state q, the latter is limited to the very closed

circle of those states which must appear as direct children of q, for the simple

reason that every single rule which builds q uses them as antecedents.

Definition 59 (Sure requirements). Let A be a TAGED, and let q ∈ Q. The sure

93

requirements of state q are defined as (a)

sReq(q)
def
=
⋂

r∈Rul(q)
Ant(r).

We extend this notion in the same way we did before when we went from

potential requirements to friends: if q is sure to need p as its direct child, and

p is sure to need p′ as its own direct child, then q is sure to need p′ to be its

grand-child. If p′ does not appear in a run, neither can q. We call “needs of q”

the set of states which, according to this principle, must appear in a run if q itself

appears.

Definition 60 (Needs). Let A be a TAGED, and q ∈ Q. We define Need(q) as the

smallest subset of Q satisfying the two following properties:

1. sReq(q) ⊆ Need(q)

2. if p ∈ Need(q) then sReq(p) ⊆ Need(q)

We now formalise and prove what we said informally: if a state appears in a

run, then it is necessary that its needs should appear under it in this same run.

Lemma 61 (Needs). LetA be a TAGED, and let t ∈ T (Σ), β ∈ Pos(t) and q ∈ Q. Let

ρ be a run ofA on t, compatible with the global constraints, such that ρ(β) = q. Then

for any p ∈ Need(q), there exists a position αp ⊳ β such that ρ(αp) = p.

Proof. We prove this result by induction on Need(q).

1. (base case) Suppose p ∈ sReq(q). Since ρ is a run, it is compatible with

the transition rules of ∆. We have ρ(β) = q, therefore, letting n be the

arity of t(β), there exists a rule f (q1, . . . , qn) → q ∈ Rul(q) such that for all

k ∈ ~1, n�, qk = ρ(β.k). By definition of sReq(q), there exists i ∈ ~1, n� such
that p = qi = ρ(β.i). We have αp = β.i ⊳ β.

(a) Update: This definition can be changed to

sReq(q)
def
=
⋂

r∈Rul(q)
q<Ant(r)

Ant(r),

and the interest of doing so is that Need(q) becomes larger in general, while retaining its proper-

ties, and so we can catch a few more cases. [TODO] integrate that.

94

2. (inductive case) Suppose that there exists p′ ∈ Need(q) such that p ∈
sReq(p′). By induction hypothesis there exists αp′ ⊳ β such that ρ(αp′) = p′.

We use the same arguments as in the base case. Let m be the arity of

t(αp′). Then there exists a rule f (q1, . . . , qm) → p′ ∈ Rul(p′) such that for all

k ∈ ~1,m�, ρ(αp′ .k) = qk. By definition of sReq(p′), there exists i ∈ ~1,m�
such that p = qi = ρ(αp′ .i). We have αp = αp′ .i ⊳ αp′ ⊳ β.

Thus the proof is concluded. �

In other words, in order to “build” the state q, one must first be able to build any

state p ∈ Need(q) strictly under it. Suppose that we are in the following scenario:

we have some states q0, . . . , qn such that q0 =A qn, some symbols f0, . . . , fn (not

necessarily all distinct) and the rules

f0(. . . , q0, . . .)→ q1 ∈ ∆
. . .

fk(. . . , qk, . . .)→ qk+1 ∈ ∆
. . .

fn−1(. . . , qn−1, . . .)→ qn ∈ ∆

If, for any k ∈ ~1, n�, we have no rule r ∈ Rul(qk) such that qk−1 < Ant(r), that is to

say, if there is no way to build qk without first building qk−1, then it is impossible

to build a term which evaluates to qn. Indeed, such a term would necessarily

have one of its strict children evaluate to q0. But this is not compatible with

q0 =A qn. Such a state qn will be called “spurious”. The following definitions

and lemma characterise spurious states and formalise the intuitive notion that

spurious states can be removed from a TAGED without altering its accepted

language.

Definition 62 (Spurious states). Let A be a TAGED. A state q ∈ Q is said to be a

spurious state if there exists p ∈ Need(q) such that p =A q.

That definition is rather intuitive: if you need p to be a strict child of q, and

at the same time you need p and q to be structurally equal, then you are in

trouble. . . As announced, this generalises the notion of spurious rules to cases

where the child-father structural equality is buried a little more deeply. Clearly,

one can safely get rid of such states:

Lemma 63 (Removal of spurious states). LetA be a TAGED, S ⊆ Q the set of all its

spurious states, andA′ = Rst (A,Q \ S). Then Lng (A) = Lng (A′).

95

Proof. It is clear thatLng (A) ⊇ Lng (A′). Let t ∈ Lng (A) and let ρ be the run by

which t has been accepted. Suppose that there is a position β ∈ Pos(t) such that

q = ρ(β) ∈ S. Then by definition of a spurious state there exists a state p ∈ Need(q)
such that p =A q, and by lemma 61[p94], there exists a position αp ⊳ β such that

ρ(αp) = p. By the equality constraint we have t|β = t|αp , but this is impossible

because no term may be structurally equal to one of its strict children. Thus for

all positions β ∈ Pos(t), ρ(β) ∈ Q \ S, and ρ is also a run forA′. Finally we have

Lng (A) ⊆ Lng (A′), which concludes the proof. �

Until nowwe have only focused on spurious constructions based on the obvious

impossibility of building a term equal to one of its strict subterms. We will now

see another impossibility, based on the symbols of Σ.

Definition 64 (Support of a state (b)). LetA be a TAGED, and let q ∈ Q be a state.

We call support of q and denoteSup(q) the set of all symbols of Σ in which a term

which evaluates to qmay be rooted. Sup(q)
def
=
{
f ∈ Σ | ∃ f (. . .)→ q ∈ ∆ }.

Short of actually testing a full structural equality, it can be useful, be very

inexpensive, to at least see whether the roots of two trees evaluating to to

different states can possibly have the same symbol. Say that you have the

constraint p =A q, but all the rules of Rul(p) are of the form f (. . .)→ p, while all

the rules of Rul(q) are of the form g(. . .) → q. Clearly, while those states could

very well appear in runs, they cannot in any way appear together. Suppose now

that there is a state which requires p and q to appear together in the run; then

clearly the use of this state yields a contradiction, and again, it can be safely

removed. This is what we call a Σ-spurious state.

Definition 65 (Σ-spurious state). LetA be a TAGED. A state q ∈ Q is said to be aΣ-

spurious state if there exists p, p′ ∈ Need(q) such that p =A p′ andSup(p)∩Sup(p′) =
∅.

Lemma 66 (Removal of Σ-spurious states (c)). Let A be a TAGED, S ⊆ Q the set of

all its Σ-spurious states, andA′ = Rst (A,Q \ S). Then Lng (A) = Lng (A′).

Proof. It is clear that Lng (A) ⊇ Lng (A′). Let t ∈ Lng (A) and let ρ be the

run by which t has been accepted. Suppose that there is a position β ∈ Pos(t)
such that q = ρ(β) ∈ S. Then by definition of a Σ-spurious state there exist

(b)Similar to τ introduced in section 4.2[p34]
(c) Note that it would have been quite wrong to define a Σ-spurious state simply as a state

such that ∃p′ ∈ Q : p =A p′ and Sup(p) ∩Sup(p′) = ∅. Such a state can be used in an accepting

run, provided that its “opposite” p′ does not appear in the same run.

96

two states p, p′ ∈ Need(q) such that p =A p′, and by lemma 61[p94], there exist

two distinct positions α, α′ ⊳ β such that ρ(α) = p and ρ(α′) = p′. Since ρ is a

run, it is compatible with the transition rules, and therefore t(α) ∈ Sup(p) and
t(α′) ∈ Sup(p′). By the equality constraint we have t|α = t|α′ , and thus t(α) = t(α′)

and it follows that t(α) ∈ Sup(p) ∩ Sup(p′) = ∅. This is absurd. Thus for all

positions β ∈ Pos(t), ρ(β) ∈ Q \ S, and ρ is also a run for A′. Finally we have

Lng (A) ⊆ Lng (A′), which concludes the proof. �

The act of removing all the spurious constructions from the TAGED is called

sanitising. It is legitimated by the following theorem, which summarises the

results of this section.

Theorem 67 (Sanitising). LetA be a TAGED, and let Qs ⊆ Q the set of all its spurious

states, QΣ ⊆ Q the set of all its Σ-spurious states, and ∆s ⊆ ∆ the set of all its spurious

rules. Then ifwe letA′ = Rst
(
(Σ,Q, F,∆ \ ∆s,=A,,A), F ∪

⋃
q f∈F Frnd(q f) \ (Qs ∪QΣ)

)

we have Lng (A) = Lng (A′).

Proof. Immediate consequence of corollary 54[p92] and lemmas 58[p93], 63[p95] and

66[p96]. �

Note that the resulting automaton is not necessarily the smallest one can obtain

using this method: in some edge cases, removal of useless states might render

some other states spurious and vice versa. So, in practice, we shall use this

theorem repeatedly until a fixed point is reached. This operation will be referred

to as “cleanup”.

12.2 Algorithms and implementation

In this section we present the algorithms corresponding to the theory which

we have just introduced. Rather than presenting pseudo-code, we give extracts

of the actual implementation of the (second) OCaml prototype which we have

developed to validate our results. The code is automatically converted to LATEX,

highlighted and prettified through a program which we have written for this

purpose, about which some information is given at the end of section 2.3[p22].

Note that part of the code has been masked – for instance the module declara-

tions are incomplete, and the assertions are invisible – to avoid cluttering the

listings overmuch with programming details and save space overall.

Before writing any algorithm, we need to define our data types – in particular,

we need to have a full representation for a TAGED – and a few obvious and easy

97

functions to manipulate those types, which were introduced in the previous

section. The reader will notice that those definitions are little more than the

mathematical definitions of the previous section, rewritten in Caml’s own syn-

tax. Inasmuch as possible, the same notations have been taken in the theoretical

sections and in the implementation.

1 L Here we define the basic type of TAGED. M

2

3

L A symbol is represented by a string. The arity of the symbols will be kept

separately M

4 type symbol = string

5

6 L A state q ∈ Q is represented by a string M

7 type state = string

8

9

L A transition rule r = f (q1, . . . , qn) → q is represented by the triplet

(f , [q1, . . . , qn], q) M

10 type transition_rule = symbol × state list × state

11

12

L We use the Set structure extensively. It has the advantage of having the

behaviour the closest to the theory (we use sets in the theory, after all) while

having a reasonnably efficient implementation in OCaml, based on balanced

binary trees. Here we use XSet, which is merely a trivial extension of the

Set.Make functor of the standard library, with a few added operations. More

information on the operations of XSet can be found at the end of section

2.3[p22]. M

13

14 module Q = XSet (struct type t = state end)

15 module Σ = XSet (struct type t = symbol end)

16 module ∆ = XSet (struct type t = transition_rule end)

17

18 L We represent a relation R ⊆ Q2 simply by the corresponding set. M

19 module Q2 = XSet (struct type t = state × state end)

20

21 L Tree automaton with global equality and disequality constraints: TAGED. M

22 type taged = {

23 L The alphabet Σ, an the associated arity: Σ→ N function. M

24 Σ : Σ.t; arity : Σ.elt → int;

98

25

26 L The transition rules ∆, states Q and final states F ⊆ Q M

27 ∆ : ∆.t; Q : Q.t; F : Q.t;

28

29

L And lastly, the TAGED-specific part: the global constraints =A,,A⊆ Q2. Note

that the symmetry of both relations is garanteed by the parser M

30 =A : Q2.t; ,A : Q2.t;

31 }

32

33 L Standard functions for manipulating TAGEDs M

34

35 L Compute restriction by states Rst (A, set). M

36 let Rst A set =

37 let in_set_square (p,q) = Q.∈ p set ∧ Q.∈ q set in

38 let r_in_set (⊥,[q1, . . . , qn],q) =

39 L.∀ (λqk→Q.∈ qk set) (q::[q1, . . . , qn])

40 in { A with

41 Q = set;

42 F = Q.∩ A.F set;

43 ∆ = ∆.filter r_in_set A.∆;

44 =A = Q2.filter in_set_square A.=A;

45 ,A = Q2.filter in_set_square A.,A;

46 }

47

48 L Get the domain of a relation.M

49 let domain_of_rel ?(strict=false) r =

50 let f (x,y) set = if ¬strict ∨ x , y then

51 Q.add+ [x;y] set else set

52 in Q2.fold f r Q.∅

53

54 L Antecedents of a rule M

55 let Ant (⊥,[q1, . . . , qn],⊥) = Q.of_list [q1, . . . , qn]

56

57 L Associated rules of a state M

58 let Rul A q = ∆.filter (λ(⊥,⊥,p)→p=q) A.∆

59

60 L Support of a state M

61 let Sup A q = Σ.of_list~ ∆.mapL (λ(f,⊥,⊥)→f) (Rul A q)

99

Now that the foundations have been laid, we can give the algorithms of this

section. They are all quite simple: the first one computes the set of reachable

states of a tree automaton, which is useful for testing emptiness and reducing

the automaton. Then the notions of the previous section are coded, and once

again, they are a rather straightforward rewriting of the theory.

62

L Standard algorithm to compute the set of all reachable states of the under-

lying tree automaton of a TAGEDA. This algorithm is linear and follows the

idea given in [CDG+07, Exercice 1.18 p47]. M

63 let reachable_states A =

64

65

L We associate each state q ∈ Q with the list of all rules r ∈ ∆ such that

q ∈ Ant(r). For now, we create an empty association table M

66 let state_rules = H.create (∆.# A.∆) in

67

68

L Here, we represent a rule r ∈ ∆ by a counter initialised to Card (Ant(r)) and

its destination state q ∈ Q. We will in the same move convert the rules of ∆

to a counter, and populate state_rules. M

69 let rule_to_count (f,[q1, . . . , qn],q) =

70 let Ant = Ant (f,[q1, . . . , qn],q) in

71 let counter = (q, ref~ Q.# Ant) in

72 Q.iter (λqi→H.add state_rules qi counter) Ant;

73 counter

74 in let rules_count = ∆.mapL rule_to_count A.∆ in

75

76

L Now, we compute the set of reachable states as follows: a state q is "acti-

vated" (ie. flagged as reachable) when the counter of a rule in Rul(q) is zero,

that is to say, when all the states required to get into state q have been flagged

as reachable. Thus, we will start the algorithm by activating the states in

which the leaves (constant symbols) can evaluate: if there is a rule a → q

then q is activated. When a state q is activated, the counters of all ruleswhich

needed q are decremented. The same state is not activated twice. M

77

78 let reachable = ref Q.∅ in

79 let rec decrement (q,c) = match !c with

80 | 1 → decr c; activate q

81 | n when n > 2 → decr c

82 and activate q =

83 if ¬~ Q.∈ q !reachable then (

84 Q.←֓ q reachable;

100

85 let q_rules = H.find_all state_rules q in

86 L.iter decrement q_rules;

87)

88 in let trigger (q,c) = if !c = 0 then activate q in

89 L.iter trigger rules_count; return !reachable

90

91

L Is the language accepted by the tree automaton or the diagonal positive

TAGED A empty? It is clear that A is empty if and only if none of its final

states is reachable. M

92 let ta_empty A = Q.∅?~ Q.∩ (reachable_states A) A.F

93 let trivial_empty A = Q.∅? A.F

94

95 L Compute reduced automaton M

96 let reduction A = Rst A ~ reachable_states A

97

98 L Remove the spurious rules ofA. M

99 let rm_spurious_rules A =

100 let nspurious (⊥,[q1, . . . , qn],q) =

101 ¬~L.∃ (λqi→Q2.∈ (qi,q) A.=A) [q1, . . . , qn]

102 in reduction {A with ∆ = ∆.filter nspurious A.∆}

103

104 L Sure and Potential requirements M

105 let sReq A q =

106 let ante_sets = ∆.mapL Ant (Rul A q) in Q.∩+ ante_sets

107 let pReq A q =

108 let ante_sets = ∆.mapL Ant (Rul A q) in Q.∪+ ante_sets

109

110 L Inductive refinement for both Needs and Friends M

111 let refine basefun q =

112 let rec iter set =

113 let reqs = Q.∪+~ Q.mapL basefun set in

114 if Q.⊆ reqs set then set else iter (Q.∪ set reqs)

115 in iter~ basefun q

116

117 let Need A = refine (sReq A)

118 let Frnd A = refine (pReq A)

119

120 L Remove the spurious and Σ-spurious states fromA. M

121 let rm_spurious_states A =

101

122 let spurious q = Q.∃ (λp→Q2.∈ (p,q) A.=A) (Need A q) in

123 let Σ-spurious q = Q2.∃ (λ(p,p’)→

124 Q.∈+ [p;p’] (Need A q) ∧

125 Σ.∅?~ Σ.∩ (Sup A p) (Sup A p’)

126) A.=A

127 in let ok q = ¬(spurious q) ∧ ¬(Σ-spurious q)

128 in reduction ~ Rst A (Q.filter ok A.Q)

129

130

L Remove useless states – ie. states which are neither final states nor friends

of final states M

131 let rm_useless_states A = reduction ~ Rst A ~

132 Q.∪ (A.F) (Q.∪+ (Q.mapL (Frnd A) A.F))

133

134 L TAGED reduction (sanitising) M

135 let sanitize = rm_useless_states ◦ rm_spurious_states ◦ rm_spurious_rules

136

137

L Stronger sanitize, which make sure that a fixed point is reached and the

automaton is minimal. M

138 let rec cleanup A =

139 let tac = sanitize A in let tacc = sanitize tac in

140 if Q.# tac.Q = Q.# tacc.Q then tacc else cleanup tacc

12.3 Experimental results

The experimental results concerning the cleanup operation are quite good con-

sidering that it is so simple. The algorithms presented in the previous section

are clearly polynomial, and yet TAGEDs (or at least our random specimens) are

trimmed down by a factor which can sometimes be considerable. See for in-

stance figure 12.2: as mentioned in section 8.2[p61], it shows the ratio

R =
size of generated automata

size of the same, cleaned up
,

as a function of the density of global constraints as defined in the second model

(see section 9.2[p78]), for different values of δ (the expected in-degree – again, see

section 8.2[p61]) and |Q|. On this figure one can see that random automata which

are very spare are reduced to a small fraction of their former selves: cut down

by a factor of almost 60 in the worst case, and are quite sensitive to the density

of constraints. On the other hand, denser automata are less affected, both in

general and by the density of constraints, which is quite logical: when Rul(q)

102

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1F
u
l
l

c
l
e
a
n
u
p

f
a
c
t
o
r

(
m
o
r
e

i
s

b
e
t
t
e
r
)

Corrected Base Probability

δ = 5.0, |Q| = 35
δ = 2.0, |Q| = 35
δ = 1.0, |Q| = 35

δ = 0.5, |Q| = 35
δ = 0.2, |Q| = 35
δ = 0.2, |Q| = 50

Figure 12.2 — Gene2: Full cleanup factor (raw vs. cleanup)

grows large, sReq(q) tends to become empty, which limits the usefulness of the

technique. To clarify the effect a bit, figure 12.3 shows a more pertinent ratio

R′ =
size of reduced generated automata

size of the same, cleaned up
,

where reduced is taken to mean “through the standard reduction algorithm

(cf. [CDG+07])”. Recall that the standard reduction algorithm is part of the

cleanup operation, but is not our own contribution. While the first graph took

into account both the standard reduction algorithm and our own methods,

this second graph shows the gain incurred by using our method on top of the

standard algorithm. We see that (d), for sparse automata, we cut their size down

by a factor of five, compared to what the reduction algorithm alone did.

(d) We also see that the gain does not appear to depend on the density of constraints, which I

can’t honestly explain. However these statistics had been made rather early on, and since then
a small, vicious lurking bug has been detected through random generation, and corrected, in

the implementation of the reduction algorithm. I am pretty sure that if we were to redo this

experimentwith the corrected implementation, wewould see the same slant as in the first graph.
Meanwhile, the numbers in these graphs can be taken as lower bounds to the real numbers. I

apologise for the inconvenience.

103

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 0.2 0.4 0.6 0.8 1

C
l
e
a
n
u
p

f
a
c
t
o
r

(
m
o
r
e

i
s

b
e
t
t
e
r
)

Corrected Base Probability

δ = 5.0, |Q| = 35
δ = 2.0, |Q| = 35
δ = 1.0, |Q| = 35

δ = 0.5, |Q| = 35
δ = 0.2, |Q| = 35
δ = 0.2, |Q| = 50

Figure 12.3 — Gene2: Cleanup factor (reduced vs. cleanup)

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

F
u
l
l

c
l
e
a
n
u
p

f
a
c
t
o
r

(
m
o
r
e

i
s

b
e
t
t
e
r
)

Corrected Base Probability

h = 4
h = 11

h = 18
h = 25

h = 32
h = 39

Figure 12.4 — Gene4: Cleanup factor

104

As discussed in section 8.2[p61], the efficiency of the cleanup operation when

there are no constraints can also be taken to mean that the sample automata

(from the second generation) are simply not too good: too many of their states

are simply completely useless, disconnected from their final states. We have

in figure 12.4 the same results, but this time with random TAGEDs of the fourth

generation, taken with the second model of constraints generation. Recall that

Gene4 yields TAGEDs which are already reduced, so this curve, similarly to figure

12.3, shows only the influence of methods specific to cleanup.

12.4 Conclusion

In this chapter, we have introduced the cleanup operation, which improves on
the standard reduction algorithm for vanilla tree automata (cf. [CDG+07]), and
takes advantage of the global equality constraints of a TAGED to detect and
remove even more rules and states. The cleanup operation itself has a low
complexity – polynomial, and is primarily intended to be used as preliminary
to a more expensive algorithm, such as emptiness. Nevertheless, it should be
noted that in many cases, it can be quite enough to decide: see for instance the
two examples below (e).

TAGED ’example 1’ [64] = {

states = #7{q0, q1, q2, q3, q4, q5, q6}

final = #1{q6}

rules = #16{

a2()->q0, a2()->q2, a2()->q4, a3()->q3, a5()->q0, a5()->q2,

a5()->q4, f1(q5)->q5, f3(q1)->q5, g1(q1, q5)->q5, g3(q0, q0)->q5,

g3(q1, q5)->q5, g5(q1, q1)->q5, h2(q2, q3, q4)->q1,

h3(q0, q0, q1)->q6, h3(q2, q3, q4)->q1

}

==rel = #3{(q0,q0), (q3,q4), (q4,q3)}

}

This TAGED (’example 1’) is in fact empty, and a cleanup operation suffices to

show that it is. Its sole final state is q6, which depends on q0 and q1. The former

is not a problem (leaf state) but the latter depends on both q3 and q4 – they

are sure requirements. We have q3 =A q4, but Sup(q3) = { a3 } and Sup(q4) =
{ a2, a5 }. Therefore q1 is Σ-spurious. Remove q1 from this TAGED, and q6 becomes

unreachable: without any final state, the automaton is empty.

Let us take another example:

(e)Kindly provided by random generation. cf. 8.4[p71].

105

TAGED ’example 2’ [44] = {

states = #6{q0, q1, q2, q3, q4, q5}

final = #1{q5}

rules = #11{

a2()->q2, a2()->q3, a3()->q0, a3()->q3, a3()->q4, a4()->q2,

a5()->q4, g3(q5, q0)->q5, g4(q1, q1)->q5, h1(q2, q3, q4)->q1,

h3(q2, q3, q4)->q1

}

==rel = #3{(q1,q3), (q3,q1), (q5,q5)}

}

Here again, we have only one final state q5, which depends on q1. There are

two rules which generate q1, but as it happens both of them have q3 in their

antecedents. We have q1 =A q3, and thus those two rules are spurious. q1
becomes unreachable, and consequently so does q5. The TAGED is empty.

And these are in no way isolated cases: the method used to generate those

examples reports that 13.5% of random fourth generation TAGEDs of height 3 –

such as those ones – 24.5% of TAGEDs of height 6 and 30.7% of TAGEDs of height

20 are non-empty when reduced but empty once cleaned up.

All in all, the cleanup operation is a valuable, cheap tool which can greatly

simplify and speed up the operation of more expensive algorithms on TAGEDs

– such as emptiness decision – and enables us to conclude immediately in a

surprising number of cases.

106

Chapter 13
Signature quotienting

The material in this chapter is born from an observation made on some hand-

written TAGEDs which we used during our experiments with the membership

and emptiness problems. In those TAGEDs, we would have a state, say, qchar,

coding for instance an alphanumeric character, and this single state would have

a great number of rules, all similar except for the symbol they carry. Here, we

would have

Rul(qchar) =
{
a→ qchar, . . . , z→ qchar,A→ qchar, . . . ,Z→ qchar

}
,

which is a very verbose way of saying, essentially

“ { a, . . . , z, 0, . . . , 9,A, . . . ,Z } → qchar ∈ ∆′′,

with quotation marks all around because of course the type of this is not quite

right. This being said, we have here an awful lot of rules whichmean something

quite simple. Having lots and lots of rules is a very detrimental thing for us

because lots of rules means lots of possible choices for the brutal algorithm

trying to build a successful run (cf. chapter 15[p131]), which will most probably

timeout before going very far. In contrast, when a human being performs

the equivalent of the brutal algorithm in their head, they will most probably

perform subconsciously a rather obvious optimisation: It does not immediately

matter which character is chosen for qchar; so rather than exploring head-first all

the possible combinations, one can just leave “qchar” as it is for now, and worry

about other states. Later on, for instance when asked to exhibit a term, or when

trying to satisfy a global equality constraint, one can safely choose a concrete

symbol for qchar among the many allowed by the transition rules.

107

In other words, and slightly more generally, when rules differ only by their

symbol, the choice of this symbol can be delayed until necessary. This idea is

discussed further in the two next sections.

Note that since it is a rather specialised optimisation, andonewhich is unlikely to

be of significant use on random automata – unlesswe came upwith a generation

method designed specifically to generate edge cases like this on a regular basis

– we have not insisted overmuch on it. Nevertheless, as pointed out by our

example, this edge case seems to us common enough towarrant at leastminimal

inquiry.

13.1 A first attempt

In this sectionwe present our first attempt at translating the basic idea that when

several transition rules may apply, only their signatures matter at first, and the

choice of the symbol can be deferred until the equality constraint is tested.

As noted in the introduction, the “type” of transition rules changes, as symbols

become sets of symbols. Thus in order to capture the idea, we need to introduce

a new data structure:

Definition 68 (signature-TAGED). Let A be a positive TAGED. We call signature-

TAGED ofA the tuple (a) As = (Σs,Q, F,∆s,=A) where

∆s =

{
Φ(q1, . . . , qn)→ q

∣∣∣∣ Φ =
{
f ∈ Σ : f (q1, . . . , qn)→ q ∈ ∆ } , ∅

}

Σs =
{
Φ ⊆ Σ

∣∣∣ Φ(. . .)→ q ∈ ∆s
}
.

With these definitions, the arity of Φ ∈ Σs is that of any symbol inΦ (all symbols

in Φ have the same arity by definition). We define the signature-equivalence

between two terms in T (Σs) as follows: Let U = Φ(U1, . . . ,Un) ∈ T (Σs) and

V = Ψ(V1, . . . ,Vm) ∈ T (Σs)

U ≅s V ⇐⇒ (n = m) ∧ (Φ ∩Ψ , ∅) ∧ (∀i ∈ ~1, n� : Ui ≅
s Vi).

A signature-term T ∈ T (Σs) is accepted by the signature-TAGED As if the two follow-

ing conditions hold:

⋄ it is accepted by the tree automaton (Σs,Q, F,∆s) — say, by the run ρ.

(a)Note that this is not exactly a TAGED. . .

108

⋄ and ρ is signature-compatiblewith the constraint =A, that is to say

∀α, β ∈ Pos(T) : ρ(α) =A ρ(β) =⇒ T|α ≅s T|β .

Signature-TAGEDs and vanilla TAGEDs are similar in every other respect.

As we are manipulating terms over sets of symbols, at some point we will wish

to go back to simple terms over symbols, by choosing a symbol for each node

among those available:

Definition 69 (Signature-expansions). Let A be a positive TAGED and As be its

signature-TAGED. Let T ∈ T (Σs). We define its signature-expansion

Sxp(T)
def
= { t ∈ T (Σ) | Pos(t) = Pos(T) and ∀α ∈ Pos(t) : t(α) ∈ T(α) } .

We note that, since any Φ ∈ Σs is non-empty, Sxp(T) , ∅ for any signature-term

T.

Let us illustrate this definition with an example: let Tx be a signature-term:

Tx =
{
g1, . . . , g3

}

{ h2 }

{
f1, f4

}

{ a2 }

{ a4 } { a3, . . . , a5 }

{
f2, f5

}

{ a2, . . . , a4 }

We can expand it into any of

t1 = g1

h2

f4

a2

a4 a5

f5

a4

t2 = g2

h2

f1

a2

a4 a3

f5

a2

t3 = g3

h2

f4

a2

a4 a3

f2

a3

109

so we have t1, t2, t3 ∈ Sxp(Tx), among a total of |Sxp(Tx)| = 2 × 2 × 3 × 3 × 3 =

108, if I count correctly. Those are as many choices which are delayed dur-

ing the construction of Tx, by a brutal algorithm for instance, until check-

ing a structural property of the term becomes necessary. Let us now link

the signature-equivalence which we have defined earlier with this notion of

signature-expansion:

Lemma 70. Let U,V ∈ T (Σs); then U ≅s V ⇐⇒ Sxp(U) ∩Sxp(V) , ∅.

Proof. Suppose U ≅s V. It is clear that Pos(U) = Pos(V). Then we take t such

that Pos(t) = Pos(U) = Pos(V) and ∀α ∈ Pos(t) : t(α) ∈ U(α) ∩V(α). Such a t exists

since by definition of ≅s, we have ∀α ∈ Pos(t) : U(α) ∩ V(α) , ∅. It is clear that

t ∈ Sxp(U)∩Sxp(V). Conversely, suppose that there exists a t ∈ Sxp(U)∩Sxp(V).

Then we have Pos(t) = Pos(U) = Pos(V) and ∀α ∈ Pos(t) : t(α) ∈ U(α) ∩ V(α) and

thus U ≅s V. �

Now, let us attempt to bridge the gap between those signature-TAGEDs and

vanilla TAGEDs:

Lemma 71. Let A be a positive TAGED and As its signature-TAGED. Then for each

t ∈ Lng (A) there exists T ∈ Lng (As) such that t ∈ Sxp(T).

Proof. Suppose that t ∈ Lng (A) is accepted by a run ρ. Then we build T ∈
Lng (As) as follows: Pos(T) = Pos(t) and

∀α ∈ Pos(T),T(α) = { f ∈ Σ : f
(
ρ(α.1), . . . , ρ(α.arity(t(α))

)→ ρ(α) ∈ ∆ } .

Since t ∈ Lng (A), and thus must be compatible with the transition rules, by this

construction t(α) ∈ T(α), and ρ is clearly a run of As on T. As for the equality

constraint, we have ∀α, β ∈ Pos(t) : ρ(α) =A ρ(β) =⇒ t|α = t|β. Since we have

by construction t|α ∈ Sxp(T|α) and t|β ∈ Sxp(T|β), it follows that t|α = t|β ∈
Sxp(T|α) ∩ Sxp(T|β), and thus T|α ≅s T|β. It follows that T ∈ Lng (As), which

concludes the proof. �

This has an immediate consequence which is of interest to us:

Corollary 72 (Signature-TAGED as over-approximation (b)). Let A be a positive

TAGED andAs its signature-TAGED. Then Lng (As) = ∅ =⇒ Lng (A) = ∅.

(b) Note that this is an abuse of language on our part, as there is no over-approximation in the

usual sense, ie. with respect to inclusion.

110

Thanks to this last result, if we can prove emptiness of the signature TAGED, then

we have proved that of the TAGED. We would certainly like the converse to be

true, because then we could work exclusively with signature-TAGEDs to decide

emptiness. But is it true? Let us be optimistic, and attempt to prove that it is

indeed true.

Conjecture 73 (Signature-TAGED as under-approximation). Let A be a positive

TAGED and As its signature-TAGED. Then for each T ∈ Lng (As) there exists t ∈
Lng (A) such that t ∈ Sxp(T).

Proof. Or more accurately “doomed attempt at a proof”. Suppose T ∈ Lng (As) is

accepted by a run ρ. We attempt to build t ∈ Sxp(T), such that t ∈ Lng (A).

First off, let us note and show that any term t ∈ Sxp(T) is compatible with the

transition rules ofA, and therefore accepted by the underlying tree automaton

ta (A). Let α ∈ Pos(T): since ρ is a run ofAs, there exists a rule

T(α)
(
ρ(α.1), . . . , ρ(α.arity(T(α))

)→ ρ(α) ∈ ∆s,

and thus, by definition of t and ∆s, there exists a rule

t(α)
(
ρ(α.1), . . . , ρ(α.arity(t(α))

)→ ρ(α) ∈ ∆,

which shows that any t is indeed compatible with the transition rules ofA. The

problem remains of finding a t ∈ Sxp(T) which is also compatible with =A. We

know that Sxp(T|α) ∩Sxp(T|β) , ∅ because T|α ≅s T|β, and it follows that

∀α, β ∈ Pos(t) : ρ(α) =A ρ(β) =⇒ ∃uα,β ∈ Sxp(T|α) ∩Sxp(T|β).

Then why not choose t|α = t|β = uα,β, and choose any symbol arbitrarily every-

where the constraints did not touch? The we would respect =A by construction,

right? Right? Well, not quite. So long as we consider only one constraint

at a time, it works, but let us imagine that we have three distinct positions

α, β, γ ∈ Pos(t) such that ρ(α) =A ρ(β) and ρ(β) =A ρ(γ). Let also imagine that, say,

T(α) = { x, a, b } , T(β) = { x, y } , T(γ) = { y, f , g } .

Let us note that this choice is coherent with our definition of a signature-TAGED

and the equality constraints. Coming up with a concrete TAGED where this case

happens is left as a recreational exercise to the reader. Let us sum it up: we

need to have t|α = t|β = t|γ, so we need at minima to choose a symbol σ ∈ Σ
such that t(α) = t(β) = t(γ) = σ. We have t ∈ Sxp(T), so that means that

σ ∈ T(α) ∩ T(β) ∩ T(γ) = ∅. And so we have found a counter-example to our

conjecture. �

111

Corollary 74 (Signature-TAGED as under-approximation). The converse of corollary
72[p110] is false.

Proof. See above. �

This observation is something of a setback for us, as it means that wemust either

be content with the half-relationship we have between TAGEDs and signature

TAGEDs, or change the definition of ≅s to something stronger. Considering that

a full implementation of signature-TAGEDs has some overhead compared to that

of plain TAGEDs, if only because we are dealing with sets of sets instead of just

plain sets, and that implementing emptiness algorithms on vanilla TAGEDs was

difficult and error-prone enough already, we decided not to continue with the

development of signature-TAGEDs (c) . This is compounded with the fact that, as

stated in the introduction, this optimisation may be of good use with some real-

life TAGEDs, but would probably not shine with general random automata unless

they were specifically designed with that in mind. So all in all this would have

added overhead and complexified everything for a very modest measurable

return on investment. All this considered, and rather than abandoning the

idea purely and simply – which would not be satisfactory either since the basic

idea is, after all, perfectly legitimate – we opted for a middle-ground solution,

described in the next section.

13.2 As an over-approximation

The guiding idea here will be to find another approach to the problem, which

⋄ keeps most of the advantages of the previous approach

⋄ and works with the standard data structures, ie. TAGEDs.

We will achieve that by merging some well-chosen symbols.

Definition 75 (Signature-similarity/equivalence). Let A be a TAGED. Then we

define the signature-similarity relation on Σ, denoted ∼, as follows:

∀ f , g ∈ Σ : f ∼ g ⇐⇒ ∃(p1, . . . , pn, q) ∈ Qn+1 st.

{
f (p1, . . . , pn)→ q ∈ ∆
g(p1, . . . , pn)→ q ∈ ∆ .

This relation is trivially symmetric and reflexive. The signature-equivalence rela-

tion onΣ, denoted ≅s is defined as the transitive closure of∼. It is an equivalence

relation.

(c) The necessary data structures and some algorithms using them were implement though.

112

The same remark as in the previous section applies: symbols group themselves

by arity naturally:

Lemma 76 (Conservation of arity). LetA be a TAGED. Then the following holds:

∀ f , g ∈ Σ : f ≅s g =⇒ arity(f) = arity(g).

We call arity-preserving a relation which satisfies this property.

Proof. By induction over the length k of the smallest chain f = σ1 ∼ . . . ∼ σk = g:

⋄ (base case k = 2): Suppose f ≅s g, such that f ∼ g. Then by definition

of ∼ there exist f (p1, . . . , pn) → q ∈ ∆ and g(p1, . . . , pn) → q ∈ ∆, and it is

clear – this time by definition of a tree automaton’s transition rules – that

f , g ∈ Σn, so we have n = arity(f) = arity(g).

⋄ (inductive case): Let f ≅s g, such that the smallest chain f = σ1 ∼ . . . ∼ σk =
g is of length k > 2. Then we have by transitivity f = σ1 ≅

s σk−1 ∼ σk = g,

where smallest chain between f and σk−1 is of length k − 1. Thus by

induction hypothesis, arity(f) = arity(σk−1), and since we have σk−1 ∼ σk =
g, it follows – by the same argument as in the base case – that arity(σk−1) =

arity(g). Thus arity(f) = arity(g)

Thus the result is proved by induction. �

Proof. (terser version). Using definition 81[p115]: We have clearly (≅s) ⊆ (=a); it

follows that (≅s)∗ ⊆ (=a)∗ = (=a). �

Definition 77 (Signature-quotiented TAGED). Let A = (Σ,Q, F,∆,=A,,A) be a

TAGED. Then its signature-quotiented TAGED, or signature-TAGED for short, is the

TAGEDAs = (Σs,Q, F,∆s,=A,,A), where

Σs def
= Σ/

≅
s and ∆s def

=
{
[σ] (p1, . . . , pn)→ q

∣∣∣ σ(p1, . . . , pn)→ q ∈ ∆
}
.

There the reader might object and say “Wait! This is not a genuine TAGED at

all: the so-called symbols of Σs are in fact sets of symbols, and we have gone

back to the same kind of definition which we had in the previous section”. And

the reader would be right, but this time we do not merely have nondescript

sets of symbols, we have equivalence classes, and moreover those classes are

homogeneous for the arity. Thus there is nothing presenting us from simply

taking a representative for each class. With that in mind, we are simply merging

some symbols together. We lose some information compared to the previous

approach, but we can keep using the same machinery as for vanilla TAGEDs.

Now, let us see that a signature-quotiented TAGED is an over-approximation of

the original TAGED.

113

Definition 78 (Signature-quotiented term). LetA be a positive TAGED andAs be

its signature-TAGED. We call signature-quotiented term of t and denote ts the tree

defined recursively by as = [a], for a ∈ Σ0, and
(
f (u1, . . . , un)

)s
=
[
f
]
(u1

s, . . . , un
s)

for f ∈ Σn, n > 1.

Wenote immediately that by this definition, Pos(t) = Pos(ts) and for anyα ∈ Pos(t)
we have the equality t|αs = ts|α.

Theorem 79 (Signature over-approximation). LetA be a positive TAGED andAs be

its signature-TAGED. Then for each t ∈ Lng (A), we have ts ∈ Lng (As).

Proof. Let t ∈ Lng (A), accepted by a certain successful run ρ of A on t. Let us

show first that ts is compatible with the transition rules ofAs. Since t ∈ Lng (A),

it is compatible with the transition rules ofA, that is to say for every α ∈ Pos(t),
there exists a rule

t(α)
(
ρ(α.1), . . . , ρ(α.arity(t(α))

)→ ρ(α) ∈ ∆.

And it follows by definition that there also exists

[t(α)]
(
ρ(α.1), . . . , ρ(α.arity(t(α))

)→ ρ(α) ∈ ∆s,

and therefore ts is compatible with the transition rules ofAs. Let us now show

that ts satisfies the equality constraints ofAs. We have

∀α, β ∈ Pos(t) : ρ(α) =A ρ(β) =⇒ t|α = t|β .

By the observation above, we have then

t|α = t|β =⇒ t|αs = t|βs =⇒ ts|α = ts|β .

Thus ts is compatible with the equality constraints =A of As, which concludes

the proof. �

And thus we have exactly the same over-approximation result as we had before

with regard to emptiness:

Corollary 80 (Signature-TAGED as over-approximation). LetA be a positive TAGED

andAs its signature-TAGED. Then Lng (As) = ∅ =⇒ Lng (A) = ∅.

Let us note that, although As has potentially lost much information compared

to A, these losses are only of a “superficial nature”, meaning that the structure

of the underlying trees accepted by A and As, respectively, are the same. This

remains true in fact with any arity-preserving equivalence relation.

114

Speaking of such relations, the reader may have noticed that corollary 80 and its

lemma remain true if we substitute ≅s by any other arity-preserving equivalence

relation. Here are two other candidate equivalence relations, one coarser than

≅
s and the other finer, which we could redefineAs with:

Definition 81 (Same-arity and signature-identity relations). We define the same-

arity relation (denoted =a) and the signature-identity relation (denoted ≡s), such

that:

f =a g ⇐⇒ arity(f) = arity(g),

and, denoting sigs(σ)
def
=
{
(p1, . . . , pn, q)

∣∣∣ σ(p1, . . . , pn)→ q ∈ ∆
}
,

f ≡s g ⇐⇒ sigs(f) = sigs(g).

Both relations are trivially arity-preserving equivalence relations – and of course

=a is the equivalence kernel of arity.

Conjecture 82 (Friendly quotient). LetA be a positive TAGED andAs
≡s its signature-

TAGED, using ≡s instead of ≅s. Then Lng
(
As
≡s
)
= ∅ ⇐⇒ Lng (A) = ∅.

Proof. [TODO] Coming soon. �

Note that although ≡s is very restrictive, there are cases when it is perfectly

suitable, of which the qchar example of this chapter’s introduction is an example.

To avoid potential confusion in the remainder of this work, the equivalence

relation used to build a signature-TAGED will appear explicitly as a subscript:

for instance, the signature-TAGED of the TAGEDAwith respect to the equivalence

relation ≡s will be denotedAs
≡s . Unless of course there is no ambiguity.

13.3 Implementations

As previously mentioned , the first approach was quite cumbersome to work

with, both in theory and in practice. Consequently, although the data structures

have been coded, not much have been done with them. As for the second ap-

proach, the code below presents an implementation (of signature-equivalence)

which is both simple and efficient:

1 module DS = DisjointSet

2

3 let compress A =

4 let classes = DS.create 32 and sigt = H.create 127 in

115

5 Σ.iter (λσ→DS.add classes σ) A.Σ;

6 ∆.iter (λ(f,[q1, . . . , qn],q) → H.add sigt ([q1, . . . , qn],q) f) A.∆;

7 L.iter (λs→ DS.∪+ classes~ H.find_all sigt s) (hkeys sigt);

8 return { A with

9 ∆ = ∆.endo (λ(f,[q1, . . . , qn],q)→

10 DS.find classes f, [q1, . . . , qn],q) A.∆;

11 }

Note that the algorithm is clearly linear.

Let us take an example to illustrate this chapter a bit: here we have a cleaned-up

TAGED (the constraints have been omitted as they are irrelevant here) before and

after signature-quotient:

TAGED ’example’ [58] = {

states = #6{q0, q1, q2, q3, q4, q5}

final = #2{q1, q5}

rules = #16{

a1()->q0, a1()->q3, a3()->q2, a3()->q4, a4()->q0,

a4()->q4, a5()->q2, a5()->q3, f1(q1)->q5, f5(q1)->q5,

g1(q1, q5)->q5, g3(q0, q5)->q5, g5(q0, q5)->q5,

g5(q1, q5)->q5, h3(q2, q3, q4)->q1, h4(q2, q3, q4)->q1

}}

Classes = #{<g5 g3 g1>; <h4 h3>; <a5 a4 a3 a1>; <f5 f1>}#

TAGED ’sig-quotient’ [34] = {

states = #6{q0, q1, q2, q3, q4, q5}

final = #2{q1, q5}

rules = #8{

a4()->q0, a4()->q2, a4()->q3, a4()->q4,

f5(q1)->q5, g5(q0, q5)->q5, g5(q1, q5)->q5,

h4(q2, q3, q4)->q1

}}

On this example we have a size ratio before/after quotient of 58/34 ≈ 1.71,

which is about as much as we can hope for with random TAGEDs of the fourth

generation. Although about 80% of those randomly generated automata are

reduced in size by the operation, it is most often by a very small amount.

For this reason – and also because the second approach was only formalised at

the very end on the internship – this implementation was not used in our tests

for deciding emptiness.

116

13.4 Conclusion

In this chapter we have introduced a rather specialisedway of merging symbols

of a TAGED and reducing it to another, smaller TAGED.

We showed that, depending on the equivalence relation used to merge the

symbols, the resulting “compressed” TAGED may be either an approximation of

the original with respect to the emptiness decision problem – in the sense that

emptiness of the approximation implies that of the original; or equivalent to the

original (again, with respect to emptiness).

This method is not very efficient against fourth generation random TAGEDs but

may be of interest against special TAGEDs possessing one of several states similar

to the qchar of our running example.

117

Chapter 14
Parenting relations

In the previous two chapters we have seen various ways of reducing a TAGED

and in so doing, deciding emptiness in some particular cases when all final

states, for one reason or another, become unreachable. Thus we have so far only

covered easy cases where the TAGED is visibly empty.

In this chapter we cover cases where it is as visibly non-empty. We have seen

before that in the case of diagonal positive TAGEDs, deciding emptiness is no

more difficult than testing reachability of the final states (cf. theorem 56[p92]);

here we will attempt to do almost the same thing with TAGEDs which are not

diagonal, but not far from being so.

Consider for example the following handwritten positive TAGED, for which nei-

ther cleanup nor brutal algorithm yield any result (well, the latter would even-

tually yield results, but we might not be alive enough to still care by then. . .)

TAGED ’Heam’ [146] = {

alphab = #5{a/0, b/0, c/0, d/0, f/2}

states = #10{q, q1, q2, q3, q4, q5, q6, q7, q8, qf}

final = #1{qf}

rules = #39{a()->q, a()->q1, a()->q2, b()->q, b()->q1, b()->q2,

c()->q, c()->q1, c()->q2, d()->q, d()->q1, d()->q2,

f(q, q)->q, f(q, q)->q1, f(q, q)->q2, f(q, q1)->q3,

f(q, q1)->q5, f(q, q2)->q4, f(q, q2)->q6, f(q, q3)->q3,

f(q, q3)->q5, f(q, q4)->q4, f(q, q4)->q6, f(q, q6)->q8,

f(q, q7)->q7, f(q, qf)->qf, f(q1, q)->q3, f(q1, q)->q5,

f(q2, q)->q4, f(q2, q)->q6, f(q3, q)->q3, f(q3, q)->q5,

f(q4, q)->q4, f(q4, q)->q6, f(q5, q)->q7, f(q6, q)->q8,

f(q7, q8)->qf, f(q8, q7)->qf, f(qf, q)->qf

118

}

==rel = #2{(q1,q2), (q2,q1)}

}

Let us play around with the rules of this TAGED, and more specifically let us

discard the symbols for now and observe the states we need to build (or reach)

before building another. Let us do that as though it was a diagonal TAGED, which

it is not, of course, but if itwere diagonal, wewould only need tomake one choice

for each state. Doing this we see several ways of constructing a term accepted

qq1 q2

q5 q6

q7 q8

qf

q

q1

q2

q3

q4

q5

q6

q7

q8

qf

q

q1 q2

q5 q6

q7 q8

qf

Figure 14.1 — Three of sixteen ways to build q f

by this TAGED. For instance if we discard cycles – and we do, there is only one

way of building q f , and we first need to build both q7 and q8 for that. On the

other hand for, say, q5, we can use either a rule where we depend on q and

q1, or one where we depend on q and q3, and exploring these two possibilities

yields two different sets of dependency graphs. Figure 14.1[p119] shows three

different possible dependency graphs which one might obtain, among a total of

16 possible (a).

Let us disregard for an instant the fact that we have a global equality constraint

here. If this were a vanilla tree automaton, or even a diagonal TAGED, then we

could take any such graph – noting that no state appears twice on any of them,

start from the leaves, assign a term to each state as we go and thus build a term

(a) These figures were generated automatically by our prototype, using the dot tool for ren-

dering.

119

and a run following these skeletons. It wouldwork becausewe need only assign

one term tq to each state q, and we are free to make that choice for each state

(once all their dependencies have made their own choices) quite independently

from the choices made by other states.

Once we take the constraints into account, things change. Now q1 and q2 must

synchronise their choices. The question is “is there a term which evaluates to

both q1 and q2”. If the answer is yes – and in that case it is, then we can affect

that term to both states and move on. There are no other constraints, and thus

no other trouble, and we build a term accepted by A, which is therefore not

empty. Problem solved.

What we would like to do is automata this kind of reasoning a bit. In essence,

what we have done is to take a term in the intersection of the languages recog-

nised by two tiny automata: the projection (cf. definition 52[p90]) ofA on q2 and

its projection on q2. If the intersection had turned out to be empty, thenwe could

not have used this skeleton to build an accepted term.

The case we have shown was actually pretty trivial: in the first graph of figure

14.1[p119], q1 and q2 are leaves, so it might be argued that there is no need for

projections, intersections etc. But what if we had been confronted to the third

graph instead of the first? This time they are not leaves, but depend on q; so in

order to respect the dependency graph we will take projections on q1 (resp. q2)

and q. We then find that the intersection is non-empty and can conclude, again,

that A is not empty. However, if we tried the second graph the intersection

would be empty, and we would not be able to conclude as to A. Fortunately

since those kind of tests are very inexpensive, the idea is to test several – if not

all – dependency graphs for a given TAGED.

In the next section we will formalise those ideas and extend them to much more

general cases, where there can be many states below a state under constraints,

and even states under constraints below other states under constraints (pro-

vided that certain restrictions are satisfied). In all cases, we will attempt to

build a successful run (or romp, more exactly) by fixing as many states as we

can in a dependency graph, and testing emptiness of the intersection of several

languages. The idea is that this intersection will always be recognised by au-

tomata for which emptiness is computationally easy to decide, namely vanilla

tree automata and diagonal positive TAGEDs.

120

14.1 The theory

Prerequisites: This section relies on the notion of romp, introduced in chapter

15[p131] and on theorem 97[p135].

Let us give an intuitive notion of what we will be attempting here. . . Our

ambition, given a TAGED A, is to establish a kind of blueprint for building a

term which it recognises. We shall attempt to find such a blueprint which does

not rely too heavily on global equality constraints, and then we will test this

blueprint to see whether a term can actually be built following it.

What we called “blueprint” informally will in fact be a Directed Acyclic Graph

(DAG) where an edge denotes the fact that a state is built on top of another.

There are in general several ways to build one state – say, if it has several rules

in Rul(q) with different signatures – and so there will be as many blueprints as

the combination of all possible choices for all states. Of course, we will not be

interested in all blueprints; we will simplify the problem by not accepting cycles

– which is why we use a DAG – an we will not consider trivially spurious cases,

for instance if two states p and q are such that p =A q, there will be no question

that none of those can be built on top of the other one, and any blueprint which

suggests that will be summarily rejected.

When we find a blueprint that is apparently correct, we will test whether it is

simple enough for us to conclude. Roughly, wewill need the equality constraints

to be “at the bottom”, and solve them by reducing the original problem to

emptiness of an intersection of tree automata or diagonal TAGEDs, which is an

easier problem.

So, if we succeed in finding a blueprint which is correct, simple enough, and

for which the “sub-automata” we build are non-empty, we will have succeeded

in building a term accepted by A. On the other hand if we do not it does not

necessarily mean thatA is empty.

Note that there might be a great many possible blueprints; in practice we will

not test all of them, but just a few. The more we test, the higher our chances of

detecting non-emptiness

Now thatwehave some intuition of the problem, let us formalise all that. Instead

of using DAGs directly, we will be using relations extending to strict orders by

transitivity; which is pretty much the same thing. The so-called “parenting

relation” introduced by the next definition is to be thought of as an edge in one

of our DAGs.

121

Definition 83 (Parenting relation). Let A be a positive TAGED, and q f ∈ F one

of its final states. Then a relation on Q ≺ is a parenting relation of A (for q f) if it

satisfies the four following properties:

⋄ (q f -domination):

The ordered set (dom(≺),≺+) has a greatest element, which is q f .

⋄ (Transitionality):

∀q ∈ dom(≺) : ∃r ∈ Rul(q) st. Ant(r) =
{
p
∣∣∣ p ≺ q

}

⋄ (Strictness):

≺+ is a strict partial order (cf. definition 12[p21]) on its domain.

⋄ (Aspuriousness):

There are no two states p, q ∈ dom(≺) such that p ≺+ q and p =A q.

Let us take all these properties one by one and see where they are coming from;

this should help make the link with our informal explanations at the beginning

of this section:

⋄ (q f -domination): Here we are saying that this blueprint is for q f , which is

built over all other states.

⋄ (Transitionality): A blueprint would not be a blueprint if it did not follow

elementary rules of construction. In that case, the transition rules. If we

say that a state is built on top of those other states, then there must be a

rule which allows it. Furthermore, we cannot mix rules haphazardly for a

same state; one rule is chosen and that is all.

⋄ (Strictness): Asmentionedbefore,we refuse cycles, bothdirect and indirect.

⋄ (Aspuriousness): We refuse any blueprint which is in obvious contradiction

with the global equality constraints.

When we run into states which are involved in global equality constraints, say

p, q ∈ Q such that p =A q, we will need to test whether there exists a term which

evaluates to both p and q, through two runs using exclusively the states which

were allocated for p and q’s constructions, respectively. This boils down to

building an automaton which uses the appointed states for building q, another

for p, and testing whether there exists a term accepted by both – ie. testing if the

intersection of their accepted languages is empty. Ifwe are lucky andmanoeuvre

right, then this will be much simpler than the original problem, since what we

will actually need to do is decide emptiness of diagonal TAGEDs. So, let us define

here what we meant by “automaton which uses the appointed states”, exactly:

122

Definition 84 (Automaton under a state). Let≺ be a parenting relation of a TAGED

A, and q ∈ dom(≺). We call automaton under the state q and denote Udr(q,≺), or
simply Udr(q), the automaton

Udr(q,≺) = Prj
(
Rst
(
A, { p | p 4+ q }

)
, q
)
.

Note that we deliberately used the vague term “automaton” here, as it can in

fact turn out to be a vanilla tree automaton, a diagonal TAGED, a positive TAGED

etc, depending onA, q and ≺.
In all cases, how dowe decide emptiness of the intersection of several languages

defined by TAGEDs? We need to introduce the notion of product of tree automata,

extended to TAGEDs. (The following definition and theorem are drawn from

existing literature).

Definition 85 (Product of positive TAGEDs [Fil08]). Let

A = (Σ,QA, FA,∆A,=A) and B = (Σ,QB, FB,∆B,=B)

be positive TAGEDs. We assume without loss of generality that QA ∩ QB = ∅.

Then we define the product ofA and B, denotedA�B to be the TAGED:

A�B def
= (Σ, QA ×QB, FA × FB, ∆A � ∆B, =A � =B),

where

∆A � ∆B
def
=

{
f
(
(pA1 , p

B
1), . . . , (p

A
n , p

B
n)
)
→ (qA, qB)

∣∣∣∣∣∣
f (pA

1
, . . . , pAn)→ qA ∈ ∆A

f (pB
1
, . . . , pBn)→ qB ∈ ∆B

}

and

(=A � =B)
def
=

{ (
(pA, pB), (qA, qB)

) ∣∣∣∣ pA =A qA or pB =B qB
}

Theorem 86 (Product of positive TAGEDs cf. [Fil08]). LetA and B be two positive

TAGEDs. Then Lng (A�B) = Lng (A) ∩ Lng (B).

Proof. See [CDG+07, page 30,31] for vanilla tree automata, and [Fil08, section

5.3, page 92] for the extension to TAGEDs and proof. �

Note that the product of positive TAGEDs does not appear to be a commutative

operation: A � B and B � A are different automata, with different states.

However we still have Lng (A�B) = Lng (B�A) = Lng (A) ∩ Lng (B). So,
by shameless abuse of notation we will take

⊗
A∈SA to mean any one of the

123

possible automata resulting from taking the product of all automata in S in

every possible order. What matters to us is that we have the property:

Lng

⊗

A∈S
A

 =
⋂

A∈S
Lng (A) .

Before closing the parenthesis on the notion of product of tree automata, let

us confirm our intuition that the product of diagonal TAGEDs is still a diagonal

TAGED itself.

Theorem 87 (Closure of diagonal positive TAGEDs under product). Let A and B
be two diagonal positive TAGEDs. ThenA�B is a diagonal positive TAGED.

Proof. We have by theorem 86[p123]

(=A � =B) =
{ (

(pA, pB), (qA, qB)
) ∣∣∣∣ pA =A qA or pB =B qB

}
.

But since both =A and =B only contain diagonal constraints, ie. constraints of the

form p =A p, we have

(=A � =B) =
{ (

(pA, pB), (pA, pB)
) ∣∣∣∣ pA =A pA or pB =B pB

}
,

and therefore =A � =B contains only diagonal constraints: A � B is a diagonal

positive TAGED. �

We now have all the tools we need to define which blueprints we will consider

good, that is to say, which ones enable us to actually build an accepted term.

Definition 88 (Fruitful parenting relation). Let ≺ be a parenting relation of the

positive TAGEDA, and (≡A)
def
=
(
=A ∩dom(≺)2)∗We say that ≺ is fruitful if

∀ [q] ∈ dom(≺)/≡A,Card
([
q
])
> 1 :

⋂

q∈[q]
Lng (Udr(q,≺)) , ∅.

Theorem 89 (Fruitful positive TAGEDs). Let A be a positive TAGED. If there exists a

fruitful parenting relation ≺ for one of its final states q f , then it is non-empty.

Proof. We let (≡A)
def
=
(
=A ∩dom(≺)2)∗, and take the notation

[
q
]
to mean

[
q
]
≡A .

Let us build a romp ̺q f , thus:

124

1. If the state q ∈ dom(≺) is such thatCard ([q]) > 1. Letusdenote
{
p1, . . . , pn

}
=[

q
]
. By definition of a fruitful run we have

⋂
q∈[q]Lng

(
Udr(q,≺)) , ∅, so

there exists ̺, a successful romp of
⊗

q∈[q] Udr(q,≺), and we have – re-

ordering if necessary – πQ

(
̺
)
(ε) = (p1, . . . , pn). Let us denote ̺k the k-th

component of ̺ for the states, while the symbol remains unchanged. For

each k ∈ ~1, n�, we affect ̺pk := ̺k. Of course we have by construction

πQ

(
̺pk

)
= pk, and as it is a romp of a restriction ofA, it is also a raw romp

ofA. Note that by construction πΣ
(
̺pk

)
= πΣ

(
̺p′

k

)
, for all k , k′ ∈ ~1, n�.

2. If the state q ∈ dom(≺) is such that Card
([
q
])
= 1. We ignore q if ̺q was

already defined at a previous step; if it was not, then by transitionality

of ≺, there exists σ(p1, . . . , pn) → q ∈ ∆ st.
{
p1, . . . , pn

}
=
{
p
∣∣∣ p ≺ q

}
. For

each k ∈ ~1, n�, we compute ̺pk if not already computed, and affect ̺q :=〈
σ, q
〉 (
̺p1 , . . . , ̺pn

)
, which is clearly a raw romp ofA.

3. If the state q ∈ dom(≺) is such that q < dom(≡A), we do exactly as in the

case Card
([
q
])
= 1.

We start the algorithmbybeginning the computation of ̺q f . Since≺ is dominated

by q f , ̺q will be generated for all states q ∈ dom(≺). In the end, we get a raw

romp ofA ̺q f , rooted in q f . Let us show that this romp is successful. By theorem

97[p135], it suffices to show that

∀ [q] ∈ dom(≺)/≡A : Card
({
πΣ
(
̺
)∣∣∣
α

∣∣∣ πQ

(
̺
)
(α) ∈ [q]

})
= 1.

For states q such that Card
([
q
])
= 1, there is trivially only one term in the set, and

so the cardinal can hardly be anything but 1. And for classes with more than one

element, we have already noted that they share the same term by construction.

Thus ̺q f is compatible with =A, and we have found a successful romp of A. It

follows thatA is non-empty, which concludes the proof. �

All this is well and good, but so far nothing tells us that deciding emptiness

for those products of automata is going to be easy. We now justifies what we

have said informally before, ie. that we can arrange to only deal with diagonal

positive TAGEDs. We are hoping to find a DAG (or, in this formal model, a

parenting relation) which arranges the states in such a way as to let us reduce

the problem to diagonal automata. For this, we will need to reason on the

relative positions of states involved in global constraints in our blueprint. For

convenience, we will reason on a relation dealing with such states only:

125

Definition 90 (Parenting core). Let ≺ be a parenting relation of a TAGED A. We

call core of ≺ – and often denote ⋖+ – the relation

(⋖+)
def
= (≺+) ∩ dom(=A)

2.

Now,wewill give the formal characterisation of the good blueprints, ie. those for

which the sub-automatawe create are diagonal. We shall justify those conditions

immediately after.

Definition 91 (Flat and pseudo-flat parenting relations). Let ≺ be a parenting

relation of a TAGEDA. It is called flat if its core ⋖+ is empty, and pseudo-flat if

∀p, q, p′ ∈ Q : p ⋖+ q =⇒ (
p =A p′ =⇒ p = p′

)
.

We said before that we would need to compute the intersection of languages

accepted by TAGEDs; let us see how:

Theorem 92 (flat and pseudo-flat tests). Under the conditions and notations of

theorem 89[p124], let
[
q
]
such that Card

([
q
])
> 1, and let

U =
⊗

q∈[q]
Udr(q,≺).

Then the following statements hold:

1. If ≺ is flat thenU is a vanilla tree automaton or a diagonal positive TAGED with

only one constraint, on its sole final state.

2. If ≺ is pseudo-flat thenU is a diagonal TAGED.

Proof. The proof is in two parts:

1. Let ≺ be pseudo-flat. To prove thatU is diagonal, it suffices to prove that

every member of the product is diagonal (cf. theorem 87[p124]). Let q ∈
[
q
]
,

and let us denote B = Udr(q,≺). The sole final state of B is q, and we

may have q =B q: we know q is involved in non-diagonal constraints in

A, but we don’t know whether there are diagonal ones on top of this. As

it turns out, we do not need to know. Let us show that there can be no

other constraint. Suppose there was; then it would be either of the form

p =B q or p =B p′, where p, p′ ∈ dom(=B) are such that p , q and p′ , q. By

definition of B we have p, p′ ≺+ q. So the constraint p =B q is illegal by

aspuriousness of ≺. That leaves us with p =B p′. Recall that |Q| > 1; this

126

means that q ∈ dom(=A). Therefore we have p, p′ ⋖+ q and, if we recall the

definition (cf. 91) of a pseudo-flat relation:

p ⋖+ q =⇒ (
p =A p′ =⇒ p = p′

)
.

So our constraint is of the form p =B p. Therefore B is diagonal.

2. If ≺ is flat, then we are in an even more stringent case as above (trivially if

a relation is flat it is also pseudo-flat). So by the same argument we may

have q =B q. But this time, we cannot have any constraint of the form

p =B p′ at all since then we would have p ⋖+ q; but since ≺ is flat, ⋖+ is

empty. Thus B is either a vanilla tree automaton, or (=B) =
{
(q, q)

}
. �

Of course, some TAGEDs will not admit of any suitable parenting relation. Let us

see a quick test which will detect some of such cases before too much time has

been invested in the computation of parenting relations.

Conjecture 93 (Test). LetA be a TAGED. Let us call parenting need and denote ≺n

the relation

p ≺n q ⇐⇒ p ∈ Need(q).
and ⋖+ its core – as if it was a parenting relation. Then if for all q f ∈ F, (⋖+) ∩{
p
∣∣∣ p ≺n q f

}2
is not pseudo-flat, there is no pseudo-flat parenting relation forA.

14.2 Implementation and experiments

Our prototype implements an earlier version of the approach – the complete

formalisation was written afterwards. Here is the algorithm we use to generate

and test – or print, or anything else – all or some possible parenting relations

(called dependency graphs in the code).

1

2 L Module: set of possible antecedents of a state (set of sets of states) M

3 module 2Q = XSet (struct type t = Q.t end)

4

5

L Return set of possible antecedent bags (ie. sets of states q depends on);

bags with immediate cycles (q in bag) are not returned. More formally:

ante_bags A q =
{
Ant(r)

∣∣∣ r ∈ Rul(q) and q < Ant(r)
}
. M

6 let ante_bags A q =

7 let ∆ = Rul A q in let antes = ∆.mapL Ant ∆ in

8 2Q.filter (λbag→¬~ Q.∈ q bag) (2Q.of_list antes)

127

9

10 L Return a new graph with bag taken into account M

11 let bag_graph g q bag =

12 let [q1, . . . , qn] = Q.elements bag and g’ = ref g in

13 L.iter (λp→ g’ := G.add_edge !g’ q p) [q1, . . . , qn];

14 return !g’

15

16 L Return the transitive closure of a graph M

17 let trans_cl g = Ops.transitive_closure g

18

19 L Returns true if there are no loops in the graph M

20 let no_loop g =

21 G.fold_vertex (λv b → b ∧ ¬~ G.mem_edge g v v) g true

22

23 L Ensures aspuriousness of a transitive graph M

24 let no_spurious A g =

25 Q2.∀ (λ(p,q)→ p > q ∨ ¬~ G.mem_edge g p q) A.=A

26

27

L Iterate a function f on all (or at most cap) valid dependency graphs of a

state q M

28 let dependencies ?(cap=+∞) A f q = let c = ref 1 in

29 let rec deps A fixed graph = λ

30 | q :: qs → 2Q.iteri (λk bag →

31 if !c < cap ∨ k < 1 then begin

32 if k > 0 then incr c;

33 let bagged_graph = bag_graph graph q bag in

34 let trans = trans_cl bagged_graph in

35 if no_loop trans ∧ no_spurious A trans then

36 deps A (Q.add q fixed) bagged_graph

37 (qs ∪ Q.elements (Q.diff bag fixed));

38 end) (ante_bags A q);

39 | ∅ → f graph

40 in deps A Q.∅ G.∅ [q]

The testing function which we have implemented should correspond to the flat

case (cf. definition 91[p126]) , though again, as this was coded before the formal-

isation was done, the implementation is much more complex and labyrinthine

that it would need to be, and there might be subtle behavioural discrepancies.

The results could probably be better with a simpler implementation covering the

more general pseudo-flat cases. With that in mind, table 14.1[p130] shows some

128

test results for this approach. The results presented in this table are to be under-

stood in terms of the outcomes of the strategy outlined in chapter 16[p139], with

fourth generation random TAGEDs (cf. section 8.4[p71]) equipped with the third

model of random constraints (cf. section 9.3[p81]). Each line is averaged from the

results of 250 generated automata. Each instance of the brutal algorithm has a

timeout of 0.5 second, and the number of tested parenting relations was capped

to 25 before the blank line, and 1 afterwards. The last column indicates the

net percentage of cases which were decided (ie. fell into the Something column)

thanks to parenting relations and would otherwise have been failures.

14.3 Conclusion

In this chapter we have introduced a way of (positively) deciding emptiness in

a range of special cases. Tests (limited to a weak version of the approach) have

shown this method to be useful in circumstances where the brutal algorithm

was too inefficient to be of any use at all.

129

Height Run Something Nothing Failure ≺ results

6 0.4% 69.6% 28.8% 1.2% 2.8%

9 0.4% 69.2% 25.6% 4.8% 6.4%

12 0.0% 55.6% 36.4% 8.0% 9.2%

15 0.0% 61.2% 26.4% 12.4% 7.6%

18 0.0% 53.2% 30.0% 16.8% 6.4%

21 0.0% 50.8% 30.0% 19.2% 8.8%

24 0.0% 46.8% 35.6% 17.6% 7.2%

27 0.0% 49.2% 28.8% 22.0% 8.8%

27 0.0% 45.6% 31.2% 23.2% 5.6%

30 0.0% 45.2% 31.2% 23.6% 6.8%

31 0.0% 50.8% 25.2% 24.0% 6.0%

34 0.0% 50.8% 26.8% 22.4% 6.4%

37 0.0% 43.6% 26.8% 29.6% 7.2%

Table 14.1 — Tests of “parenting relation” approach

130

Chapter 15
A brutal algorithm

So far, we have only seen inexpensive tactics which may enable us to decide

emptiness. However the emptiness decision problem is EXPTIME-complete

and there will always be TAGEDs for which none of theses tactics – or for that

matter, any such inexpensive tactic anyone might come up with in the future –

will work. In this chapter we present a “brutal” algorithm which will decide in

all cases – provided of course that we are willing to wait for it to terminate.

15.1 Algorithms and implementation

As its name indicates, the algorithm which we are about to present is far from

subtle. It is in fact a brute force algorithm, with a few twists. In the context

of deciding TAGED emptiness, a real, pure and unalloyed brute-force approach

would be that of figure 15.1[p131]. Although we are not going to proceed exactly

Data: A positive TAGEDA
Result: Nothing or Run ρ,t
begin

foreach t ∈ Lng (ta (A)) st. Hei(t) 6A.Q do
if t is accepted byA through run ρ then return Run ρ,t ;

endfch

return Nothing;
end

Figure 15.1 — Pure brute-force emptiness

like that – because that would be so inefficient as to become absolutely useless,

131

it is still the general idea of the brutal algorithm. Note that algorithm 15.1[p131]
terminates, since there are only finitely many terms t ∈ Lng (ta (A)) such that

Hei(t) 6 |Q|, and gives the expected result, thanks to the pumping lemma for

positive TAGEDs [FTT08b, Lemma 2(Appendix)].

Still, generating and testing all possible terms would be quite a titanesque en-

deavour for all but the tiniest of TAGEDs. Not only are there a considerable number

of terms to test, but each test is in essence an instance of the membership prob-

lem, which is itself NP-complete. The idea here will be to cut all that down

somewhat with some simple observations; it will of course not change the the-

oretical complexity of the algorithm, but it will make it practical to actually run

it on slightly less microscopic instances of the problem.

Since the implementation of the brutal algorithm is quite lengthy, and the algo-

rithm itself is a bit complex taken as a whole, we will give here neither the code

nor even a full outline of it; instead we will iteratively refine different aspects of

algorithm 15.1[p131], independently of one another.

Let us start with the generation of the terms of the underlying tree automaton;

how do we proceed? First off, it seems impractical (a) to actually generate terms,

because immediately afterwards we will want determine the existence of a run,

and then test this run for compatibility with the global equality constraints. This

is counterproductive, because we will create a term using the rules (so we know

what the run would be), then discard this information (we keep the term, not

the run), and then painfully recreate all possible runs to finally test them for

compatibility. Rather than following this Rube Goldberg contraption, we will

generate terms and runs at the same time; more specifically, we will generate

“hybrids”. Recall that a term t is a mapping from Pos(t) to Σ – satisfying some

properties mentioned in section 2.1.1[p11], and that a run ρ on this same term t

is a mapping from Pos(t) to Q. So, for convenience, we will manipulate the two

at the same time: we will build “runs” which will be mappings from Pos(t) to
Σ × Q. Of course those are a different kind of objects, so to allay confusion, we

will call them “romps” instead of “runs”, and denote them ̺ instead of ρ. When

representing them explicitly, we will denote
〈
f , q
〉 (
̺1, . . . , ̺n

)
the romp which

combines a tree f (t1, . . . , tn) and a run q(ρ1, . . . , ρn). We can untangle term and

run through the two functions

πΣ() :
〈
f , q
〉 (
̺1, . . . , ̺n

) 7→ f
(
πΣ
(
̺1
)
, . . . , πΣ

(
̺n
))

and πQ() :
〈
f , q
〉 (
̺1, . . . , ̺n

) 7→ q
(
πQ

(
̺1
)
, . . . , πQ

(
̺n
))
.

(a) As a matter of fact it is impractical. I know. I have tried.

132

So, the question now becomes “how are we going to generate those romps?”.

It seems logical to start with the simplest possible romps (leaf-romps) and iter-

atively build all romps of height n on top of the already-built romps of height

strictly less than n. The generation would then be something like algorithm

15.2[p133]. Of course, the algorithm such as it is written here is very inefficient,

Data: A tree automatonA
Result: All romps ̺ such that Hei(̺) 6 |Q|
begin

Romps←
{ 〈
a, q
〉
()
∣∣∣ a→ q ∈ ∆

}
;

for h = 1 to |Q| do

add

〈
f, q
〉 (
̺1, . . . , ̺n

)
∣∣∣∣∣∣∣∣

f (p1, . . . , pn)→ q ∈ ∆

∀k ∈ ~1, n� :
{
̺k ∈ Romps
πQ
(
̺k
)
(ε) = pk

to Romps;

endfor

return Romps;
end

Figure 15.2 — Building romps

as the same terms will be built over and over again. In mathematical set nota-

tion it does notmatter, but for a computer program’s data structures, it probably

does. . . There are several way of mitigating this problem, for instance storing

romps of height n − 1 separately and making sure that at least one ̺k is selected

among them, thus making sure that each iteration generates romps of height n.

We will not detail this part of the algorithm any further, since such a discussion

concerns vanilla tree automata in general, and is is no way specific to TAGEDs.

We will now see how the introduction of the TAGED’s global equality constraints

helps us cut down on the numbers of romps which we need to store. The

following definition should be self-evident, but let us write it anyway:

Definition 94 (Romp on an automaton). Let A be a positive TAGED (resp. a tree

automaton). We call the romp ̺ a “romp of A” if πQ

(
̺
)
is a run of A on

πΣ
(
̺
)
, compatible with the global equality constraints (resp. a run ofA). We call

raw romp of a TAGED A a romp of ta (A). A romp ̺ is successful or accepting if

πQ

(
̺
)
(ε) ∈ F.

This definition being given, the following theorem should be just as obvious:

Theorem 95. Let A be a positive TAGED. If ̺ is a romp of A (compatible with =A),

then for every α ∈ Pos(̺), ̺|α is compatible with =A.

133

Proof. Wehave
{
α.β
∣∣∣ β ∈ Pos(̺|α)

}
⊆ Pos(̺). Thus, by definition of compatibility

with =A (cf. definition 5[p17]), if ̺ is compatible, so is ̺|α. �

What does this mean for us? Since in the end, we are only interested in romps

which are compatible with =A, and since the above theorem tells us that any

such romp is built exclusively on sub-romps which are themselves compatible

with =A, it follows that we do not need to generate and store every possible romp

of the underlying tree automaton, but only those which are compatible with =A;

the others can be immediately discarded.

Of course, this assumes that we can test the compatibility of a romp with =A.

This is not a computationally easy task, but we may be able to facilitate it

somewhat by leveraging the assumption we have just made. Recall that we

build new romps out of old ones, following the transition rules. Say we have

f (p1, . . . , pn) → q ∈ ∆; we take n romps ̺1, . . . , ̺n out of the ones we have

already generated and combine them into ̺ =
〈
f , q
〉
(̺1, . . . , ̺n). Then we test

compatibility with =A. But consider that our new assumption is that every one

of those old romps ̺1, . . . , ̺n is already compatible with =A. There are still many

things which can break compatibility for the new romp ̺, but clearly not as

many as in the general case.

If an incompatibility arises, it will necessarily stem either from a constraint of

the form q =A pk, for pk ∈ ran (πQ

(
̺k
)
) – clearly unsatisfiable as a tree cannot be

structurally equal to one of its sub-trees – or a constraint of the form pk =A pk′ ,

for k , k′, that is to say, a constraint between two different children. In that

last case though one has to be mindful that there might be a hidden constraint

pk =A qk in the same child; to be sure to take that into account we will extend =A to

an equivalence relation (b) on ran (πQ

(
̺
)
). Let us write that down:

Conjecture 96. Let ̺ be a raw romp of a positive TAGED A such that for all k ∈
�

1, arity(̺)
�

, ̺|k is compatible with =A, and let us denote ρ = πQ

(
̺
)
and t = πΣ

(
̺
)
. Let

T = ran(ρ) and

T̂ =
{
ρ(ε)
} ∪
{
q ∈ T

∣∣∣∣∣∣
∃k, k′ ∈ �1, arity(t)� : k , k′,∃α, β ∈ N∗ :
ρ(k.α) = p ∧ ρ(k′.β) = q ∧ p =A q

}
,

Let (≡A)
def
=
(
=A ∩T2

)∗
. Then ̺ is compatible with =A if and only if

∀ [q] ∈ T/≡A :
[
q
] ∩ T̂ , ∅ : Card

({
t|α
∣∣∣ ρ(α) ∈ [q]

})
= 1.

(b) This annoying tendency of =A to be almost, but not quite, an equivalence relation is a

bottomless well of potential mistakes for the unwary.

134

We do not offer a full proof of this; we have given above a rationalisation of

the fact that given our hypothesis that the direct children we are building a

romp with are already compatible with the equality constraints, we need not

test every constraint, but only those which put into play either the father and

one of its offspring, or two different children. Constraints internal to any one

of the children have already been taken care of in the past. In the conjecture

the set T̂ is precisely the set of the states we need worry about; this takes care

of the first big scary formula. As for the second, let us take a look at theorem

97[p135] below: it’s pretty much the same. In the conjecture, we are simply saying

that to ensure compatibility with =A, it is sufficient to test the states which are

“relatives” of those states in T̂, that is to say, we test only the states which are

directly or transitively in relation (via =A) with a state of T̂. We are taking the

time to compute T̂ because computing many useless structural comparisons of

subtrees would probably be much more expensive on large trees.

Theorem 97 (Characterisation of compatibility with =A). Let ̺ be a raw romp of a

positive TAGED A, and let us denote ρ = πQ

(
̺
)
and t = πΣ

(
̺
)
. Let T = ran(ρ) and

(≡A)
def
=
(
=A ∩T2

)∗
. Then ρ (c) is compatible with =A if and only if

∀ [q] ∈ T/≡A : Card
({

t|α
∣∣∣ ρ(α) ∈ [q]

})
= 1.

Proof. The proof is in two parts:

⋄ ⇐= : Suppose that ρ satisfies this condition (call itC). Then let α, β ∈ Pos(t)
such that ρ(α) =A ρ(β). By definition we also have ρ(α) ≡A ρ(β), and thus

there exists
[
q
] ∈ T/≡A such that ρ(α), ρ(β) ∈ [q]. By condition C we must

have t|α = t|β – else the cardinal would be at least 2. Thus ρ is compatible

with =A.

⋄ =⇒ (by contraposition): Suppose that ρ satisfies ¬C, that is to say

∃ [q] ∈ T/≡A : Card
({

t|α
∣∣∣ ρ(α) ∈ [q]

})
> 1.

(The cardinal could clearly not be zero: the equivalence classes cannot

be empty. . .) Then this means that there exist α, β ∈ Pos(t) such that

α , β and ρ(α), ρ(β) ∈ [q] and t|α , t|β. We have ρ(α) ≡A ρ(β) and thus

either ρ(α) =A ρ(β) – and in that case =A is violated – or there exist states

p1, . . . , pn ∈
[
q
]
such that ρ(α) =A p1 ∧ p1 =A p2 ∧ p2 . . . =A pn ∧ pn =A ρ(β).

Since all states p1, . . . , pn are in T, there exist γ1, . . . , γn ∈ Pos(t) such that

(c)Or equivalently, ̺.

135

for all k ∈ ~1, n�, ρ(γk) = pk. Suppose for an instant that ρ is compatible

with =A: then we have t|α = t|γ1 and t|γ1 = t|γ2 and . . . t|γn = t|β, and by

transitivity t|α = t|β. This is in contradiction with t|α , t|β, thus ρ is not

compatible with =A. �

Let us see how we will compute T̂ in practice: the algorithm is given in figure

15.3[p136]. Now that we have T̂, let us compute the set T̃ of all states which are

Data: A raw romp ̺ of a positive TAGEDA
Result: The set T̂ as in conjecture 96[p134]
begin

T̂←
{
πQ

(
̺
)
(ε)
}
;

n← arity(̺);

foreach (p, q) ∈ (=A) do
if p, q < T̂ then

for k = 1 to n − 1 do

if p ∈ ran
(
πQ

(
̺k
))
then

for l = k+1 to n do

if p ∈ ran
(
πQ

(
̺l
))
then add p and q to T̂;

return T̂;
end

Figure 15.3 — Building the set T̂ (cf. conjecture 96[p134])

in relation with T̂, either directly or by transitivity:

T̃ =
⋃

[q]∈T/≡A
[q]∩T̂,∅

[
q
]
,

and with this in hand we can proceed to decide compatibility as in algorithm

15.4[p137]: Note that in practice the equivalence classes of this algorithm can

be replaced by representative states – through a disjoint-set data structure for

instance; the exact values of the classes as sets are not needed anymore once one

has computed T̃.

We now have reasonably efficient ways of generating romps and of testing their

compatibility with the global equality constraints. Let us expand on algorithm

136

Data: A raw romp ̺ of a positive TAGEDA, set T̃

Result: true ⇐⇒ ̺ is =A-compatible

begin
let h be a table “

[
q
] 7→ a set of terms”;

foreach α ∈ Pos(̺) do
if πQ

(
̺
)
(α) ∈ T̃ then

add
[
πQ

(
̺
)
(α)
]
7→ πΣ

(
̺
)∣∣∣
α
to h;

if Card (h ([πQ

(
̺
)
(α)])) > 1 then

return false;

return true;
end

Figure 15.4 — Deciding =A-compatibility of a romp

15.2[p133] to get an outline of the resulting global algorithm: Note that some ob-

vious conditions which have already been discussed and/or given in algorithm

15.2[p133] have been omitted in algorithm 15.5[p138], for instance the condition that

̺i ∈ Romps, for all i , k, etc.

15.2 Conclusion

In this chapter we have seen a systematic, brute force approach for deciding

emptiness. Unlike all the other approaches which we have presented in this

work, this algorithm will eventually give an answer in all cases, and not only in

a range of special cases.

Nevertheless, in spite of the few tricks it uses to curtail the inefficiency of the

brute-force technique, it is far from efficient enough to be used on its own. As

such, it is meant to be used as a last resort only, when simpler, more economical

modus operandi have failed.

137

Data: A positive TAGEDA
Result: Nothing ifA is empty, Run ρ, t if run ρ accepts t

begin

romps← last←
{ 〈
a, q
〉
()
∣∣∣ a→ q ∈ ∆

}
;

buff← ∅;
for h = 1 to |Q| do

foreach f (p1, . . . , pn)→ q ∈ ∆ do

for k = 1 to n do

add
{
̺ =
〈
f , q
〉 (
̺1, . . . , ̺n

) ∣∣∣ ̺k ∈ last ∧ ̺ sat. =A
}
to buff;

if any of those ̺ is such that πQ

(
̺
)
(ε) ∈ F then

immediately return Run πQ

(
̺
)
, πΣ
(
̺
)
;

add buff to romps;
last← buff;
buff← ∅;

return Nothing;
end

Figure 15.5 — Outline of the brutal algorithm

138

Chapter 16
Strategies and tactics

Deciding emptiness is a difficult problem – an EXPTIME-complete one – for

which there does not exist any really efficient algorithm. We have tackled this

problem in a somewhat military spirit, through strategy and tactics. So far, we

have concentrated exclusively on various tactical aspects; in this chapter wewill

see the global strategy which will govern the application and composition of

theses tactics. Our “battle” plays in three main phases, corresponding roughly

to three main tactics or groups of tactics:

⋄ Preliminary, inexpensive tactics to weed out the weak elements as soon as

possible and reduce the size of the TAGEDs before more expensive tactics

come into play – just as a volley of arrows would open an epic medieval

battle, before the bold and reckless charge of the heavy cavalry. . . It

may or may not yield impressive results, but the cost of trying is quite

negligible set against the humongous expenses of the whole battle. Our

arrows are the detection of patently spurious rules, useless, spurious and

Σ-spurious states and such, which we regrouped under the banner of

the cleanup operation (cf. 12[p88]), and the detection of “interchangeable

symbols”, which we called signature-quotienting (cf. 13[p107]).

⋄ Secondary tactics, much more involved and expensive, but not quite as

much so as a frontal assault. The aim here is to try to find and take

advantage of hidden weaknesses which render the problemmuch simpler

that it initially appears. Who knows, the enemy might be nothing more

than a giant with feet of clay. . . Such a tactic is the generation of a number

of dependency graphs in the hope of finding a trivial one (cf. 14[p118]).

Sometimes, it may also pay to attempt to divide the opposing army, and

139

engage into skirmishes and “smaller battles” on several fronts at once, for

it may be that one of those fronts gives way quickly. Our corresponding

tactic will be an attempt to disentangle the various final states of the TAGED,

in case that some of them are only loosely tied to the rest of the automaton

– for instance if two final states correspond to two very different kinds of

accepted terms. This may provide either a quick resolution or grounds to

eliminate a few states and reduce the overall size of the problem. This last

tactic will be discussed in this chapter.

⋄ Finally, a tactic for those sad days when all other tactics have failed: brutal,

almost mindless frontal assault, knowing full well that barring miracles,

favourable horoscopes and other divine interventions, the chances of suc-

cess are laughably low. Our own “tactic of the desperate man” is the brute

force algorithm of chapter 15[p131].

16.1 Outline of the algorithm

Figure 16.1[p141] presents a semi-formal outline of our global strategy –presenting

the code in full would have been counterproductive. As usual with such an

outline, many things are left in the dark, which we will detail and explain in this

section.

⋄ Line 2 : Our initial volley of arrows. First we compute A’s friendly

quotient (cf. conjecture 82[p115]), and apply the cleanup operation.

⋄ Line 3 : The “candidates” are the final states of the automaton; notice the

loop next line. What we are doing is taking each final state individually,

and see whether it can be safely disentangled from the rest of the TAGEDA.

⋄ Line 4 : Clearly, it goes without saying that if there are no final states at

all,A is empty.

⋄ Line 6 : Here we detail what we meant earlier by “disentangling” a final

state from the rest of the automaton. We compute and reduce as much

as possible a projection of A on each final state q f ; note that there may

be sizeable chunks of A which are not connected at all to q f (ie. are not

friends of q f , cf. definition 50[p89]), but which were connected to other final

states of A. However, since after the projection none of these other final

states are still final anymore, and as the cleanup operation encompasses the

removal of states which are not friends of a final state (cf. theorem 53[p91]),

140

Data: A positive TAGEDA
Result: One of Nothing, Something, Run ρ,t, Failure
begin1

A← cleanupAs
≡s ;2

candidates←A.F;3

if candidates = ∅ then return Nothing;4

foreach q f ∈ candidates do5

focus← cleanup Prj
(
A, q f

)
;6

if focus.F = ∅ then remove q f from candidates and continue loop;7

if focus is diagonal then return Something;8

if focus is significantly smaller thanA then9

switch dependency graphs on focus do10

case Something: return Something;11

case Failure: do nothing;12

switch brutal algo on focus do13

case Run ρ,t: return Run ρ,t;14

case Nothing: remove q f from candidates;15

case Failure: do nothing;16

if candidates = ∅ then return Nothing;17

if candidates , A.F thenA← cleanup Prj (A, candidates);18

switch dependency graphs onA do19

case Something: return Something;20

case Failure: do nothing;21

switch brutal algo onA do22

case Run ρ,t: return Run ρ,t;23

case Nothing: return Nothing;24

case Failure:25

try over and under approximations;26

return Failure;27

end28

Figure 16.1 — Outline of the emptiness decision algorithm

141

the resulting automaton, called “focus” (on q f) may be much smaller than

A. Note that we have

Lng (A) =
⋃

q f∈F
Lng

(
focus on q f

)
.

⋄ Line 7 : We test whether our current focus is trivially empty; it might very

well be that q f turns out to be spurious or Σ-spurious, or anything else

which causes the cleanup operation to remove it (a). Then we know that

this A does not have any accepting run whose root state is q f – if it had,

the focus on q f would not be empty. If the focus turns out to be empty,

we remove q f from the candidates and try the other final states. See line

18 what happens to the candidates when we have filtered out all of those

whose focus was empty.

⋄ Line 8 : Supposing we make it this far, the focus must have final states

– well, being a focus, it has in fact exactly one final state, but it is not

important. What is important is that it has a final state, which is clearly

reachable since the focus is the product of a cleanup operation and that

each state of a cleaned-up TAGED is necessarily reachable. If it also turns

that the focus is a diagonal TAGED then by theorem 56[p92] it must be non-

empty. And if the focus is non-empty, then A itself must be non-empty,

and we can conclude immediately.

⋄ Line 9 : If we ever reach this line, it means that we could not conclude

inexpensively on the question of whether or not the focus is empty. So

our new question is: would it be a good idea to bring the heavy artillery

to bear on the focus, or would we be better inspired to move on and look

for an easier point of approach? To decide that, we examine whether the

computation of the focus has resulted in a significantly smaller automaton

than the original TAGEDA. In the worst case where there is only one final

state in A, the – one and only – focus will be the very same TAGED as A.

It is clear then that there is no point in spending time on a sub-problem

which is as hard as the whole problem. In the best case, typically if we

have a TAGEDwhich has been built as a union of smaller TAGEDs, the size of

(a) Although at the moment of writing this I am taken by a strong doubt. . . Given the way

the cleanup operation is built, it is more probable that in that case q f would have been caught
beforehand by the initial cleanup line 2. This being said, even if the test is useless it is completely

inexpensive, and it might become useful in the future if the cleanup operation is extended in a
way which breaks the above (conjectured) property.

142

the focus may be a small fraction of that ofA, and as a result, much more

tractable thanA. In that latter case, we most definitely want to sound the

charge! If all goes well, wemight be able to decide emptiness for the focus,

thereby ending the battle if it is not empty, or getting rid of a few states if

it is. In the implementation, we have taken “significantly smaller” to be

“less than one half the size of the original”.

⋄ Lines 17 and 18 : If we reach these line, then we have examined every

focus and have been unable to conclude that any of them was non-empty

– because if we had, the algorithm would have ended there and then.

On the other hand, we may have been able to conclude that some of the

focuses, if not all of them, were empty, and eliminated the corresponding

final states from the candidates. Of course, if all final states have been so

eliminated, A is empty and we conclude immediately. Otherwise, if we

have eliminated some final states but not quite all of them, we reduceA as

much as we can before proceeding to the final battle.

⋄ Other lines : The remaining lines are all applications of semi-expensive

(dependency graphs, cf. 14[p118]) and very expensive (brutal algorithm, cf.

15[p131]) tactics. See their respective chapters for explanations.

⋄ Everywhere : The algorithm is of course equipped with a timeout – or

more specifically each tactic is equipped with a timeout – which causes

it to abort and yield Fail if the computation threatens to take a few more

millennia than one is willing to wait. In practice the timeout threshold has

been kept very low in our tests (of the order of one half-second) given that

we needed to test hundreds of random TAGEDs to get statistically significant

results.

16.2 Experiments

Limited experimental results have been shown in table 14.1[p130]. A great number

of other experiments have been performed, but those are probably the most

pertinent since they used the latest version of the (implemented) emptiness

algorithms and random TAGEDs generation.

Note that the implementation was not fully up-to-date with the techniques

presented in this report, and that some of those techniques, such as signature-

quotienting, were not implemented at all. As it is the results are quite good,

with more than 70% of cases decided through simple approaches even with

143

automata accepting fairly high terms. In comparison the brutal algorithm does

not perform well – nor did we expect it to – and fails to solve anything but the

most trivial instances. It should be noted that its timeout was set fairly low (one

half second), but other experiments have shown that increasing it, even by an

order of magnitude, had little effect.

So it would appear that finding more and more specialised approaches to deal

with special cases, or perhaps finding a wholly different systematic approach (b),

is a more viable strategy than optimising variants of the brutal algorithm.

16.3 Conclusion

In this chapter we have glued together all the different tactics which we had

introduced in the previous chapters. The strategy outlined here can of course

be extended with other tactics.

The next (brief) chapter offers a global conclusion regarding our general ap-

proach of the emptiness problem.

(b)Maybe choice functions?

144

Chapter 17
Conclusion

In the conclusion of our efforts to come up with a suitable protocol for random

evaluation of our algorithms (cf. chapter 10[p83]), we spoke briefly of the dangers of

being both the designer of an algorithm and that of the home-made experimental system

intended to test it. Let us emphasise this by saying that the results presented in

table 14.1[p130], or any other such table for that matter, tell just as much about

the TAGEDs which were used for the tests as they do about the efficiency of our

algorithms. This caveat is of course true of pretty much any experiment, in a

sense, but happened to be felt very acutely in our work.

TAGEDs are a fairly new kind of automata, firmly rooted in theoretical grounds,

which have yet to be used in any implementation that could be taken as refer-

ence. Neither of course does there exist any library of “real-world TAGEDs”. In

their absence, we developed, tested and assayed our techniques and algorithms

againstwhatwe intuitively perceived to be likely characteristics for hypothetical

TAGEDs involved in what we imagined to be potential applications.

We honestly believe that the choices we have made in this respect are legiti-

mate and coherent, and that our experimental protocol (in particular the fourth

generation of random TAGEDs) is fairly representative of what one could expect

from the real world. To that effect, our research took the form of a (thankfully

not endless) loop where we would

⋄ Have an idea, formalise and implement it.

⋄ Test it against the best random TAGEDs at our disposal, and tweak the

approach to get the best possible results.

⋄ If the results were too good (not enough failures) or unbalanced (the au-

tomata turned out to be predominantly empty/non-empty), try to generate

145

automata for which the results were balanced and put our algorithms in

difficulty.

Thuswewere able to weed out cases such as, for instance, the second generation

of random TAGEDs, for which it turned out that almost all were non-empty, and

decidable instantly and painlessly by the brutal algorithm.

Though we believe that the surviving approaches, presented in the previous

chapters, fulfilled our objectives – inasmuch as we could hope in the alloted

time frame – there is obviously still much which could be done, both in terms

of new approaches and improvements over existing ones. The reader will have

noticed that, although nearly all our results are duly justified, there are still a

few conjectures and suggestions for improvement lying around in footnotes or

betweenparentheses. Those are generally symptomsof late ideas forwhich there

was no more time when they came up. More importantly, there are paths which

we imagine to be potentially quite interesting but which remain completely

or almost completely unexplored; for instance the use of choice functions (cf.

[Fil08, FTT08b]) or the rewriting of any positive TAGED into a new TAGED for

which the approach of chapter 14[p118] would decide emptiness in all cases.

146

Bibliography

[ABB+05] Alessandro Armando, David A. Basin, Yohan Boichut, Yannick Cheva-

lier, Luca Compagna, Jorge Cuéllar, Paul Hankes Drielsma, Pierre-Cyrille

Héam, Olga Kouchnarenko, Jacopo Mantovani, Sebastian Mödersheim,

David von Oheimb, Michaël Rusinowitch, Judson Santiago, Mathieu Tu-

ruani, Luca Viganò, and Laurent Vigneron. The avispa tool for the au-

tomated validation of internet security protocols and applications. In

Etessami and Rajamani [ER05], pages 281–285.

[AC05] Alessandro Armando and Luca Compagna. An optimized intruder

model for sat-based model-checking of security protocols. In A. Ar-

mando and L. Viganò, editors, Electronic Notes in Theoretical Com-

puter Science, volume 125, pages 91–108. Elsevier Science Publishers,

March 2005. Presented to the IJCAR04 Workshop ARSPA, available at

http://www.avispa-project.org.

[ACC07] A. Armando, R. Carbone, and L. Compagna. Ltl model checking for

security protocols. In CSF, pages 385–396, 2007.

[AEF+05] Roy Armoni, Sergey Egorov, Ranan Fraer, Dmitry Korchemny, and

Moshe Y. Vardi. Efficient ltl compilation for sat-based model checking.

In ICCAD [DBL05], pages 877–884.

[AJMd02] P. A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular tree model

checking. In E. Brinksma and K. G. Larsen, editors, Computer Aided Ver-

ification, CAV’02, volume 2404 of Lecture Notes in Computer Science, pages

555–568. Springer-Verlag, July 27–31 2002.

[ASV09] S. Abiteboul, L. Segoufin, and V. Vianu. Modeling and verifying active

xml artifacts. IEEE Data Eng. Bull., 32(3):10–15, 2009.

147

http://www.avispa-project.org

[Baa07] Franz Baader, editor. Term Rewriting and Applications, 18th International

Conference, RTA 2007, Paris, France, June 26-28, 2007, Proceedings, volume

4533 of Lecture Notes in Computer Science. Springer, 2007.

[BBGM08] E. Balland, Y. Boichut, T. Genet, and P.-E. Moreau. Towards an efficient

implementation of tree automata completion. In AMAST, pages 67–82,

2008.

[BC06] Marco Bernardo andAlessandroCimatti, editors. FormalMethods for Hard-

ware Verification, 6th International School on Formal Methods for the Design

of Computer, Communication, and Software Systems, SFM 2006, Bertinoro,

Italy, May 22-27, 2006, Advanced Lectures, volume 3965 of Lecture Notes in

Computer Science. Springer, 2006.

[BCHK08] Y. Boichut, R. Courbis, P.-C. Héam, and O. Kouchnarenko. Finer is better:

Abstraction refinement for rewriting approximations. In Rewriting Tech-

niques and Application, RTA’08, volume 5117 of Lecture Notes in Computer

Science, pages 48–62. Springer, 2008.

[BGJ08] B. Boyer, T. Genet, and T. P. Jensen. Certifying a tree automata completion

checker. In IJCAR’08, volume 5195 of Lecture Notes in Computer Science,

pages 523–538. Springer, 2008.

[BGJR07] Y. Boichut, Th. Genet, Th. P. Jensen, and L. Le Roux. Rewriting approxi-

mations for fast prototyping of static analyzers. In Baader [Baa07], pages

48–62.

[BHH+08a] A. Bouajjani, P. Habermehl, L. Holík, T. Touili, and T. Vojnar. Antichain-

based universality and inclusion testing over nondeterministic finite tree

automata. Implementation and Applications of Automata, pages 57–67, 2008.

[BHH+08b] A. Bouajjani, P. Habermehl, L. Holík, T. Touili, and T. Vojnar. Antichain-

based universality and inclusion testing over nondeterministic finite tree

automata. Lecture Notes in Computer Science, 5148:57–67, 2008.

[BHK08] Y. Boichut, P.-C. Héam, and O. Kouchnarenko. Approximation-based tree

regular model-checking. Nordic Journal of Computing, 14:194–219, 2008.

[BHK09] Y. Boichut, P.-C. Héam, andO. Kouchnarenko. Tree automata for detecting

attacks on protocols with algebraic cryptographic primitives. ENTCS,

239:57–72, 2009. Infinity 2006, 2007, 2008 Best papers.

[BHRV06] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract reg-

ular tree model checking. In Infinity’05, volume 149 of Electronic Notes in

Theoretical Computer Science, pages 37–48, 2006.

148

[BMSS09] M. Bojanczyk, A.Muscholl, Th. Schwentick, andL. Segoufin. Two-variable

logic on data trees and xml reasoning. J. ACM, 56(3), 2009.

[BS69] J.L. Bell andA.B. Slomson.Models andUltraproducts, an introduction. Dover

Publications., 1969.

[BSS93] K. Butler, M. Stephens, and STANFORDUNIVCADEPTOF STATISTICS.

The distribution of a sum of binomial random variables. 1993.

[BT92] B. Bogaert and S. Tison. Equality and disequality constraints on direct

subterms in tree automata. In STACS, pages 161–171, 1992.

[BT02] A. Bouajjani and T. Touili. Extrapolating tree transformations. In

Ed Brinksma and Kim Guldstrand Larsen, editors, Computer Aided Ver-

ification, CAV’02, volume 2404 of Lecture Notes in Computer Science, pages

539–554. Springer-Verlag, July 27–31 2002.

[CBRZ01] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.

Bounded model checking using satisfiability solving. Formal Methods in

System Design, 19(1):7–34, 2001.

[CC05] H. Comon and V. Cortier. Tree automata with one memory set constraints

and cryptographic protocols. Theoretical Computer Science (TCS’05), 331,

2005.

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,

S. Tison, andM. Tommasi. Tree Automata Techniques and Applications. 2007.

release October, 12th 2007.

[CHK09] Roméo Courbis, Pierre-Cyrille Héam, and Olga Kouchnarenko. Taged

approximations for temporal properties model-checking. In Maneth

[Man09], pages 135–144.

[CLJP08] H. Comon-Lundh, F. Jacquemard, and N. Perrin. Visibly tree automata

with memory and constraints. Logical Methods in Computer Science, 4(2),

2008.

[CLM07] Nathalie Caspard, Bruno Leclerc, and Bernard Monjardet. Ensembles or-

donnés finis: concepts, résultats et usages. Springer, 2007.

[DBL05] 2005 International Conference onComputer-Aided Design (ICCAD’05), Novem-

ber 6-10, 2005, San Jose, CA, USA. IEEE Computer Society, 2005.

[DCC95] M. Dauchet, A.-C. Caron, and J.-L. Coquidé. Automata for reduction

properties solving. J. Symb. Comput., 20(2):215–233, 1995.

149

[DIMV09] A. H. Dediu, A.-M. Ionescu, and C. Martín-Vide, editors. Language and

Automata Theory and Applications (LATA 2009), Tarragona, Spain, April 2-

8, 2009. Proceedings, volume 5457 of Lecture Notes in Computer Science.

Springer, 2009.

[DWDHR06] M. De Wulf, L. Doyen, T.A. Henzinger, and J.F. Raskin. Antichains: A

new algorithm for checking universality of finite automata, 2006.

[DWDR+06] M. DeWulf, L. Doyen, J.F. Raskin, et al. A lattice theory for solving games

of imperfect information, 2006.

[EM07] S. Escobar and J. Meseguer. Symbolic model checking of infinite-state

systems using narrowing. InRewriting Techniques and Applications, RTA’07,

pages 153–168, 2007.

[ER05] Kousha Etessami and SriramK. Rajamani, editors. Computer Aided Verifica-

tion, 17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July

6-10, 2005, Proceedings, volume 3576 of Lecture Notes in Computer Science.

Springer, 2005.

[FGT04] Guillaume Feuillade, Thomas Genet, and Valérie Viet Triem Tong. Reach-

ability analysis over term rewriting systems. J. Autom. Reasoning, 33(3-

4):341–383, 2004.

[Fil08] Emmanuel Filiot. Logics for n-ary queries in trees. PhD thesis, Université

des Sciences et Technologie de Lille - Lille I, 10 2008.

[FTT08a] Emmanuel Filiot, Jean-Marc Talbot, and Marseille Sophie Tison. Tree

automata techniques and applications (slides). 2008.

[FTT08b] Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison. Tree Automata

with Global Constraints. In 12th International Conference on Developments

in Language Theory (DLT), pages 314–326, Kyoto Japon, 2008.

[GGW06] Aarti Gupta, Malay K. Ganai, and Chao Wang. Sat-based verification

methods and applications in hardware verification. In Bernardo and

Cimatti [BC06], pages 108–143.

[GJV] L.B.C.C.G. Godoy, F. Jacquemard, and C. Vacher. The Emptiness Problem

for Tree Automata with Global Constraints.

[GL07] JeanGoubault-Larrecq. Logique propositionnelle,P,NP. lsv.ens-cachan.fr,

december 2007.

[GT95] R. Gilleron and S. Tison. Regular tree languages and rewrite systems.

Fundamenta Informatica, 24(1/2):157–174, 1995.

150

[HIRV06] P. Habermehl, R. Iosif, A. Rogalewicz, and T. Vojnar. Abstract regular

tree model checking of complex dynamic data structures. In SAS’06, 13th

International Static Analysis Symposium, volume 4134 of Lecture Notes in

Computer Science, pages 52–70, 2006.

[HNS09] P.C. Héam, C. Nicaud, and S. Schmitz. Random Generation of Determin-

istic Tree (Walking) Automata. 2009.

[HU79] J. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 1979.

[IYG+08] Franjo Ivancic, Zijiang Yang, Malay K. Ganai, Aarti Gupta, and Pranav

Ashar. Efficient sat-based bounded model checking for software verifica-

tion. Theor. Comput. Sci., 404(3):256–274, 2008.

[JKV09] F. Jacquemard, F. Klay, and C. Vacher. Rigid tree automata. In Dediu et al.

[DIMV09], pages 446–457.

[JR09] F. Jacquemard and M. Rusinowitch. Rewrite based verification of xml

updates. CoRR, abs/0907.5125, 2009.

[JRV06] F. Jacquemard, M. Rusinowitch, and L. Vigneron. Tree automata with

equality constraints modulo equational theories. In IJCAR, pages 557–

571, 2006.

[Kaa08] Lisa Kaati. Reduction Techniques for Finite (Tree) Automata. PhD thesis,

Uppsala University, Computer Systems, 2008.

[KL07] W. Karianto and Ch. Löding. Unranked tree automata with sibling equal-

ities and disequalities. In ICALP, pages 875–887, 2007.

[Lam94] L. Lamport. A temporal logic of actions.ACMTransactionsOnProgramming

Languages And Systems, TOPLAS, 16(3):872–923, May 1994.

[Man09] Sebastian Maneth, editor. Implementation and Application of Automata, 14th

International Conference, CIAA 2009, Sydney, Australia, July 14-17, 2009.

Proceedings, volume 5642 of Lecture Notes in Computer Science. Springer,

2009.

[Mes92] J.Meseguer. Conditioned rewriting logic as aunitedmodel of concurrency.

Theoretical Computer Science, 96(1):73–155, 1992.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems: Specification. SV, 1992.

[MSV07] P. Manolios, S.K. Srinivasan, and D. Vroon. BAT: The bit-level analysis

tool. Lecture Notes in Computer Science, 4590:303, 2007.

151

[Mur99] M. Murata. Hedge automata: a formal model for XML schemata, 1999.

[MV09] B.C.P. Manolios and D. Vroon. Faster SAT Solving with Better CNF Gen-

eration. Design, Automation and Test in Europe, DATE, 2009.

[Nev02] F. Neven. Automata theory for XML researchers. ACM SIGMOD Record,

31(3):39–46, 2002.

[OT05] H. Ohsaki and T. Takai. ACTAS: A system design for associative and

commutative tree automata theory. Electronic Notes in Theoretical Computer

Science, 124(1):97–111, 2005.

[Pnu77] A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46–57, 1977.

[Sch04] T. Schwentick. Trees, automata and XML. In Proceedings of the twenty-

third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems, page 222. ACM, 2004.

[Sch07] Th. Schwentick. Automata for xml—a survey. J. Comput. Syst. Sci.,

73(3):289–315, 2007.

[Spr09] Springer. TAGED Approximations for Temporal Properties Model-Checking,

2009.

[SSMH04] H. Seidl, Th. Schwentick, A. Muscholl, and P. Habermehl. Counting in

trees for free. In ICALP, pages 1136–1149, 2004.

[TV05] D. Tabakov and M. Vardi. Experimental evaluation of classical automata

constructions. InLogic for Programming, Artificial Intelligence, andReasoning,

pages 396–411. Springer, 2005.

152

Index

Σ-spurious state, 96

TAGED, 17

accepting run, 13

arity function, 11

atoms, 19

AWEDC, 16

Boolean satisfiability problem, 20

cleanup, 97

Conjunctive Normal Form (CNF), 19

constants, 11

DIMACS CNF, 47, 48

Environment, 19

final state density, 57

final states, 13

finite state machines, 12

formulæ, 19

free variables of ϕ, 19

ground rewrite system, 13

ground terms, 11

Interpretation, 19

literal, 19

move relation, 13

negative TAGED, 17

NFTA, 12

non-deterministic finite tree automaton, 12

positions, 11

positive TAGED, 17

prefix-closed, 11

propositional logic, 19

propositional variables, 19

ranked alphabet, 11

recognised tree language Lng (A), 13

reduction automata, 16

regular language, 15

romps, 21, 132

run ofA on t, 13

Sanitising, 97

SAT, 20

SAT solvers, 20

set of configurations, 13

skeleton, 67

spurious constructions, 97

subterm, 11

subterm ordering, 11

subtree, 11

successful run, 13

Support of a state, 96

term, 10

terms, 11

153

transition density, 57

tree, 10

tree automata

bottom-up, 10

top-down, 10

Valuation, 19

154

155

Algorithms for Tree Automata with
Constraints

Keywords: Tree automata, Tree automata with constraints, TAGED, membership prob-

lem,NP-completeness, SAT solvers, conversion to CNF, emptiness problem, EXPTIME-

completeness

Abstract: Tree automata are a widely used formalism in Computer Science. Since

their creation in the fifties, numerous more expressive extensions have been created,

mainly for theoretical needs. Unfortunately the decision problems associated to these

extensions are too often undecidable or in prohibitive classes of algorithmic complexity

(NP-complete or worse), and not much work has been done to find efficient heuristics

for them. This makes it difficult to implement any sufficiently efficient tool based

on these formalisms. This Master’s project and internship report proposes efficient

approaches for the membership problem for TAGEDs (tree automata with global equality

and disequality constraints), and the emptiness problem for positive TAGEDs , which

are respectively NP-complete and EXPTIME-complete. The approach proposed for the

membership problem is based on a SAT encoding of the problem, which leverages the

efficient heuristics of modern SAT solvers. For the emptiness problem, we introduce

several techniques aimed at reducing the size of the problem and decide asmany special

cases as possible before resorting to a general but much more expensive algorithm. We

also introduce several methods for generating random tree automata, with or without

constraints.

Mots-clefs: Automates d’arbres, Automates d’arbres avec contraintes, TAGED, problème

d’appartenance, NP-complétude, solvers SAT, conversion vers CNF, problème du vide,

EXPTIME-complétude

Résumé: Les automates d’arbres sont un formalisme très utilisé en informatique.

Depuis leur création dans les années cinquante, de nombreuses extensions, plus ex-

pressives, ont été créées, principalement pour résoudre des problèmes théoriques. Mal-

heureusement, les problèmes de décision associés à ces extensions sont le plus souvent

indécidables ou dans des classes de complexité prohibitives (NP-complet ou pire), et

peu de recherches ont été effectuées pour leur trouver des heuristiques efficaces. Ceci

fait qu’il est difficile d’implanter des outils raisonnablement efficaces basés sur ces for-

malismes. Ce rapport de projet et de stage de Master propose des approches pour le

problème d’appartenance au langage reconu par un TAGED (automate d’arbre avec con-

traintes globales d’égalité et de différence) et le problème du vide pour les TAGEDs posi-

tifs. Ces deux problèmes sont respectivement NP et EXPTIME-complets. L’approche

proposée pour le problème d’appartenance est fondée sur un codage SAT du problème,

qui tire profit des heuristiques efficaces des solvers SATmodernes. Pour le problème du

vide, nous introduisons plusieurs techniques permettant de réduire la taille du prob-

lème de de décider autant de cas particuliers que possible, avant de recourir à un algo-

rithme général mais nettement moins efficace. Nous introduisons également plusieurs

méthodes pour générer des automates d’arbres aléatoires, avec ou sans contraintes.

	Contents
	List of Tables
	List of Figures
	I Some Preliminaries
	Introduction and Motivation
	Preliminaries
	Tree Automata and extensions
	Bottom-up Nondeterministic Finite Tree Automata
	Symbols, trees, terms and subterms
	Tree automata

	Some extensions
	The class AWEDC (1981)
	Subclasses of AWEDC (circa 1990)
	TAGED (2006)

	Propositional logic and the SAT problem
	Other concepts and notations

	II TAGEDs and the Membership Problem
	Introduction
	Article version
	Propositional Encoding
	Complexity, implementation and experiments

	Full version
	Propositional encoding and proof
	Some implementation details
	External tools and file formats
	Notes about the implemented tool

	Conclusion

	III Generating Interesting TAGEDs Randomly
	Introduction and related work
	Generating random Tree Automata
	First model: dense generation
	Second model: sparse generation
	Third model: skeleton-driven generation
	Fourth model: hybrid generation

	Generating random Constraints
	First model: dense generation
	Second model: sparse generation
	Third model: logarithmic generation

	Conclusion

	IV TAGEDs and the Emptiness Problem
	Introduction
	Cleanup: hunting for spuriousness
	A theory of spuriousness
	Algorithms and implementation
	Experimental results
	Conclusion

	Signature quotienting
	A first attempt
	As an over-approximation
	Implementations
	Conclusion

	Parenting relations
	The theory
	Implementation and experiments
	Conclusion

	A brutal algorithm
	Algorithms and implementation
	Conclusion

	Strategies and tactics
	Outline of the algorithm
	Experiments
	Conclusion

	Conclusion
	Bibliography
	Index

	Abstract / Résumé

